Synthesis and Conformational Analysis of a Cyclic Peptide Obtained via i to i+4 Intramolecular Side-Chain to Side-Chain Azide−Alkyne 1,3-Dipolar Cycloaddition
Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-ch...
Saved in:
Published in | Journal of organic chemistry Vol. 73; no. 15; pp. 5663 - 5674 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
01.08.2008
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3263 1520-6904 1520-6904 |
DOI | 10.1021/jo800142s |
Cover
Abstract | Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-chain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of CuI-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including ϵ-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(ϵ-N3) or the incorporation of Fmoc-Nle(ϵ-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase CuI-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(ϵ-N3)-Ser-Ile-Gln-Pra-Leu-Arg-NH2 (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&1)-Ser-Ile-Gln-Yaa(&2)-Leu-Arg-NH2][(&1(CH2)4-1,4-[1,2,3]triazolyl-CH2&2)] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys13(&1),Asp17(&2)]hPTHrP(11−19)NH2 (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities. |
---|---|
AbstractList | Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-chain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of Cu(I)-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including epsilon-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(epsilon-N3) or the incorporation of Fmoc-Nle(epsilon-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase Cu(I)-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(epsilon-N3)-Ser-Ile-Gln-Pra-Leu-Arg-NH2 (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&(1))-Ser-Ile-Gln-Yaa(&(2))-Leu-Arg-NH2][(&(1)(CH2)4-1,4-[1,2,3]triazolyl-CH2&(2))] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys(13)(&(1)),Asp(17)(&(2))]hPTHrP(11-19)NH2 (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities. Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to sidechain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of Cu(I)-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including c-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(epsilon-N(3)) or the incorporation of Fmoc-Nle(epsilon-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase Cu(I)-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(epsilon-N(3))-Ser-Ile-Gln-Pra-Leu-Arg-NH(2) (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&(1))-Ser-Ile-Gin-Yaa(&(2))-Leu-Arg-NH(2)] [(&(1) (CH(2))(4)-1,4[ 1,2,3]triazolyl-CH(2)&(2))] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys(13)(&(1)),Asp(17)(&(2))]hPTHrP(11-19)NH(2) (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities. Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-chain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of Cu(I)-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including epsilon-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(epsilon-N3) or the incorporation of Fmoc-Nle(epsilon-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase Cu(I)-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(epsilon-N3)-Ser-Ile-Gln-Pra-Leu-Arg-NH2 (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&(1))-Ser-Ile-Gln-Yaa(&(2))-Leu-Arg-NH2][(&(1)(CH2)4-1,4-[1,2,3]triazolyl-CH2&(2))] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys(13)(&(1)),Asp(17)(&(2))]hPTHrP(11-19)NH2 (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities.Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-chain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of Cu(I)-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including epsilon-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(epsilon-N3) or the incorporation of Fmoc-Nle(epsilon-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase Cu(I)-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(epsilon-N3)-Ser-Ile-Gln-Pra-Leu-Arg-NH2 (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&(1))-Ser-Ile-Gln-Yaa(&(2))-Leu-Arg-NH2][(&(1)(CH2)4-1,4-[1,2,3]triazolyl-CH2&(2))] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys(13)(&(1)),Asp(17)(&(2))]hPTHrP(11-19)NH2 (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities. Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-chain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of CuI-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including ϵ-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(ϵ-N3) or the incorporation of Fmoc-Nle(ϵ-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase CuI-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(ϵ-N3)-Ser-Ile-Gln-Pra-Leu-Arg-NH2 (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&1)-Ser-Ile-Gln-Yaa(&2)-Leu-Arg-NH2][(&1(CH2)4-1,4-[1,2,3]triazolyl-CH2&2)] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys13(&1),Asp17(&2)]hPTHrP(11−19)NH2 (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities. |
Author | Papini, Anna Maria Cantel, Sonia Le Chevalier Isaad, Alexandra Rovero, Paolo Scrima, Mario Levy, Jay J Chorev, Michael DiMarchi, Richard D D’Ursi, Anna Maria Halperin, Jose A |
Author_xml | – sequence: 1 givenname: Sonia surname: Cantel fullname: Cantel, Sonia – sequence: 2 givenname: Alexandra surname: Le Chevalier Isaad fullname: Le Chevalier Isaad, Alexandra – sequence: 3 givenname: Mario surname: Scrima fullname: Scrima, Mario – sequence: 4 givenname: Jay J surname: Levy fullname: Levy, Jay J – sequence: 5 givenname: Richard D surname: DiMarchi fullname: DiMarchi, Richard D – sequence: 6 givenname: Paolo surname: Rovero fullname: Rovero, Paolo – sequence: 7 givenname: Jose A surname: Halperin fullname: Halperin, Jose A – sequence: 8 givenname: Anna Maria surname: D’Ursi fullname: D’Ursi, Anna Maria – sequence: 9 givenname: Anna Maria surname: Papini fullname: Papini, Anna Maria – sequence: 10 givenname: Michael surname: Chorev fullname: Chorev, Michael |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20531927$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18489158$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URC-w4AWQNyChEupLHCfLIQVaqaJFU9aR45yobjP2YDvA8ASseQKejSfBYYYpQl3ghS_y9_-2zn_20Y51FhB6TMlLShg9unYlITRn4R7ao4KRrKhIvoP2CGEs46zgu2g_hGuShhDiAdqlZV5WVJR76Md8ZeMVBBOwsh2une2dX6honFUDnqVpNd25Hitcr_RgNL6AZTQd4PM2KmOhw5-MwgZHh81hjk9t9GrhBtDjoDyeJzKrrxI4AX-dZl_T_ue377PhZmUB0xc8OzZLN2mmd5zqOjP94iG636shwKPNeoA-vHl9WZ9kZ-dvT-vZWabyXMZMsF6qUjMOXQFdWZa9aFuVE8p0VYEoK011W7V5W7Sy05JTIfI21QwKIYkEzQ_Qs7Xv0ruPI4TYLEzQMAzKghtDU1RcUC5JAp9swLFdQNcsvVkov2r-1DQBTzeACloNvVdWm7DlGBGcVkwm7nDNfYbW9UEbsBq2WMqKCVkJXkyx0USX_0_XJv6OsHajjUn6fC3V3oXgob_9M2mmBmq2DZTYo39YvfFKsZrhTkW2VpgQ4cvWWvmbppBciubyYt68OsnfVbJ43xzflkfpkGxGn3os3OH7C-BK4Uk |
CODEN | JOCEAH |
CitedBy_id | crossref_primary_10_1002_pep2_24159 crossref_primary_10_1002_anie_202416348 crossref_primary_10_1021_acs_jmedchem_2c01541 crossref_primary_10_1021_jm501027w crossref_primary_10_1021_cr400031z crossref_primary_10_1016_j_bmc_2015_03_015 crossref_primary_10_1021_jm201125d crossref_primary_10_1016_j_molstruc_2012_05_023 crossref_primary_10_1021_ja505141j crossref_primary_10_1039_c2sc20473h crossref_primary_10_1016_j_tetlet_2010_12_040 crossref_primary_10_1021_ar200021p crossref_primary_10_1021_co3000117 crossref_primary_10_1002_chem_200902766 crossref_primary_10_1021_acs_bioconjchem_8b00131 crossref_primary_10_1039_C4SC00572D crossref_primary_10_1111_bph_12431 crossref_primary_10_1038_nprot_2013_134 crossref_primary_10_1021_jo902424m crossref_primary_10_1002_slct_201601381 crossref_primary_10_1021_acs_jmedchem_3c01116 crossref_primary_10_1002_adsc_201400904 crossref_primary_10_1002_psc_3400 crossref_primary_10_1016_j_tetlet_2017_05_007 crossref_primary_10_1039_D1MD00083G crossref_primary_10_1002_psc_3646 crossref_primary_10_1002_ange_201401058 crossref_primary_10_1002_ange_201412070 crossref_primary_10_1039_D1CB00237F crossref_primary_10_1021_acs_jpcb_4c06974 crossref_primary_10_1016_j_tet_2014_08_004 crossref_primary_10_1016_S1773_2247_13_50001_3 crossref_primary_10_1021_ol200775h crossref_primary_10_1021_acsomega_3c01436 crossref_primary_10_1021_acsmacrolett_8b00668 crossref_primary_10_1002_anie_201602806 crossref_primary_10_3390_molecules25102314 crossref_primary_10_1039_C7SC05057G crossref_primary_10_1002_anie_201008142 crossref_primary_10_1002_cbic_201800121 crossref_primary_10_3390_ma14123217 crossref_primary_10_1517_17460441_2011_603723 crossref_primary_10_4155_fmc_13_25 crossref_primary_10_1021_acs_jmedchem_0c01500 crossref_primary_10_1039_C7SC02420G crossref_primary_10_1039_C8OB00686E crossref_primary_10_1021_jm301031r crossref_primary_10_1039_C6OB00475J crossref_primary_10_1039_D0CB00075B crossref_primary_10_1016_j_jfluchem_2016_04_010 crossref_primary_10_1039_C9SC01456J crossref_primary_10_1002_slct_202204207 crossref_primary_10_3987_COM_12_12516 crossref_primary_10_1002_chem_201705418 crossref_primary_10_1002_ange_200904980 crossref_primary_10_1016_j_bmc_2018_03_008 crossref_primary_10_1039_C5OB00741K crossref_primary_10_1016_j_tet_2014_06_121 crossref_primary_10_1002_ange_202416348 crossref_primary_10_1002_chem_201102667 crossref_primary_10_1002_chem_201700128 crossref_primary_10_1002_cjoc_201800446 crossref_primary_10_1021_acschembio_5b00963 crossref_primary_10_1039_D0CS00354A crossref_primary_10_1002_ejoc_200800717 crossref_primary_10_1021_acs_joc_5b00858 crossref_primary_10_1016_j_ejmech_2021_113686 crossref_primary_10_1021_acs_chemrev_8b00789 crossref_primary_10_1002_ange_201008142 crossref_primary_10_1021_acsinfecdis_5b00118 crossref_primary_10_1039_c1cc13320a crossref_primary_10_1002_cbic_201000717 crossref_primary_10_1039_D4CC03887H crossref_primary_10_1002_anie_202407764 crossref_primary_10_1021_cb300515u crossref_primary_10_1021_ic300669t crossref_primary_10_3390_ijms25010166 crossref_primary_10_1080_14756366_2023_2254019 crossref_primary_10_1002_ange_202100180 crossref_primary_10_1021_jo101670a crossref_primary_10_1002_ange_202407764 crossref_primary_10_1021_acs_chemrev_0c00532 crossref_primary_10_1016_j_bmc_2014_10_026 crossref_primary_10_1002_anie_200904980 crossref_primary_10_1039_c3ra42482k crossref_primary_10_1039_C7CC03799F crossref_primary_10_1039_D4SC04839C crossref_primary_10_1002_bip_22677 crossref_primary_10_1039_C4OB01915F crossref_primary_10_1002_asia_201100329 crossref_primary_10_1039_C9CS00366E crossref_primary_10_1039_c2cc17583e crossref_primary_10_1039_b818962e crossref_primary_10_1002_anie_202100180 crossref_primary_10_1039_C2OB26445E crossref_primary_10_1016_j_tet_2014_05_104 crossref_primary_10_1016_j_peptides_2013_02_021 crossref_primary_10_1002_pep2_24071 crossref_primary_10_1039_D0RA07491H crossref_primary_10_1002_adtp_201800052 crossref_primary_10_1002_marc_201100052 crossref_primary_10_1016_j_ejmech_2019_111844 crossref_primary_10_1002_ange_201602806 crossref_primary_10_1002_zaac_201100137 crossref_primary_10_1002_bip_21456 crossref_primary_10_1002_cbic_201100800 crossref_primary_10_1002_psc_1141 crossref_primary_10_1002_chem_200903092 crossref_primary_10_1002_psc_1382 crossref_primary_10_1002_bip_22704 crossref_primary_10_1002_hlca_201100253 crossref_primary_10_3390_molecules18089797 crossref_primary_10_1016_j_tet_2015_04_093 crossref_primary_10_1002_psc_2997 crossref_primary_10_1021_acs_bioconjchem_8b00624 crossref_primary_10_1038_onc_2015_37 crossref_primary_10_1016_j_tetlet_2013_06_124 crossref_primary_10_1021_acsomega_9b03493 crossref_primary_10_1021_jm2011996 crossref_primary_10_1371_journal_pone_0058874 crossref_primary_10_1016_j_bmc_2016_11_042 crossref_primary_10_1002_chem_200802066 crossref_primary_10_1002_bip_22139 crossref_primary_10_1002_anie_201310245 crossref_primary_10_1002_anie_201412070 crossref_primary_10_1007_s00726_023_03245_w crossref_primary_10_1002_psc_3031 crossref_primary_10_1039_C6SC00106H crossref_primary_10_1002_anie_201401058 crossref_primary_10_1002_ejoc_201100157 crossref_primary_10_3389_fchem_2021_674705 crossref_primary_10_1021_acs_joc_3c02823 crossref_primary_10_1016_j_bmcl_2017_05_088 crossref_primary_10_1007_s11426_024_1950_1 crossref_primary_10_1039_C5CC08938G crossref_primary_10_5012_bkcs_2013_34_9_2640 crossref_primary_10_1039_b912094g crossref_primary_10_1039_C7RA11713B crossref_primary_10_1016_j_peptides_2011_12_003 crossref_primary_10_1021_ol202767k crossref_primary_10_1021_acs_chemrev_8b00623 crossref_primary_10_1021_acs_chemrev_8b00744 crossref_primary_10_1039_C8RA03899F crossref_primary_10_1002_ange_201310245 crossref_primary_10_1039_C4CC08565E crossref_primary_10_1039_C6OB02289H crossref_primary_10_1002_psc_3541 crossref_primary_10_1002_chem_202002468 crossref_primary_10_4155_fmc_09_97 crossref_primary_10_1002_hlca_200900311 crossref_primary_10_1039_C4OB00639A crossref_primary_10_1002_chem_201300506 crossref_primary_10_1016_j_ejmech_2015_01_014 crossref_primary_10_1021_acschembio_7b00985 crossref_primary_10_1002_ejoc_200901157 crossref_primary_10_1021_jm1008264 crossref_primary_10_1016_j_bmcl_2011_10_009 crossref_primary_10_1007_s00726_013_1663_1 crossref_primary_10_1021_acs_orglett_7b00451 crossref_primary_10_1039_c1cc12010g |
Cites_doi | 10.1021/ja0370037 10.1002/anie.200461656 10.1021/ol0155485 10.1021/ja047629c 10.1016/0022-2836(91)90214-Q 10.1021/cc020085v 10.1021/jo000759t 10.1111/j.1399-3011.2001.00816.x 10.1021/ja00172a021 10.1021/ol990573k 10.1021/ol053095o 10.1021/ol0604724 10.1016/S0040-4039(02)00629-9 10.1021/jo0618122 10.1021/ja034358h 10.1021/ja036765z 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4 10.1021/bi00238a022 10.1006/jmbi.1997.1284 10.1111/j.1399-3011.2005.00254.x 10.1016/S1359-6446(03)02933-7 10.1021/jo015533k 10.1021/bi9619029 10.1021/bi00152a015 10.1111/j.1399-3011.1992.tb00291.x 10.1006/jmbi.1994.0015 10.1111/j.1399-3011.1988.tb01375.x 10.1021/bi9619031 10.1002/anie.200461496 10.1002/anie.200502161 10.1021/jo011148j 10.1051/epn/19861701011 10.1007/BF00228148 10.1111/j.1399-3011.1996.tb00849.x 10.1021/ja00388a062 10.1016/0003-2697(70)90146-6 10.1021/ja039374t 10.1021/jo050585l 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 10.1021/jo9622744 10.1002/bip.20201 10.1021/ja0450408 10.1002/qsar.200420021 10.1002/anie.200461580 10.1021/jo0516180 10.1063/1.438208 10.1002/cbic.200500101 10.1021/ja0582051 10.1016/j.bmcl.2004.09.059 10.1039/b616751a 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1002/(SICI)1097-0282(199708)42:2<125::AID-BIP1>3.0.CO;2-P |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society – notice: 2008 INIST-CNRS |
DBID | BSCLL AAYXX CITATION 17B 1KM BLEPL DTL EGQ GAYFB IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/jo800142s |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2008 Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Web of Science MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Synthesis and Conformational Analysis of a Cyclic Peptide |
EISSN | 1520-6904 |
EndPage | 5674 |
ExternalDocumentID | 18489158 20531927 000257953600001 10_1021_jo800142s ark_67375_TPS_BH4N976Q_D b582098157 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 186 29L 4.4 53G 55A 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFMIJ ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CJ0 CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 OHM P2P PZZ ROL RXW TAE TAF TN5 UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK YQJ YZZ ZCG --- -DZ -~X 6TJ AAHBH AAYOK ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XSW YQT ZCA AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL ANPPW CITATION YR5 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE .GJ .HR 123 1WB 3EH 41~ ABHMW ACBNA ACTDY AEYZD AGQPQ AI. AIDAL D0S IQODW MVM NHB OHT RNS T9H UBC UMD VH1 X7L XOL XXG YXA YXE YYP ZE2 ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a447t-52f7a8c23ed6ed888f5bba4012c99e589c1cb9b4b6b7dc731554b014e65707ec3 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 173 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000257953600001 |
ISSN | 0022-3263 1520-6904 |
IngestDate | Thu Sep 04 23:44:29 EDT 2025 Thu Apr 03 07:07:55 EDT 2025 Mon Jul 21 09:16:38 EDT 2025 Wed Aug 06 05:16:50 EDT 2025 Fri Sep 26 20:25:44 EDT 2025 Tue Jul 01 01:52:34 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Wed Oct 30 09:36:52 EDT 2024 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | REMARKABLE RESISTANCE HORMONE-RELATED PROTEIN RING-CLOSING METATHESIS SOLID-PHASE SYNTHESIS CLICK CHEMISTRY AMINO-ACIDS TERMINAL ALKYNES SECONDARY STRUCTURE BICYCLIC ANALOGS COUPLING REAGENT 1,3-Dipolar cycloaddition Acetylenic compound Norleucine Nitrogen heterocycle Cyclic peptides Stabilization Conformational analysis Lactam NMR spectrometry Selectivity Molecular assembly Proteolysis Circular dichroism spectrometry Copper I Helical structure Antagonist Chemical synthesis Hormone Intramolecular reaction Catalytic reaction Organic azide Side chain Cyclization Analog Triazole derivatives Cadmium II Compounds Diazo compound Solid phase Primary amine |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a447t-52f7a8c23ed6ed888f5bba4012c99e589c1cb9b4b6b7dc731554b014e65707ec3 |
Notes | istex:3B28E797C94D070FA78E6A616A59A81A6CEEB94D Experimental procedure for the synthesis of Fmoc-Nle(ϵ-N3)-OH, protocols for circular dichroism spectroscopy, NMR spectrometry, NMR structure calculation, molecular dynamics, and the corresponding references. This material is available free of charge via the Internet at http://pubs.acs.org. ark:/67375/TPS-BH4N976Q-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0951-4353 0000-0001-6814-8472 0000-0001-9577-5228 0000-0002-2947-7107 |
PMID | 18489158 |
PQID | 69351370 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_18489158 webofscience_primary_000257953600001 webofscience_primary_000257953600001CitationCount pascalfrancis_primary_20531927 acs_journals_10_1021_jo800142s proquest_miscellaneous_69351370 crossref_primary_10_1021_jo800142s istex_primary_ark_67375_TPS_BH4N976Q_D crossref_citationtrail_10_1021_jo800142s |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: Washington, DC – name: United States |
PublicationTitle | Journal of organic chemistry |
PublicationTitleAbbrev | J ORG CHEM |
PublicationTitleAlternate | J. Org. Chem |
PublicationYear | 2008 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | Chorev M. (ref2/cit2) 1991; 30 Maretto S. (ref29/cit29) 1997; 36 Laskowski R. A. (ref54/cit54) 1996; 8 Mills N. L. (ref9/cit9) 2006; 128 Piantini U. (ref48/cit48) 1982; 104 Bock V. D. (ref24/cit24) 2007; 5 Osapay G. (ref5/cit5) 1990; 112 Wishart D. S. (ref52/cit52) 1991; 222 Guntert P. (ref53/cit53) 1997; 273 Horne W. S. (ref22/cit22) 2004; 126 Blackwell H. E. (ref4/cit4) 2001; 66 Wu P. (ref30/cit30) 2007; 40 Oyelere A. K. (ref34/cit34) 2006; 71 Bax A. (ref49/cit49) 1985; 63 Kaiser E. (ref56/cit56) 1970; 34 Grieco P. (ref6/cit6) 2001; 57 Deiters A. (ref15/cit15) 2003; 125 Lewis W. G. (ref13/cit13) 2002; 41 Billing J. F. (ref41/cit41) 2005; 70 Ye Y. H. (ref32/cit32) 2005; 80 Deiters A. (ref16/cit16) 2004; 14 Li H. (ref31/cit31) 1999; 1 Link A. J. (ref17/cit17) 2004; 126 Rijkers D. (ref35/cit35) 2002; 43 Mocharla V. P. (ref18/cit18) 2005; 44 Tornoe C. W. (ref20/cit20) 2004; 6 Horne W. S. (ref26/cit26) 2003; 125 Rajan R. (ref44/cit44) 1996; 48 Johnson J. W. C. (ref47/cit47) 1990; 7 Spengler J. (ref28/cit28) 2005; 65 Bock V. D. (ref39/cit39) 2006; 8 Wüthrich K. (ref51/cit51) 1986 Link A. J. (ref14/cit14) 2003; 125 Rostovtsev V. V. (ref10/cit10) 2002; 41 Sonnichsen F. D. (ref46/cit46) 1992; 31 Felix A. M. (ref1/cit1) 1988; 32 Roice M. (ref27/cit27) 2004; 23 Bisello A. (ref8/cit8) 1997; 36 Punna S. (ref37/cit37) 2005; 44 Angell Y. (ref25/cit25) 2005; 70 Whiting M. (ref19/cit19) 2006; 45 Kolb H. C. (ref12/cit12) 2001; 40 Schnolzer M. (ref55/cit55) 1992; 40 Lundquist J. T. t. (ref36/cit36) 2001; 3 Kolb H. C. (ref21/cit21) 2003; 8 Reichwein J. F. (ref3/cit3) 2000; 65 Shiraki K. (ref45/cit45) 1995; 245 Tornoe C. W. (ref11/cit11) 2002; 67 Jeener J. (ref50/cit50) 1979; 71 Brik A. (ref23/cit23) 2005; 6 Rajan R. (ref43/cit43) 1997; 42 Rodionov V. O. (ref38/cit38) 2005; 44 Bodine K. D. (ref40/cit40) 2004; 126 Looper R. E. (ref42/cit42) 2006; 8 ref7/cit7 Han Y. (ref33/cit33) 1997; 62 Link, AJ (WOS:000223559100038) 2004; 126 Ye, YH (WOS:000228846500008) 2005; 80 Wu, P (WOS:000244333400002) 2007; 40 FELIX, AM (WOS:A1988T105800005) 1988; 32 Li, HT (WOS:000083701300024) 1999; 1 Whiting, M (WOS:000235628700022) 2006; 45 Laskowski, RA (WOS:A1996WD39200009) 1996; 8 Reichwein, JF (WOS:000089338600042) 2000; 65 Oyelere, AK (WOS:000242845500028) 2006; 71 Rodionov, VO (WOS:000228415900004) 2005; 44 Billing, JF (WOS:000229592000038) 2005; 70 CHOREV, M (WOS:A1991FR44600022) 1991; 30 Maretto, S (WOS:A1997WN88600031) 1997; 36 Blackwell, HE (WOS:000170301200003) 2001; 66 Kolb, HC (WOS:000187217100009) 2003; 8 PIANTINI, U (WOS:A1982PT03000062) 1982; 104 Lundquist, JT (WOS:000167322700036) 2001; 3 WUTHRICH K (WOS:000257953600001.55) 1986 Bock, VD (WOS:000235746600030) 2006; 8 Spengler, J (WOS:000229015300005) 2005; 65 Rajan, R (WOS:A1997XL51700001) 1997; 42 Bock, VD (WOS:000244703800014) 2007; 5 KAISER, E (WOS:A1970G270400033) 1970; 34 Han, YX (WOS:A1997XG87800017) 1997; 62 Kolb, HC (WOS:000169168100001) 2001; 40 Brik, A (WOS:000230381200003) 2005; 6 Link, AJ (WOS:000185341800014) 2003; 125 Bodine, KD (WOS:000188926600025) 2004; 126 Punna, S (WOS:000228415900005) 2005; 44 Guntert, P (WOS:A1997YC18000024) 1997; 273 BAX, A (WOS:A1985AKQ4800024) 1985; 63 Bisello, A (WOS:A1997WN88600030) 1997; 36 Angell, Y (WOS:000233209400062) 2005; 70 Rajan, R (WOS:A1996VR18100004) 1996; 48 Rostovtsev, VV (WOS:000176972000038) 2002; 41 Tornoe, CW (WOS:000221373100006) 2004; 6 Lewis, WG (WOS:000174450300033) 2002; 41 Horne, WS (WOS:000184515300045) 2003; 125 WISHART, DS (WOS:A1991GT20600018) 1991; 222 SCHNOLZER, M (WOS:A1992JX36500003) 1992; 40 Roice, M (WOS:000225153600007) 2004; 23 RIVIER JE (WOS:000257953600001.42) 1989 Looper, RE (WOS:000237420200026) 2006; 8 MOEHARLA VP (WOS:000257953600001.33) 2005; 44 Grieco, P (WOS:000167798900010) 2001; 57 SONNICHSEN, FD (WOS:A1992JP50700015) 1992; 31 JEENER, J (WOS:A1979HW09500041) 1979; 71 Horne, WS (WOS:000225349800024) 2004; 126 Deiters, A (WOS:000224953300005) 2004; 14 JOHNSON J (WOS:000257953600001.20) 1990; 7 Mills, NL (WOS:000236299700013) 2006; 128 Tornoe, CW (WOS:000175323600045) 2002; 67 Rijkers, DTS (WOS:000175555300012) 2002; 43 Deiters, A (WOS:000185578500005) 2003; 125 SHIRAKI, K (WOS:A1995QA47600008) 1995; 245 OSAPAY, G (WOS:A1990DR56800021) 1990; 112 |
References_xml | – volume: 125 start-page: 11782 year: 2003 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0370037 – volume: 44 start-page: 2215 year: 2005 ident: ref37/cit37 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461656 – volume: 3 start-page: 781 year: 2001 ident: ref36/cit36 publication-title: Org. Lett. doi: 10.1021/ol0155485 – volume: 126 start-page: 10598 year: 2004 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047629c – volume: 222 start-page: 311 year: 1991 ident: ref52/cit52 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90214-Q – volume: 6 start-page: 312 year: 2004 ident: ref20/cit20 publication-title: J. Comb. Chem. doi: 10.1021/cc020085v – volume: 65 start-page: 6187 year: 2000 ident: ref3/cit3 publication-title: J. Org. Chem. doi: 10.1021/jo000759t – volume: 57 start-page: 250 year: 2001 ident: ref6/cit6 publication-title: J. Pept. Res. doi: 10.1111/j.1399-3011.2001.00816.x – volume: 112 start-page: 6046 year: 1990 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00172a021 – volume: 1 start-page: 91 year: 1999 ident: ref31/cit31 publication-title: Org. Lett. doi: 10.1021/ol990573k – volume: 8 start-page: 919 year: 2006 ident: ref39/cit39 publication-title: Org. Lett. doi: 10.1021/ol053095o – volume: 8 start-page: 2063 year: 2006 ident: ref42/cit42 publication-title: Org. Lett. doi: 10.1021/ol0604724 – volume: 43 start-page: 3657 year: 2002 ident: ref35/cit35 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)00629-9 – volume: 71 start-page: 9791 year: 2006 ident: ref34/cit34 publication-title: J. Org. Chem. doi: 10.1021/jo0618122 – volume: 125 start-page: 9372 year: 2003 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034358h – volume: 125 start-page: 11164 year: 2003 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036765z – volume: 40 start-page: 7 year: 2007 ident: ref30/cit30 publication-title: Aldrichim. Acta – volume: 41 start-page: 1053 year: 2002 ident: ref13/cit13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4 – volume: 30 start-page: 5968 year: 1991 ident: ref2/cit2 publication-title: Biochemistry doi: 10.1021/bi00238a022 – volume: 273 start-page: 283 year: 1997 ident: ref53/cit53 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1284 – volume: 65 start-page: 550 year: 2005 ident: ref28/cit28 publication-title: J. Pept. Res. doi: 10.1111/j.1399-3011.2005.00254.x – volume: 8 start-page: 1128 year: 2003 ident: ref21/cit21 publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(03)02933-7 – volume: 66 start-page: 5291 year: 2001 ident: ref4/cit4 publication-title: J. Org. Chem. doi: 10.1021/jo015533k – volume: 36 start-page: 3293 year: 1997 ident: ref8/cit8 publication-title: Biochemistry doi: 10.1021/bi9619029 – volume: 31 start-page: 8790 year: 1992 ident: ref46/cit46 publication-title: Biochemistry doi: 10.1021/bi00152a015 – volume: 40 start-page: 180 year: 1992 ident: ref55/cit55 publication-title: Int. J. Pept. Protein Res. doi: 10.1111/j.1399-3011.1992.tb00291.x – volume: 245 start-page: 180 year: 1995 ident: ref45/cit45 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.0015 – volume: 32 start-page: 441 year: 1988 ident: ref1/cit1 publication-title: Int. J. Pept. Protein Res. doi: 10.1111/j.1399-3011.1988.tb01375.x – volume: 36 start-page: 3300 year: 1997 ident: ref29/cit29 publication-title: Biochemistry doi: 10.1021/bi9619031 – volume: 44 start-page: 2210 year: 2005 ident: ref38/cit38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461496 – volume: 45 start-page: 1435 year: 2006 ident: ref19/cit19 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502161 – volume: 67 start-page: 3057 year: 2002 ident: ref11/cit11 publication-title: J. Org. Chem. doi: 10.1021/jo011148j – volume-title: NMR of Proteins and Nucleic Acids year: 1986 ident: ref51/cit51 doi: 10.1051/epn/19861701011 – volume: 8 start-page: 477 year: 1996 ident: ref54/cit54 publication-title: J Biomol. NMR doi: 10.1007/BF00228148 – volume: 48 start-page: 328 year: 1996 ident: ref44/cit44 publication-title: Int. J. Pept. Protein Res. doi: 10.1111/j.1399-3011.1996.tb00849.x – volume: 104 start-page: 6800 year: 1982 ident: ref48/cit48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00388a062 – volume: 34 start-page: 595 year: 1970 ident: ref56/cit56 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(70)90146-6 – volume: 63 start-page: 207 year: 1985 ident: ref49/cit49 publication-title: J. Magn. Reson. – volume: 126 start-page: 1638 year: 2004 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039374t – volume: 70 start-page: 4847 year: 2005 ident: ref41/cit41 publication-title: J. Org. Chem. doi: 10.1021/jo050585l – volume: 41 start-page: 2596 year: 2002 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 – volume: 62 start-page: 4307 year: 1997 ident: ref33/cit33 publication-title: J. Org. Chem. doi: 10.1021/jo9622744 – volume: 80 start-page: 172 year: 2005 ident: ref32/cit32 publication-title: Biopolymers Pept. Sci. doi: 10.1002/bip.20201 – volume: 126 start-page: 15366 year: 2004 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0450408 – volume: 23 start-page: 662 year: 2004 ident: ref27/cit27 publication-title: QSAR Comb. Sci doi: 10.1002/qsar.200420021 – volume: 44 start-page: 116 year: 2005 ident: ref18/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461580 – volume: 70 start-page: 9595 year: 2005 ident: ref25/cit25 publication-title: J. Org. Chem. doi: 10.1021/jo0516180 – volume: 71 start-page: 4546 year: 1979 ident: ref50/cit50 publication-title: J. Chem. Phys. doi: 10.1063/1.438208 – volume: 6 start-page: 1167 year: 2005 ident: ref23/cit23 publication-title: ChemBioChem doi: 10.1002/cbic.200500101 – volume: 128 start-page: 3496 year: 2006 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0582051 – volume: 14 start-page: 5743 year: 2004 ident: ref16/cit16 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2004.09.059 – volume: 5 start-page: 971 year: 2007 ident: ref24/cit24 publication-title: Org. Biomol. Chem. doi: 10.1039/b616751a – volume: 40 start-page: 2004 year: 2001 ident: ref12/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – ident: ref7/cit7 – volume: 42 start-page: 125 year: 1997 ident: ref43/cit43 publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(199708)42:2<125::AID-BIP1>3.0.CO;2-P – volume: 7 start-page: 205 year: 1990 ident: ref47/cit47 publication-title: Protein secondary structure and circular dichroism: a practical guide – volume: 34 start-page: 595 year: 1970 ident: WOS:A1970G270400033 article-title: COLOR TEST FOR DETECTION OF FREE TERMINAL AMINO GROUPS IN SOLID-PHASE SYNTHESIS OF PEPTIDES publication-title: ANALYTICAL BIOCHEMISTRY – volume: 40 start-page: 180 year: 1992 ident: WOS:A1992JX36500003 article-title: INSITU NEUTRALIZATION IN BOC-CHEMISTRY SOLID-PHASE PEPTIDE-SYNTHESIS - RAPID, HIGH-YIELD ASSEMBLY OF DIFFICULT SEQUENCES publication-title: INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH – volume: 66 start-page: 5291 year: 2001 ident: WOS:000170301200003 article-title: Ring-closing metathesis of olefinic peptides: Design, synthesis, and structural characterization of macrocyclic helical peptides publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo015533k – volume: 63 start-page: 207 year: 1985 ident: WOS:A1985AKQ4800024 article-title: PRACTICAL ASPECTS OF TWO-DIMENSIONAL TRANSVERSE NOE SPECTROSCOPY publication-title: JOURNAL OF MAGNETIC RESONANCE – volume: 8 start-page: 477 year: 1996 ident: WOS:A1996WD39200009 article-title: AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR publication-title: JOURNAL OF BIOMOLECULAR NMR – volume: 65 start-page: 550 year: 2005 ident: WOS:000229015300005 article-title: Abbreviated nomenclature for cyclic and branched homo- and hetero-detic peptides publication-title: JOURNAL OF PEPTIDE RESEARCH doi: 10.1111/j.1399-3011.2005.00254.x – volume: 8 start-page: 919 year: 2006 ident: WOS:000235746600030 article-title: Click chemistry as a route to cyclic tetrapeptide analogues: Synthesis of cyclo-[Pro-Val-Psi(triazole)-Pro-Tyr] publication-title: ORGANIC LETTERS doi: 10.1021/ol053095o – volume: 70 start-page: 4847 year: 2005 ident: WOS:000229592000038 article-title: C-2-symmetric macrocyclic carbohydrate/amino acid hybrids through copper(I)-catalyzed formation of 1,2,3-triazoles publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo050585l – volume: 40 start-page: 7 year: 2007 ident: WOS:000244333400002 article-title: Catalytic azide-alkyne cycloaddition: Reactivity and applications publication-title: ALDRICHIMICA ACTA – volume: 1 start-page: 91 year: 1999 ident: WOS:000083701300024 article-title: 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT): A new coupling reagent with remarkable resistance to racemization publication-title: ORGANIC LETTERS – volume: 125 start-page: 11782 year: 2003 ident: WOS:000185578500005 article-title: Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0370037 – volume: 23 start-page: 662 year: 2004 ident: WOS:000225153600007 article-title: High capacity poly(ethylene glycol) based amino polymers for peptide and organic synthesis publication-title: QSAR & COMBINATORIAL SCIENCE doi: 10.1002/qsar.200420021 – volume: 222 start-page: 311 year: 1991 ident: WOS:A1991GT20600018 article-title: RELATIONSHIP BETWEEN NUCLEAR-MAGNETIC-RESONANCE CHEMICAL-SHIFT AND PROTEIN SECONDARY STRUCTURE publication-title: JOURNAL OF MOLECULAR BIOLOGY – volume: 44 start-page: 2210 year: 2005 ident: WOS:000228415900004 article-title: Mechanism of the ligand-free Cu-I-catalyzed azide-alkyne cycloaddition reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200461496 – volume: 44 start-page: 116 year: 2005 ident: WOS:000257953600001.33 publication-title: ANGEW CHEM INT EDIT – volume: 126 start-page: 15366 year: 2004 ident: WOS:000225349800024 article-title: Heterocyclic peptide backbone modifications in an alpha-helical coiled coil publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0450408 – volume: 273 start-page: 283 year: 1997 ident: WOS:A1997YC18000024 article-title: Torsion angle dynamics for NMR structure calculation with the new program DYANA publication-title: JOURNAL OF MOLECULAR BIOLOGY – volume: 245 start-page: 180 year: 1995 ident: WOS:A1995QA47600008 article-title: TRIFLUOROETHANOL-INDUCED STABILIZATION OF THE ALPHA-HELICAL STRUCTURE OF BETA-LACTOGLOBULIN - IMPLICATION FOR NON-HIERARCHICAL PROTEIN-FOLDING publication-title: JOURNAL OF MOLECULAR BIOLOGY – volume: 14 start-page: 5743 year: 2004 ident: WOS:000224953300005 article-title: Site-specific PEGylation of proteins containing unnatural amino acids publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2004.09.059 – volume: 125 start-page: 9372 year: 2003 ident: WOS:000184515300045 article-title: A heterocyclic peptide nanotube publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja034358h – volume: 67 start-page: 3057 year: 2002 ident: WOS:000175323600045 article-title: Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo011148j – volume: 128 start-page: 3496 year: 2006 ident: WOS:000236299700013 article-title: An alpha-helical peptidomimetic inhibitor of the HIV-1 Rev-RRE interaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0582051 – volume: 62 start-page: 4307 year: 1997 ident: WOS:A1997XG87800017 article-title: Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 71 start-page: 4546 year: 1979 ident: WOS:A1979HW09500041 article-title: INVESTIGATION OF EXCHANGE PROCESSES BY 2-DIMENSIONAL NMR-SPECTROSCOPY publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 30 start-page: 5968 year: 1991 ident: WOS:A1991FR44600022 article-title: CYCLIC PARATHYROID-HORMONE RELATED PROTEIN ANTAGONISTS - LYSINE-13 TO ASPARTIC-ACID 17 [I TO (I + 4)] SIDE-CHAIN TO SIDE-CHAIN LACTAMIZATION publication-title: BIOCHEMISTRY – volume: 44 start-page: 2215 year: 2005 ident: WOS:000228415900005 article-title: Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200461656 – volume: 42 start-page: 125 year: 1997 ident: WOS:A1997XL51700001 article-title: ''Teflon-coated peptides'': Hexafluoroacetone trihydrate as a structure stabilizer for peptides publication-title: BIOPOLYMERS – volume: 45 start-page: 1435 year: 2006 ident: WOS:000235628700022 article-title: Inhibitors of HIV-1 protease by using in situ click chemistry publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200502161 – volume: 57 start-page: 250 year: 2001 ident: WOS:000167798900010 article-title: Preparation of 'side-chain-to-side-chain' cyclic peptides by Allyl and Alloc strategy: potential for library synthesis publication-title: JOURNAL OF PEPTIDE RESEARCH – volume: 41 start-page: 2596 year: 2002 ident: WOS:000176972000038 article-title: A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – start-page: 33 year: 1989 ident: WOS:000257953600001.42 publication-title: 11 AM PEPT S – volume: 112 start-page: 6046 year: 1990 ident: WOS:A1990DR56800021 article-title: MULTICYCLIC POLYPEPTIDE MODEL COMPOUNDS .1. SYNTHESIS OF A TRICYCLIC AMPHIPHILIC ALPHA-HELICAL PEPTIDE USING AN OXIME RESIN, SEGMENT-CONDENSATION APPROACH publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 5 start-page: 971 year: 2007 ident: WOS:000244703800014 article-title: 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b616751a – volume: 31 start-page: 8790 year: 1992 ident: WOS:A1992JP50700015 article-title: EFFECT OF TRIFLUOROETHANOL ON PROTEIN SECONDARY STRUCTURE - AN NMR AND CD STUDY USING A SYNTHETIC ACTIN PEPTIDE publication-title: BIOCHEMISTRY – volume: 70 start-page: 9595 year: 2005 ident: WOS:000233209400062 article-title: Ring closure to beta-turn mimics via copper-catalyzed azide/alkyne cycloadditions publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo0516180 – volume: 8 start-page: 1128 year: 2003 ident: WOS:000187217100009 article-title: The growing impact of click chemistry on drug discovery publication-title: DRUG DISCOVERY TODAY – volume: 48 start-page: 328 year: 1996 ident: WOS:A1996VR18100004 article-title: A model for the interaction of trifluoroethanol with peptides and proteins publication-title: INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH – volume: 126 start-page: 1638 year: 2004 ident: WOS:000188926600025 article-title: Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynyl-azido trisaccharide publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja039374t – volume: 8 start-page: 2063 year: 2006 ident: WOS:000237420200026 article-title: Macrocycloadditions leading to conformationally restricted small molecules publication-title: ORGANIC LETTERS doi: 10.1021/ol0604724 – year: 1986 ident: WOS:000257953600001.55 publication-title: NMR PROTEINS NUCL AC – volume: 43 start-page: 3657 year: 2002 ident: WOS:000175555300012 article-title: A convenient synthesis of azido peptides by post-assembly diazo transfer on the solid phase applicable to large peptides publication-title: TETRAHEDRON LETTERS – volume: 125 start-page: 11164 year: 2003 ident: WOS:000185341800014 article-title: Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja036765z – volume: 3 start-page: 781 year: 2001 ident: WOS:000167322700036 article-title: Improved solid-phase peptide synthesis method utilizing alpha-azide-protected amino acids publication-title: ORGANIC LETTERS doi: 10.1021/ol0155485 – volume: 80 start-page: 172 year: 2005 ident: WOS:000228846500008 article-title: DEPBT as an efficient coupling reagent for amide bond formation with remarkable resistance to racemization publication-title: BIOPOLYMERS doi: 10.1002/bip.20201 – volume: 41 start-page: 1053 year: 2002 ident: WOS:000174450300033 article-title: Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 36 start-page: 3300 year: 1997 ident: WOS:A1997WN88600031 article-title: Mono- and bicyclic analogs of parathyroid hormone-related protein .2. Conformational analysis of antagonists by CD, NMR, and distance geometry calculations publication-title: BIOCHEMISTRY – volume: 126 start-page: 10598 year: 2004 ident: WOS:000223559100038 article-title: Presentation and detection of azide functionality in bacterial cell surface proteins publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja047629c – volume: 7 start-page: 205 year: 1990 ident: WOS:000257953600001.20 publication-title: PROTEIN-STRUCT FUNCT – volume: 32 start-page: 441 year: 1988 ident: WOS:A1988T105800005 article-title: SYNTHESIS, BIOLOGICAL-ACTIVITY AND CONFORMATIONAL-ANALYSIS OF CYCLIC GRF ANALOGS publication-title: INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH – volume: 40 start-page: 2004 year: 2001 ident: WOS:000169168100001 article-title: Click chemistry: Diverse chemical function from a few good reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 36 start-page: 3293 year: 1997 ident: WOS:A1997WN88600030 article-title: Mono- and bicyclic analogs of parathyroid hormone-related protein .1. Synthesis and biological studies publication-title: BIOCHEMISTRY – volume: 65 start-page: 6187 year: 2000 ident: WOS:000089338600042 article-title: Synthesis of cyclic peptides by ring-closing metathesis publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo000759t – volume: 6 start-page: 1167 year: 2005 ident: WOS:000230381200003 article-title: 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors publication-title: CHEMBIOCHEM doi: 10.1002/cbic.200500101 – volume: 6 start-page: 312 year: 2004 ident: WOS:000221373100006 article-title: Combinatorial library of peptidotriazoles: Identification of [1,2,3]-triazole inhibitors against a recombinant Leishmania mexicana cysteine protease publication-title: JOURNAL OF COMBINATORIAL CHEMISTRY doi: 10.1021/cc020085v – volume: 71 start-page: 9791 year: 2006 ident: WOS:000242845500028 article-title: Heterogeneous diazo-transfer reaction: A facile unmasking of azide groups on amine-functionalized insoluble supports for solid-phase synthesis publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo0618122 – volume: 104 start-page: 6800 year: 1982 ident: WOS:A1982PT03000062 article-title: MULTIPLE QUANTUM FILTERS FOR ELUCIDATING NMR COUPLING NETWORKS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY |
SSID | ssj0000555 |
Score | 2.359086 |
Snippet | Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to... |
Source | Web of Science |
SourceID | proquest pubmed pascalfrancis webofscience crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5663 |
SubjectTerms | Alkynes - chemistry Amino Acid Sequence Azides - chemistry Chemistry Chemistry, Organic Circular Dichroism Cyclization Exact sciences and technology Heterocyclic compounds Heterocyclic compounds with several n hetero atoms in the same ring, in separated rings or in fused rings Models, Molecular Nuclear Magnetic Resonance, Biomolecular Organic chemistry Peptides Peptides, Cyclic - chemical synthesis Peptides, Cyclic - chemistry Physical Sciences Preparations and properties Protein Structure, Tertiary Science & Technology |
Title | Synthesis and Conformational Analysis of a Cyclic Peptide Obtained via i to i+4 Intramolecular Side-Chain to Side-Chain Azide−Alkyne 1,3-Dipolar Cycloaddition |
URI | http://dx.doi.org/10.1021/jo800142s https://api.istex.fr/ark:/67375/TPS-BH4N976Q-D/fulltext.pdf http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000257953600001 https://www.ncbi.nlm.nih.gov/pubmed/18489158 https://www.proquest.com/docview/69351370 |
Volume | 73 |
WOS | 000257953600001 |
WOSCitedRecordID | wos000257953600001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4AL70d4FAsqhAQpm9hOnOOSpVo4lKJtpd4i23FE2CWpmixi-ws48wv4bfwSZvLYbsXyuCXKWHEmk8w3ns8zhOxIFjATGOMqA7Eq9wbaVcGAuyrCWi1YE0w1bIv9YHzE3x2L4w3y9A8ZfN979amUiOP96hLZ8gPwL4h_4sn571YIsSwJ7gesLx-0OhRdj6kuuJ4t1OJXpEKqCrSRtW0s1uHMtS6pcT9718io38TTsk6mu_Na75qz32s6_u3JrpOrHfykw9ZebpANW9wkl-O-69st8mOyKAATVnlFVZFS3BDYb2_EcV0JE1pmVNF4YWa5oQdIjEktfa9xmcGm9EuuaE7rkuYvOH2Lq8ef-ya8dAKSbvwRBFFg5Wx4Bsc_v30fzqaLwlLvJXNH-QkG3s19SiQ-4Sxuk6O9N4fx2O26OLiK87CGSDcLlTQ-s2lgUwi4M6G1grDON1FkhYyMZ3SkuQ50mJqQIcDRoBaLpJzQGnaHbBZlYe8RaqQ2gGm0lILzKLMKwB64V80AxWSAxByyDa856b7CKmkS7D4EOL2iHfK8t4DEdDXQsRXHbJ3ok6XoSVv4Y53Qs8aMlhLqdIpMuVAkhweT5PWY7wPc-5CMYGYX7Gw5wG9-gn7okMe94SXwxjFrowpbzqskiJjwWDhwyN3WHs-nI7mMPCEdsrNqoMvr6O1EiPn5JofjEO9_xOJOL1gTob7_L40-IFdaBg1SIh-Szfp0bh8BTKv1dvOZ_gJSuDSD |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtNAEF1B-1BeuF_MpV2hCiGBS2zv-vIYXKoUSihKKvXN2l2vhUmwq9pBpF_AM1_At_ElzKztJEWR6FuszCbj8dhzxjN7hpDd0PM95StlCwW5KnN60hZ-j9kiQq4W5AQTptti6A9O2PtTftrS5OBeGFCigl-qTBF_yS7gvPlahgjn3eo62eQ-83FMQz8eLZ-6nPMFM7jrex2L0OpSjECquhSBNtGYP7AjUlRglKyZZrEObq6NTCYKHdxqxhkZ_U3zyWRvVss9dfEPtePVTvA2udmCUdpvvOcOuaaLu2Qr7mbA3SO_R_MCEGKVV1QUKcXtgd1mR1zXEprQMqOCxnM1zRU9xjaZVNNPEl866JR-zwXNaV3S_BWjh_gu-Vs3kpeOQNKOv4AgCqwc9S_g85-fv_rTybzQ1Hnt2fv5Gabh5n9KbINCLe6Tk4N343hgtzMdbMFYUEPemwUiVK6nU1-nkH5nXEoBSZ6rokjzMFKOkpFk0pdBqgIP4Y4Es2hs0Qm08h6QjaIs9CNCVSgVIBwZhpyxKNMCoB8EW-kBpskAl1lkG-yctPdklZhyuwvpTmdoi7zsHCFRLSM6DuaYrhN9vhA9a2hA1gm9MN60kBDnE-ybC3gyPh4lbwdsCODvc7IPml1yt8UC1zwS3cAiO53_JXDFsYYjCl3OqsSPPO54Qc8iDxu3XKoTsjByeGiR3VU_XXyPsY8HWK03FR2LOFcRi1u7IENC_fh_Ft0hW4Pxx6Pk6HD44Qm50fTWYLPkU7JRn8_0MwBwtdw2d-5fQS885Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtNAEF1BKwEv3C_m0q5QhZCoS2zv-vIYHKIUUBqUVuqbtbteC5NgR7WDSL-AZ76Ab-NLmPGtKYpE32JlNlmPZz1ndmbPELLnO66jXKVMoSBWZVZPmsLtMVMEyNWCnGCiqrYYu6MT9uGUnzaBIp6FgUkU8EtFlcTHVb2Ik4ZhwHr7NfcR0tvFdbINQMTCVg39cHrx5uWcd-zgtuu0TELrQ9ELqeKSF9pGhf7AqkhRgGKSuqPFJsi50TtVnmh4hxx191AVoMwOlqU8UOf_0Dte_SbvktsNKKX92orukWs6u09uhm0vuAfk93SVAVIs0oKKLKZ4TLA99IjjGmITmidU0HCl5qmiEyyXiTU9krj5oGP6PRU0pWVO0zeMHuKe8re2NS-dgqQZfgFBFFi76p_D5z8_f_Xns1WmqbXvmIN0geF49T85lkPhLB6Sk-H743BkNr0dTMGYV0L8m3jCV7ajY1fHEIYnXEoBwZ6tgkBzP1CWkoFk0pVerDwHYY8EtWgs1fG0ch6RrSzP9BNClS8VIB3p-5yxINECICA4XekAtkkAnxlkB3QdNWuziKq0uw1hT6tog7xujSFSDTM6NuiYbxJ92YkuajqQTUKvKovqJMTZDOvnPB4dT6bRuxEbAwj8HA1gZpdMrhtgV69G2zPIbmuDETxxzOWITOfLInIDh1uO1zPI49o0L6bjMz-wuG-QvXVb7b5HH8g9zNpXmR2DWFcRCxu9IFNC-fR_Gt0lNyaDYfTpcPzxGblVl9hgzeRzslWeLfULwHGl3KkW719OJD9f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+Conformational+Analysis+of+a+Cyclic+Peptide+Obtained+via+i+to+i%2B4+Intramolecular+Side-Chain+to+Side-Chain+Azide-Alkyne+1%2C3-Dipolar+Cycloaddition&rft.jtitle=Journal+of+organic+chemistry&rft.au=CANTEL%2C+Sonia&rft.au=LE+CHEVALIER+ISAAD%2C+Alexandra&rft.au=SCRIMA%2C+Mario&rft.au=LEVY%2C+Jay+J&rft.date=2008-08-01&rft.pub=American+Chemical+Society&rft.issn=0022-3263&rft.volume=73&rft.issue=15&rft.spage=5663&rft.epage=5674&rft_id=info:doi/10.1021%2Fjo800142s&rft.externalDBID=n%2Fa&rft.externalDocID=20531927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3263&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3263&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3263&client=summon |