Recurrent SARS-CoV-2 mutations at Spike D796 evade antibodies from pre-Omicron convalescent and vaccinated subjects
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domai...
Saved in:
Published in | Microbiology spectrum Vol. 12; no. 2; p. e0329123 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
06.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2165-0497 2165-0497 |
DOI | 10.1128/spectrum.03291-23 |
Cover
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution. |
---|---|
AbstractList | ABSTRACTSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution. |
Author | Mead, Heather L. Zaia, John A. Ladner, Jason T. Elko, Evan A. Altin, John A. Nelson, Georgia A. |
Author_xml | – sequence: 1 givenname: Evan A. orcidid: 0000-0001-6472-3169 surname: Elko fullname: Elko, Evan A. organization: The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA – sequence: 2 givenname: Heather L. orcidid: 0000-0002-5680-0758 surname: Mead fullname: Mead, Heather L. organization: The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA – sequence: 3 givenname: Georgia A. surname: Nelson fullname: Nelson, Georgia A. organization: The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA – sequence: 4 givenname: John A. surname: Zaia fullname: Zaia, John A. organization: Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA – sequence: 5 givenname: Jason T. orcidid: 0000-0001-7751-4366 surname: Ladner fullname: Ladner, Jason T. organization: The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA – sequence: 6 givenname: John A. orcidid: 0000-0001-7587-7470 surname: Altin fullname: Altin, John A. organization: The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38189279$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhSNUREvpD-CCfOSSxXbi2D5WS4FKlSq1wNWa2BPkJbEXO1mJf4_bdBFCgpOt8Xuf3vi9rE5CDFhVrxndMMbVu7xHO6dl2tCGa1bz5ll1xlknatpqefLH_bS6yHlHKWWMCi74i-q0UUxpLvVZle_QLilhmMn95d19vY1fa06mZYbZx5AJlPnef0fyXuqO4AEcEgiz76PzmMmQ4kT2CevbydsUA7ExHGDEbB-IEBw5gLU-wIyO5KXflcz5VfV8gDHjxdN5Xn35cPV5-6m-uf14vb28qaFt9VxzIZEpoYUcuGopDGDRMeccdbqFniptXV-eRVMGsreNlKqTrOvZYLnQrjmvrleui7Az--QnSD9NBG8eBzF9M5Bmb0c0Sgwd5RJdQbaqRyVYI0Ar7njLpZCF9XZl7VP8sWCezeTLkuMIAeOSTamAlZC0EUW6WaWQJ252cUmhbGkYNQ-9mWNv5rE3w5tiePPEXvoJ3e-kx5aKQK6C8sU5JxyM9WtBcwI__hfN_nIe4f_2_AKoTLo0 |
CitedBy_id | crossref_primary_10_7717_peerj_17898 crossref_primary_10_1016_j_csbj_2024_05_037 crossref_primary_10_1128_msphere_00127_24 |
Cites_doi | 10.1126/scitranslmed.abk3445 10.1016/j.molcel.2022.03.028 10.1038/s41586-022-05053-w 10.1038/s41586-021-03402-9 10.1016/S1473-3099(22)00733-2 10.1126/science.abn4947 10.1038/s41564-020-0770-5 10.1038/s41586-020-2852-1 10.1016/j.xcrm.2020.100189 10.1016/j.virusres.2022.198765 10.1038/s41467-023-37378-z 10.1126/science.abj3321 10.1016/j.cell.2020.02.052 10.1038/s41596-022-00766-8 10.1038/s41586-021-04387-1 10.1007/s00894-023-05509-4 10.1038/s42003-021-01743-9 10.1038/s41401-020-0485-4 10.7554/eLife.82392 10.1038/s41598-022-23342-2 10.1016/j.immuni.2023.02.005 10.1038/s41467-022-32188-1 10.1038/s41586-021-04385-3 10.1016/j.celrep.2021.109760 10.1038/s41586-021-03291-y 10.1128/jvi.00922-23 10.1016/j.celrep.2022.111022 10.1101/2021.10.27.465994 10.1126/science.abq3773 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Elko et al. |
Copyright_xml | – notice: Copyright © 2024 Elko et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1128/spectrum.03291-23 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2165-0497 |
Editor | Jesus Costa, Luciana |
Editor_xml | – sequence: 1 givenname: Luciana surname: Jesus Costa fullname: Jesus Costa, Luciana |
ExternalDocumentID | oai_doaj_org_article_85f6027edcdb48be85135a982d242757 03291-23 38189279 10_1128_spectrum_03291_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: U24AI152172 |
GroupedDBID | 53G AAGFI AAUOK AAYXX ADBBV AGVNZ ALMA_UNASSIGNED_HOLDINGS CITATION EJD FF~ FRP GROUPED_DOAJ H13 M~E OK1 RPM RSF CGR CUY CVF ECM EIF NPM UCJ 7X8 |
ID | FETCH-LOGICAL-a449t-257e185957f2840afaced1ddd0d94ab089cdb595530d97bc37786716b1fc259d3 |
IEDL.DBID | DOA |
ISSN | 2165-0497 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Fri Sep 05 03:55:55 EDT 2025 Tue Feb 06 18:22:09 EST 2024 Mon Jul 21 06:00:29 EDT 2025 Tue Jul 01 00:42:54 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | coronavirus immune evasion assay development viral immunity vaccination |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-257e185957f2840afaced1ddd0d94ab089cdb595530d97bc37786716b1fc259d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6472-3169 0000-0001-7587-7470 0000-0001-7751-4366 0000-0002-5680-0758 |
OpenAccessLink | https://doaj.org/article/85f6027edcdb48be85135a982d242757 |
PMID | 38189279 |
PQID | 2911840035 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85f6027edcdb48be85135a982d242757 proquest_miscellaneous_2911840035 asm2_journals_10_1128_spectrum_03291_23 pubmed_primary_38189279 crossref_citationtrail_10_1128_spectrum_03291_23 crossref_primary_10_1128_spectrum_03291_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-06 |
PublicationDateYYYYMMDD | 2024-02-06 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology spectrum |
PublicationTitleAbbrev | Spectrum |
PublicationTitleAlternate | Microbiol Spectr |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 Kumar, S, Delipan, R, Chakraborty, D, Kanjo, K, Singh, R, Singh, N, Siddiqui, S, Tyagi, A, Jha, V, Thakur, KG, Pandey, R, Varadarajan, R, Ringe, RP (B12) 2023; 97 Jette, CA, Cohen, AA, Gnanapragasam, PNP, Muecksch, F, Lee, YE, Huey-Tubman, KE, Schmidt, F, Hatziioannou, T, Bieniasz, PD, Nussenzweig, MC, West, AP, Keeffe, JR, Bjorkman, PJ, Barnes, CO (B25) 2021; 36 Zhao, LP, Lybrand, TP, Gilbert, PB, Payne, TH, Pyo, C-W, Geraghty, DE, Jerome, KR (B14) 2022; 12 B27 Pulliam, JRC, van Schalkwyk, C, Govender, N, von Gottberg, A, Cohen, C, Groome, MJ, Dushoff, J, Mlisana, K, Moultrie, H (B1) 2022; 376 Gobeil, S-C, Henderson, R, Stalls, V, Janowska, K, Huang, X, May, A, Speakman, M, Beaudoin, E, Manne, K, Li, D, Parks, R, Barr, M, Deyton, M, Martin, M, Mansouri, K, Edwards, RJ, Eaton, A, Montefiori, DC, Sempowski, GD, Saunders, KO, Wiehe, K, Williams, W, Korber, B, Haynes, BF, Acharya, P (B10) 2022; 82 Elko, EA, Nelson, GA, Mead, HL, Kelley, EJ, Carvalho, ST, Sarbo, NG, Harms, CE, Le Verche, V, Cardoso, AA, Ely, JL, Boyle, AS (B16) 2022; 40 Mishra, N, Huang, X, Joshi, S, Guo, C, Ng, J, Thakkar, R, Wu, Y, Dong, X, Li, Q, Pinapati, RS, Sullivan, E, Caciula, A, Tokarz, R, Briese, T, Lu, J, Lipkin, WI (B23) 2021; 4 Rambaut, A, Holmes, EC, O’Toole, Á, Hill, V, McCrone, JT, Ruis, C, du Plessis, L, Pybus, OG (B15) 2020; 5 Huang, Y, Yang, C, Xu, X, Xu, W, Liu, S (B5) 2020; 41 Prahl, M, Golan, Y, Cassidy, AG, Matsui, Y, Li, L, Alvarenga, B, Chen, H, Jigmeddagva, U, Lin, CY, Gonzalez, VJ, Chidboy, MA, Warrier, L, Buarpung, S, Murtha, AP, Flaherman, VJ, Greene, WC, Wu, AHB, Lynch, KL, Rajan, J, Gaw, SL (B22) 2022; 13 Tegally, H, Wilkinson, E, Giovanetti, M, Iranzadeh, A, Fonseca, V, Giandhari, J, Doolabh, D, Pillay, S, San, EJ, Msomi, N (B3) 2021; 592 Wang, Q, Guo, Y, Iketani, S, Nair, MS, Li, Z, Mohri, H, Wang, M, Yu, J, Bowen, AD, Chang, JY, Shah, JG, Nguyen, N, Chen, Z, Meyers, K, Yin, MT, Sobieszczyk, ME, Sheng, Z, Huang, Y, Liu, L, Ho, DD (B7) 2022; 608 B30 Zhou, P, Song, G, Liu, H, Yuan, M, He, W-T, Beutler, N, Zhu, X, Tse, LV, Martinez, DR, Schäfer, A (B20) 2023; 56 B31 Sanderson, T (B28) 2022; 11 Cele, S, Jackson, L, Khoury, DS, Khan, K, Moyo-Gwete, T, Tegally, H, San, JE, Cromer, D, Scheepers, C, Amoako, DG (B2) 2022; 602 Pinto, D, Sauer, MM, Czudnochowski, N, Low, JS, Tortorici, MA, Housley, MP, Noack, J, Walls, AC, Bowen, JE, Guarino, B (B19) 2021; 373 Bansal, K, Kumar, S (B4) 2022; 315 Ladner, JT, Henson, SN, Boyle, AS, Engelbrektson, AL, Fink, ZW, Rahee, F, D’ambrozio, J, Schaecher, KE, Stone, M, Dong, W (B17) 2021; 2 Cheng, Y, Zheng, D, Zhang, D, Guo, D, Wang, Y, Liu, W, Liang, L, Hu, J, Luo, T (B9) 2023; 29 Maher, MC, Bartha, I, Weaver, S, di Iulio, J, Ferri, E, Soriaga, L, Lempp, FA, Hie, BL, Bryson, B, Berger, B, Robertson, DL, Snell, G, Corti, D, Virgin, HW, Kosakovsky Pond, SL, Telenti, A (B13) 2022; 14 Cao, Y, Wang, J, Jian, F, Xiao, T, Song, W, Yisimayi, A, Huang, W, Li, Q, Wang, P, An, R (B6) 2022; 602 Henson, SN, Elko, EA, Swiderski, PM, Liang, Y, Engelbrektson, AL, Piña, A, Boyle, AS, Fink, Z, Facista, SJ, Martinez, V, Rahee, F, Brown, A, Kelley, EJ, Nelson, GA, Raspet, I, Mead, HL, Altin, JA, Ladner, JT (B29) 2023; 18 Kelley, EJ, Henson, SN, Rahee, F, Boyle, AS, Engelbrektson, AL, Nelson, GA, Mead, HL, Anderson, NL, Razavi, M, Yip, R, Ladner, JT, Scriba, TJ, Altin, JA (B18) 2023; 14 Dacon, C, Tucker, C, Peng, L, Lee, C-CD, Lin, T-H, Yuan, M, Cong, Y, Wang, L, Purser, L, Williams, JK (B21) 2022; 377 Hoffmann, M, Kleine-Weber, H, Schroeder, S, Krüger, N, Herrler, T, Erichsen, S, Schiergens, TS, Herrler, G, Wu, N-H, Nitsche, A, Müller, MA, Drosten, C, Pöhlmann, S (B26) 2020; 181 Kemp, SA, Collier, DA, Datir, RP, Ferreira, IATM, Gayed, S, Jahun, A, Hosmillo, M, Rees-Spear, C, Mlcochova, P, Lumb, IU (B11) 2021; 592 Barnes, CO, Jette, CA, Abernathy, ME, Dam, K-MA, Esswein, SR, Gristick, HB, Malyutin, AG, Sharaf, NG, Huey-Tubman, KE, Lee, YE, Robbiani, DF, Nussenzweig, MC, West, AP, Bjorkman, PJ (B24) 2020; 588 Arora, P, Kempf, A, Nehlmeier, I, Schulz, SR, Jäck, H-M, Pöhlmann, S, Hoffmann, M (B8) 2023; 23 |
References_xml | – ident: e_1_3_3_14_2 doi: 10.1126/scitranslmed.abk3445 – ident: e_1_3_3_11_2 doi: 10.1016/j.molcel.2022.03.028 – ident: e_1_3_3_8_2 doi: 10.1038/s41586-022-05053-w – ident: e_1_3_3_4_2 doi: 10.1038/s41586-021-03402-9 – ident: e_1_3_3_9_2 doi: 10.1016/S1473-3099(22)00733-2 – ident: e_1_3_3_31_2 – ident: e_1_3_3_2_2 doi: 10.1126/science.abn4947 – ident: e_1_3_3_16_2 doi: 10.1038/s41564-020-0770-5 – ident: e_1_3_3_25_2 doi: 10.1038/s41586-020-2852-1 – ident: e_1_3_3_18_2 doi: 10.1016/j.xcrm.2020.100189 – ident: e_1_3_3_5_2 doi: 10.1016/j.virusres.2022.198765 – ident: e_1_3_3_19_2 doi: 10.1038/s41467-023-37378-z – ident: e_1_3_3_20_2 doi: 10.1126/science.abj3321 – ident: e_1_3_3_27_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_3_30_2 doi: 10.1038/s41596-022-00766-8 – ident: e_1_3_3_3_2 doi: 10.1038/s41586-021-04387-1 – ident: e_1_3_3_10_2 doi: 10.1007/s00894-023-05509-4 – ident: e_1_3_3_24_2 doi: 10.1038/s42003-021-01743-9 – ident: e_1_3_3_6_2 doi: 10.1038/s41401-020-0485-4 – ident: e_1_3_3_29_2 doi: 10.7554/eLife.82392 – ident: e_1_3_3_15_2 doi: 10.1038/s41598-022-23342-2 – ident: e_1_3_3_21_2 doi: 10.1016/j.immuni.2023.02.005 – ident: e_1_3_3_23_2 doi: 10.1038/s41467-022-32188-1 – ident: e_1_3_3_7_2 doi: 10.1038/s41586-021-04385-3 – ident: e_1_3_3_26_2 doi: 10.1016/j.celrep.2021.109760 – ident: e_1_3_3_12_2 doi: 10.1038/s41586-021-03291-y – ident: e_1_3_3_13_2 doi: 10.1128/jvi.00922-23 – ident: e_1_3_3_17_2 doi: 10.1016/j.celrep.2022.111022 – ident: e_1_3_3_28_2 doi: 10.1101/2021.10.27.465994 – ident: e_1_3_3_32_2 – ident: e_1_3_3_22_2 doi: 10.1126/science.abq3773 – volume: 14 year: 2022 ident: B13 article-title: Predicting the mutational drivers of future SARS-CoV-2 variants of concern publication-title: Sci Transl Med doi: 10.1126/scitranslmed.abk3445 – volume: 97 year: 2023 ident: B12 article-title: Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly influence its conformation, fusogenicity, and neutralization sensitivity publication-title: J Virol doi: 10.1128/jvi.00922-23 – ident: B27 article-title: Sanderson T . 2021 . Chronumental: time tree estimation from very large phylogenies . Bioinform . doi: 10.1101/2021.10.27.465994 – volume: 373 start-page: 1109 year: 2021 end-page: 1116 ident: B19 article-title: Broad betacoronavirus neutralization by a stem helix-specific human antibody publication-title: Science doi: 10.1126/science.abj3321 – volume: 592 start-page: 277 year: 2021 end-page: 282 ident: B11 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature doi: 10.1038/s41586-021-03291-y – volume: 82 start-page: 2050 year: 2022 end-page: 2068 ident: B10 article-title: Structural diversity of the SARS-CoV-2 Omicron spike publication-title: Mol Cell doi: 10.1016/j.molcel.2022.03.028 – volume: 13 start-page: 4422 year: 2022 ident: B22 article-title: Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy publication-title: Nat Commun doi: 10.1038/s41467-022-32188-1 – volume: 2 year: 2021 ident: B17 article-title: Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2020.100189 – volume: 5 start-page: 1403 year: 2020 end-page: 1407 ident: B15 article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology publication-title: Nat Microbiol doi: 10.1038/s41564-020-0770-5 – ident: B30 article-title: Fink ZW , Martinez V , Altin J , Ladner JT . 2020 . Pepsirf: a flexible and comprehensive tool for the analysis of data from highly-Multiplexed DNA-Barcoded peptide assays . doi: arXiv:2007.05050 – volume: 377 start-page: 728 year: 2022 end-page: 735 ident: B21 article-title: Broadly neutralizing antibodies target the coronavirus fusion peptide publication-title: Science doi: 10.1126/science.abq3773 – volume: 602 start-page: 654 year: 2022 end-page: 656 ident: B2 article-title: Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization publication-title: Nature doi: 10.1038/s41586-021-04387-1 – volume: 4 year: 2021 ident: B23 article-title: Immunoreactive peptide maps of SARS-CoV-2 publication-title: Commun Biol doi: 10.1038/s42003-021-01743-9 – volume: 40 start-page: 111022 year: 2022 ident: B16 article-title: COVID-19 vaccination elicits an evolving, cross-reactive antibody response to epitopes conserved with endemic coronavirus spike proteins publication-title: Cell Rep doi: 10.1016/j.celrep.2022.111022 – ident: B31 article-title: Brown AM , Bolyen E , Raspet I , Altin JA , Ladner JT . 2022 . PepSIRF + QIIME 2: software tools for automated, reproducible analysis of highly-multiplexed serology data . Available from : https://doi.org/10.48550/ARXIV.2207.11509 – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: B24 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 11 year: 2022 ident: B28 article-title: Taxonium, a web-based tool for exploring large phylogenetic trees publication-title: Elife doi: 10.7554/eLife.82392 – volume: 23 start-page: 22 year: 2023 end-page: 23 ident: B8 article-title: Omicron sublineage BQ.1.1 resistance to monoclonal antibodies publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(22)00733-2 – volume: 29 year: 2023 ident: B9 article-title: Molecular recognition of SARS-CoV-2 spike protein with three essential partners: exploring possible immune escape mechanisms of viral mutants publication-title: J Mol Model doi: 10.1007/s00894-023-05509-4 – volume: 36 year: 2021 ident: B25 article-title: Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies publication-title: Cell Reports doi: 10.1016/j.celrep.2021.109760 – volume: 12 year: 2022 ident: B14 article-title: Rapidly identifying new coronavirus mutations of potential concern in the Omicron variant using an unsupervised learning strategy publication-title: Sci Rep doi: 10.1038/s41598-022-23342-2 – volume: 56 start-page: 669 year: 2023 end-page: 686 ident: B20 article-title: Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease publication-title: Immunity doi: 10.1016/j.immuni.2023.02.005 – volume: 41 start-page: 1141 year: 2020 end-page: 1149 ident: B5 article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19 publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-020-0485-4 – volume: 592 start-page: 438 year: 2021 end-page: 443 ident: B3 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature doi: 10.1038/s41586-021-03402-9 – volume: 376 year: 2022 ident: B1 article-title: Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa publication-title: Science doi: 10.1126/science.abn4947 – volume: 602 start-page: 657 year: 2022 end-page: 663 ident: B6 article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-04385-3 – volume: 18 start-page: 396 year: 2023 end-page: 423 ident: B29 article-title: PepSeq: a fully in vitro platform for highly multiplexed serology using customizable DNA-barcoded peptide libraries publication-title: Nat Protoc doi: 10.1038/s41596-022-00766-8 – volume: 608 start-page: 603 year: 2022 end-page: 608 ident: B7 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 315 start-page: 198765 year: 2022 ident: B4 article-title: Mutational cascade of SARS-CoV-2 leading to evolution and emergence of Omicron variant publication-title: Virus Res doi: 10.1016/j.virusres.2022.198765 – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: B26 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 14 year: 2023 ident: B18 article-title: Virome-wide detection of natural infection events and the associated antibody dynamics using longitudinal highly-multiplexed serology publication-title: Nat Commun doi: 10.1038/s41467-023-37378-z |
SSID | ssj0001105252 |
Score | 2.315721 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human... ABSTRACTSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause... |
SourceID | doaj proquest asm2 pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | e0329123 |
SubjectTerms | Antibodies, Neutralizing Antibodies, Viral assay development coronavirus COVID-19 Humans immune evasion Immunology Mutation Research Article SARS-CoV-2 Spike Glycoprotein, Coronavirus vaccination viral immunity |
SummonAdditionalLinks | – databaseName: Amer. Society for Microbiology Open Access (Activated by CARLI) dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3raxQxEB9qi-AX0Vbt-SKCUBC27ia7m-TjWS2lRQutJ_0WssksHO3tFbdX8L93Zh8ngpZ-zSYbdh6b32ReAO9r9Kgrsk4IDagkN3WRWG0zYog1keC1QeRs5K_fyqNZfnxRXGxAOebCDBRs93276Bz5a82W5mOXfPhztdhPleT3qQewVRDkJ8nemk5npyd_blcy7s8mBzfmP9fSP5j2kH-dR13Z_v9jze7MOXwCjwewKKY9d5_CBjbb8LBvH_lrB9ozvizn8krifHp2nhwsfyRSLFa9d70Vnsav55coPmtbCrz1EQURcl4tOXRQcGaJ4CiQ0wVH5TWCI9D9UN-JJkZx60OYN4RGo2hXFd_YtM9gdvjl-8FRMjRRSHye25uEVBIzLmKmazqJUl_7gDGLMabR5r5KjQ2xoseFogFdBcUF5ciIqrI6kGkU1XPYbJYN7oJgpx8GY4jtJrfR2FJHVFGGNA-1xHoCe0xRN_LQdQaGNG6kveto76SaQDoS3YWhFjm3xLi6a8mH9ZLrvhDHXZM_MSfXE7mGdjdAEuUGlXSmqEsyyjESAXL6KMKeqvDWyEiwRRd6Au9GOXCkc-xI8Q0uV62jTdgwTlUxgRe9gKy3YgRkpbYv702MV_BIElLqQsHL17BJD_ENIZ2b6u0g1r8BURT7nA priority: 102 providerName: American Society for Microbiology |
Title | Recurrent SARS-CoV-2 mutations at Spike D796 evade antibodies from pre-Omicron convalescent and vaccinated subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38189279 https://journals.asm.org/doi/10.1128/spectrum.03291-23 https://www.proquest.com/docview/2911840035 https://doaj.org/article/85f6027edcdb48be85135a982d242757 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABX databaseName: American Society for Microbiology Open Access customDbUrl: eissn: 2165-0497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001105252 issn: 2165-0497 databaseCode: AAUOK dateStart: 20131031 isFulltext: true titleUrlDefault: https://journals.asm.org/ providerName: American Society for Microbiology – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2165-0497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001105252 issn: 2165-0497 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2165-0497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001105252 issn: 2165-0497 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2165-0497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001105252 issn: 2165-0497 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FKfSl2FbtaSspFARhdTfZj-TxvFaOihXUK76FfMzCobcnrif0v-9Mdu-wD9qXvmYTkp1MMr9JJr9h7GsNFiqH3gmiAZnkqi4SXekMJ0SrgPBaAdBr5LOf5XiS_7gurp-k-qKYsI4euBPckSrqEl0nCD64XDlAhCALq5UIaFyqIr4jRzP2xJmKpysZ5WcT_TUm7sFH8eHi_WJ2mEpBY5G4B9t2Jv6yR5G2_3msGW3OyQZ724NFPuwG-Y69guY9e92lj_z9gbUXdFhO9Er8cnhxmYzmvxLBZ4vudr3lFsvvpjfAv1W65PBoA3AU5NTNKXSQ08sSTlEg5zOKyms4RaDbnt8JKwb-aL2fNohGA28Xjk5s2k02Ofl-NRonfRKFxOa5fkhwSUJGJGZVjZYotbX1ELIQQhp0bl2qNAoWPxcSCyrnJRHKoRPlstqjaxTkFltr5g18ZJwu_cArnASvch2ULqsAMgif5r4WUA_YPknU9KugNdHBEMosZW-i7I2QA5YuhW58z0VOKTFuX2pysGpy1xFxvFT5mGZyVZE4tGMBapbpNcv8S7MG7MtSDwyuObpIsQ3MF63BTsgxTmUxYNudgqy6IgSkRaV3_scQdtkbgSAqRomXn9ga_iR8RhD04PbY-nA4OT_di3r_B_uWBSs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9BJwQviM9RYGAkJCSkbImdxPZj2ZgK-5K2Fe3NcmxH6ram07JO4r_nLnGLkGDi1TnHyvku_t2H7wA-1sEGWaF1gmhAJLmqi0RLneGGaOURXqsQ6DbywWE5nuTfz4qzmFVJd2HOqS_vZbtp21kXxyfFJkd07EeotroLiNeL2WYqOL1T3Ie1guuUD2BtNJoc7f32sGTUo43HUOZf5-J_GBfif5xJXen-f-PN7tzZfQKPI2Bko36Hn8K90DyDB30LyZ_PoT0mhzmVWGIno-OTZHv-I-Fstugj7C2zOH41vQhsR-qShVvrA0NmTqs5pQ8yul3CKBPkaEaZeQ2jLHQbazwhoWe31rlpg4jUs3ZRkdemfQGT3a-n2-MkNlJIbJ7rmwTVMmRUyEzWeBqltrYu-Mx7n3qd2ypV2vkKHxcCB2TlBBWVQ0OqymqH5pEXL2HQzJvwChgF_oJTCrde5dorXUofhOcuzV3NQz2ET8RREzWhNZ2RwZVZ8t50vDdcDCFdMt24WI-c2mJc3jXl82rKVV-M4y7iL7STK0Kqo90NoFiZqJZGFXWJhnnwyIAcPwrxpyisVtwjdJGFHMKHpRwY1DsKptgmzBetwUXIOE5FMYT1XkBWSxEK0lzq1__NjPfwcHx6sG_2vx3uvYFHHJFTlxpevoUBEoYNRD431bso4r8A42L_7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA7aovgi3l2vEQRBmDqTzEySx7V1qVZbaV3pW8gkJ7C0O7s43YL_3nNmsiuCFl8zyYQ5l8l3cm6MvY7gQDVonSAakFmpY5UZZQpkiNEB4bUGoGzkL4f1_rT8dFqdpqhKyoVJFOx2XDfvHfmk2csQUz9C_a5PQPyxmu_kUtA75XW2XQmtUaK3x-Pp0cHvG5aCerSJ5Mr861r8D-M-4o8zqS_d_2-82Z87kzvsdgKMfDxw-C67Bu09dmNoIfnzPuuO6cKcSizxk_HxSba7-J4JPl8NHvaOOxxfzs6A7ylTc7h0ATgSc9YsKHyQU3YJp0iQozlF5rWcotBdqvGEEwO_dN7PWkSkgXerhm5tugdsOvnwbXc_S40UMleW5iJDtYSCCpmpiKdR7qLzEIoQQh5M6ZpcGx8afFxJHFCNl1RUDg2ppogezaMgH7KtdtHCY8bJ8Qdea2S9Lk3QplYBZBA-L30UEEfsDVHUrvloeyNDaLumve1pb4UcsXxNdOtTPXJqi3F-1ZK3myXLoRjHVZPfEyc3E6mOdj-AUmWTWlpdxRoNcwhIgBI_CvGnrJzRIiB0UZUasVdrObCod-RMcS0sVp3FTcg4zmU1Yo8GAdlsRSjICGWe_DcxXrKbX_cm9vPHw4On7JZA4NRHhtfP2BbOg-cIfC6aF0nCfwH8LP-b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+SARS-CoV-2+mutations+at+Spike+D796+evade+antibodies+from+pre-Omicron+convalescent+and+vaccinated+subjects&rft.jtitle=Microbiology+spectrum&rft.au=Elko%2C+Evan+A.&rft.au=Mead%2C+Heather+L.&rft.au=Nelson%2C+Georgia+A.&rft.au=Zaia%2C+John+A.&rft.date=2024-02-06&rft.issn=2165-0497&rft.eissn=2165-0497&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1128%2Fspectrum.03291-23&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_spectrum_03291_23 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon |