Candidalysin biology and activation of host cells
is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by hy...
Saved in:
Published in | mBio Vol. 16; no. 6; p. e0060324 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
11.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2150-7511 2150-7511 |
DOI | 10.1128/mbio.00603-24 |
Cover
Abstract | is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding
pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by
hyphae and encoded by the
gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance. |
---|---|
AbstractList | Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance. ABSTRACT Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance. Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance.Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance. Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance. is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by hyphae and encoded by the gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance. |
Author | Sonnberger, Johannes Lortal, Léa Lyon, Claire M. Richardson, Jonathan P. Wickramasinghe, Don N. Hube, Bernhard Paulin, Olivia K. A. Naglik, Julian R. Sprague, Jakob L. |
Author_xml | – sequence: 1 givenname: Léa orcidid: 0009-0004-6221-7763 surname: Lortal fullname: Lortal, Léa – sequence: 2 givenname: Claire M. surname: Lyon fullname: Lyon, Claire M. – sequence: 3 givenname: Jakob L. surname: Sprague fullname: Sprague, Jakob L. – sequence: 4 givenname: Johannes surname: Sonnberger fullname: Sonnberger, Johannes – sequence: 5 givenname: Olivia K. A. surname: Paulin fullname: Paulin, Olivia K. A. – sequence: 6 givenname: Don N. surname: Wickramasinghe fullname: Wickramasinghe, Don N. – sequence: 7 givenname: Jonathan P. orcidid: 0000-0001-9638-2725 surname: Richardson fullname: Richardson, Jonathan P. – sequence: 8 givenname: Bernhard orcidid: 0000-0002-6028-0425 surname: Hube fullname: Hube, Bernhard – sequence: 9 givenname: Julian R. orcidid: 0000-0002-8072-7917 surname: Naglik fullname: Naglik, Julian R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40293285$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1r3DAQxUVJaNIkx16Lj6XgdEaSLetUytKPQKCX5CxkfWy02FIqeQP730ebTUMCnYuG0ePH470P5Cim6Aj5iHCJSIev8xjSJUAPrKX8HTml2EErOsSjV_sJuShlA3UYw4HBe3LCgUpGh-6U4EpHG6yediXEpuKmtN419dZos4QHvYQUm-Sbu1SWxrhpKufk2OupuIvn94zc_vxxs_rdXv_5dbX6ft1qzsXS4tijk8ZS2nsGwvIBvOnRd2bsJUfPfNdbz7mEQUgrLIAAyS0aOwjHnGRn5OrAtUlv1H0Os847lXRQT4eU10rnJZjJKRjFYLREOXaeO9uNFqj1rtLAj5rayvp2YN1vx9lZ4-KS9fQG-vYnhju1Tg8Ka4qMUVEJn58JOf3durKoOZR9Hjq6tC2KoewGQAl7418OUl1mqjZpm2PNSSGofWdq35l66kxRXsWfXjt7sfSvoSpoDwKTUynZ-RfJ_4GPMS-icQ |
Cites_doi | 10.1093/femsyr/fov081 10.1371/journal.ppat.1004139 10.1146/annurev-micro-091014-104330 10.1128/EC.00279-10 10.1016/j.chom.2012.08.005 10.1128/msystems.00539-22 10.1080/21505594.2020.1748930 10.1186/1471-2180-8-116 10.1073/pnas.1117676109 10.1126/scisignal.abj6915 10.1016/j.bbamcr.2020.118817 10.1371/journal.ppat.1009221 10.2147/TCRM.S40160 10.1038/s41467-021-27034-9 10.1111/j.1462-5822.2009.01394.x 10.1016/j.mib.2019.06.002 10.1016/j.vaccine.2012.10.038 10.1007/s00018-007-7434-y 10.1128/mBio.00531-21 10.1006/bbrc.1997.6247 10.3389/fimmu.2018.01573 10.1038/srep36055 10.1371/journal.ppat.1012319 10.1371/journal.pone.0036952 10.1128/IAI.00645-17 10.3390/toxins14120874 10.1371/journal.ppat.1002777 10.3109/1040841X.2015.1091805 10.1111/jop.13014 10.1080/21505594.2015.1012981 10.1016/j.celrep.2021.110187 10.1016/j.job.2023.03.002 10.1038/nrmicro.2015.3 10.1083/jcb.201203170 10.1371/journal.ppat.1009884 10.3164/jcbn.18-74 10.1128/IAI.72.5.2939-2946.2004 10.1016/s0966-842x(01)02094-7 10.1038/s41467-019-09915-2 10.3389/fimmu.2018.01349 10.1126/sciimmunol.aam8834 10.1038/nrmicro.2016.157 10.15698/mic2020.06.718 10.15252/embr.202357571 10.1128/mBio.02178-17 10.1038/s41564-024-01606-z 10.1126/science.283.5407.1535 10.1128/IAI.00779-17 10.1038/nrmicro3110 10.1007/s40506-022-00258-z 10.1080/1040841X.2020.1843400 10.3390/pathogens10070859 10.1016/S1473-3099(23)00692-8 10.1038/s41586-024-07142-4 10.1016/S1473-3099(18)30103-8 10.1016/j.celrep.2023.113240 10.1371/journal.ppat.1000217 10.1111/imm.13255 10.1038/s41564-024-01794-8 10.1038/nrmicro2636 10.1016/j.mucimm.2024.01.003 10.7554/eLife.75490 10.1016/j.mib.2016.08.006 10.1128/spectrum.00253-23 10.1038/s41467-018-06607-1 10.4161/viru.22913 10.3181/00379727-76-18653 10.3389/fcimb.2020.00081 10.1128/mbio.03510-21 10.1086/322044 10.1093/cid/ciy185 10.1371/journal.pbio.0050064 10.3389/fmicb.2022.919501 10.1371/journal.pone.0026580 10.1128/MMBR.67.3.400-428.2003 10.1016/j.jbc.2022.102419 10.3390/cells9030699 10.1128/mBio.02221-18 10.1128/mBio.00206-20 10.1128/iai.62.11.5154-5156.1994 10.3390/pathogens8020053 10.3390/jof6010027 10.1016/j.tim.2004.05.008 10.1016/j.chom.2010.08.002 10.1128/iai.61.9.3648-3655.1993 10.1016/j.immuni.2021.08.009 10.1007/s002940050359 10.1128/mBio.01226-18 10.1371/journal.pone.0058613 10.1093/infdis/jiz322 10.1016/j.celrep.2022.111374 10.1128/mmbr.00043-22 10.1111/cmi.13371 10.1128/mbio.03409-23 10.3390/jof3040057 10.3389/fimmu.2022.977493 10.1128/mbio.00095-23 10.1038/s41467-024-46141-x 10.3390/toxins12080469 10.1155/2011/346307 10.1074/jbc.RA120.015924 10.1038/s41577-022-00826-w 10.1128/mBio.00211-17 10.1371/journal.ppat.1012031 10.1038/nature17625 10.1093/femsyr/foaa005 10.1016/S0092-8674(00)80358-X 10.1128/mBio.00003-14 10.1128/EC.05085-11 10.1128/mbio.00107-23 10.1016/j.chom.2020.09.004 10.1038/s41590-019-0377-2 10.3201/eid2907.221771 10.1083/jcb.200806072 10.1007/s00253-020-10701-0 10.1002/j.1460-2075.1996.tb00802.x 10.1016/j.mib.2017.10.030 10.1016/j.tim.2018.11.001 10.3390/jof5010021 10.1128/EC.00336-13 10.1136/pmj.78.922.455 10.1038/s41564-022-01172-2 10.1126/scitranslmed.adi3363 10.1099/13500872-145-3-689 10.1111/cmi.13378 10.1128/mbio.03351-23 10.1093/intimm/dxaa070 10.1128/mBio.00433-12 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Lortal et al. Copyright © 2025 Lortal et al. 2025 Lortal et al. |
Copyright_xml | – notice: Copyright © 2025 Lortal et al. – notice: Copyright © 2025 Lortal et al. 2025 Lortal et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.00603-24 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Rodrigues, Marcio |
Editor_xml | – sequence: 1 givenname: Marcio surname: Rodrigues fullname: Rodrigues, Marcio |
ExternalDocumentID | oai_doaj_org_article_0b78ca919b5f4ed5bd02dfe4d10fba2d PMC12153327 mbio00603-24 40293285 10_1128_mbio_00603_24 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 214229_Z_18_Z – fundername: Deutsche Forschungsgemeinschaft – fundername: Wellcome Trust – fundername: NIH HHS grantid: DE022550 – fundername: Bundesministerium für Bildung und Forschung – fundername: Deutsche Forschungsgemeinschaft funderid: http://dx.doi.org/10.13039/501100001659 – fundername: National Institutes of Health grantid: DE022550 funderid: http://dx.doi.org/10.13039/100000002 – fundername: Bundesministerium für Bildung und Forschung funderid: http://dx.doi.org/10.13039/501100002347 – fundername: Wellcome Trust grantid: 214229_Z_18_Z funderid: http://dx.doi.org/10.13039/100010269 – fundername: ; – fundername: ; grantid: 214229_Z_18_Z – fundername: ; grantid: DE022550 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a447t-1b61e9cd226f307d480fc61f5cb6941f3f56df4490879d7d007094d1cd87e3e93 |
IEDL.DBID | AAUOK |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:19:11 EDT 2025 Thu Aug 21 18:24:40 EDT 2025 Fri Sep 05 17:23:55 EDT 2025 Thu Jun 12 01:38:32 EDT 2025 Sun Jun 15 01:31:32 EDT 2025 Mon Sep 08 01:37:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Candida albicans fungal infection candidalysin immune mechanisms toxins |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a447t-1b61e9cd226f307d480fc61f5cb6941f3f56df4490879d7d007094d1cd87e3e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0001-9638-2725 0000-0002-8072-7917 0000-0002-6028-0425 0009-0004-6221-7763 |
OpenAccessLink | https://journals.asm.org/doi/10.1128/mbio.00603-24 |
PMID | 40293285 |
PQID | 3195801909 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b78ca919b5f4ed5bd02dfe4d10fba2d pubmedcentral_primary_oai_pubmedcentral_nih_gov_12153327 proquest_miscellaneous_3195801909 asm2_journals_10_1128_mbio_00603_24 pubmed_primary_40293285 crossref_primary_10_1128_mbio_00603_24 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-11 |
PublicationDateYYYYMMDD | 2025-06-11 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2025 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_122_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_72_2 e_1_3_2_117_2 Kainz, K, Bauer, MA, Madeo, F, Carmona-Gutierrez, D (B3) 2020; 7 Solis, NV, Wakade, RS, Filler, SG, Krysan, DJ (B101) 2023; 14 Nobile, CJ, Johnson, AD (B6) 2015; 69 Ho, J, Yang, X, Nikou, S-A, Kichik, N, Donkin, A, Ponde, NO, Richardson, JP, Gratacap, RL, Archambault, LS, Zwirner, CP, Murciano, C, Henley-Smith, R, Thavaraj, S, Tynan, CJ, Gaffen, SL, Hube, B, Wheeler, RT, Moyes, DL, Naglik, JR (B55) 2019; 10 Sala, A, Ardizzoni, A, Spaggiari, L, Vaidya, N, van der Schaaf, J, Rizzato, C, Cermelli, C, Mogavero, S, Krüger, T, Himmel, M, Kniemeyer, O, Brakhage, AA, King, BL, Lupetti, A, Comar, M, de Seta, F, Tavanti, A, Blasi, E, Wheeler, RT, Pericolini, E (B114) 2023; 14 Wu, Y, Zeng, Z, Guo, Y, Song, L, Weatherhead, JE, Huang, X, Zeng, Y, Bimler, L, Chang, C-Y, Knight, JM, Valladolid, C, Sun, H, Cruz, MA, Hube, B, Naglik, JR, Luong, AU, Kheradmand, F, Corry, DB (B90) 2021; 54 Westman, J, Moran, G, Mogavero, S, Hube, B, Grinstein, S (B88) 2018; 9 Naglik, JR, König, A, Hube, B, Gaffen, SL (B15) 2017; 40 Birse, CE, Irwin, MY, Fonzi, WA, Sypherd, PS (B35) 1993; 61 Ruben, S, Garbe, E, Mogavero, S, Albrecht-Eckardt, D, Hellwig, D, Häder, A, Krüger, T, Gerth, K, Jacobsen, ID, Elshafee, O, Brunke, S, Hünniger, K, Kniemeyer, O, Brakhage, AA, Morschhäuser, J, Hube, B, Vylkova, S, Kurzai, O, Martin, R (B37) 2020; 11 Westman, J, Plumb, J, Licht, A, Yang, M, Allert, S, Naglik, JR, Hube, B, Grinstein, S, Maxson, ME (B56) 2022; 38 Garbe, E, Gerwien, F, Driesch, D, Müller, T, Böttcher, B, Gräler, M, Vylkova, S (B34) 2022; 7 Müller, R, König, A, Groth, S, Zarnowski, R, Visser, C, Handrianz, T, Maufrais, C, Krüger, T, Himmel, M, Lee, S (B89) 2024; 9 Xie, J, Zhu, L, Zhu, T, Jian, Y, Ding, Y, Zhou, M, Feng, X (B109) 2019; 64 Wächtler, B, Citiulo, F, Jablonowski, N, Förster, S, Dalle, F, Schaller, M, Wilson, D, Hube, B (B48) 2012; 7 Garbe, E, Thielemann, N, Hohner, S, Kumar, A, Vylkova, S, Kurzai, O, Martin, R (B36) 2023; 11 Chow, EWL, Pang, LM, Wang, Y (B32) 2021; 10 Naglik, JR, Gaffen, SL, Hube, B (B14) 2019; 52 Hanaoka, M, Domae, E (B61) 2021; 33 Austermeier, S, Pekmezović, M, Porschitz, P, Lee, S, Kichik, N, Moyes, DL, Ho, J, Kotowicz, NK, Naglik, JR, Hube, B, Gresnigt, MS (B92) 2021; 12 Moyes, DL, Naglik, JR (B22) 2011; 2011 Salvin, SB (B96) 1951; 76 Hoenigl, M, Seidel, D, Sprute, R, Cunha, C, Oliverio, M, Goldman, GH, Ibrahim, AS, Carvalho, A (B125) 2022; 7 Almeida, RS, Brunke, S, Albrecht, A, Thewes, S, Laue, M, Edwards, JE, Filler, SG, Hube, B (B105) 2008; 4 Denning, DW (B2) 2024; 24 Sprague, JL, Schille, TB, Allert, S, Trümper, V, Lier, A, Großmann, P, Priest, EL, Tsavou, A, Panagiotou, G, Naglik, JR, Wilson, D, Schäuble, S, Kasper, L, Hube, B (B111) 2024; 20 Russell, CM, Schaefer, KG, Dixson, A, Gray, ALH, Pyron, RJ, Alves, DS, Moore, N, Conley, EA, Schuck, RJ, White, TA, Do, TD, King, GM, Barrera, FN (B41) 2022; 11 Sudbery, P, Gow, N, Berman, J (B26) 2004; 12 Casadevall, A, Pirofski, L (B104) 2001; 184 Dalle, F, Wächtler, B, L’Ollivier, C, Holland, G, Bannert, N, Wilson, D, Labruère, C, Bonnin, A, Hube, B (B47) 2010; 12 Denning, DW, Kneale, M, Sobel, JD, Rautemaa-Richardson, R (B9) 2018; 18 Wu, Y, Du, S, Bimler, LH, Mauk, KE, Lortal, L, Kichik, N, Griffiths, JS, Osicka, R, Song, L, Polsky, K, Kasper, L, Sebo, P, Weatherhead, J, Knight, JM, Kheradmand, F, Zheng, H, Richardson, JP, Hube, B, Naglik, JR, Corry, DB (B72) 2023; 42 Fidel, PL, Barousse, M, Espinosa, T, Ficarra, M, Sturtevant, J, Martin, DH, Quayle, AJ, Dunlap, K (B68) 2004; 72 Calderone, RA, Fonzi, WA (B42) 2001; 9 Yapar, N (B10) 2014; 10 Watanabe, T, Takano, M, Murakami, M, Tanaka, H, Matsuhisa, A, Nakao, N, Mikami, T, Suzuki, M, Matsumoto, T (B99) 1999; 145 Domán, M, Bányai, K (B126) 2022; 13 Ding, X, Kambara, H, Guo, R, Kanneganti, A, Acosta-Zaldívar, M, Li, J, Liu, F, Bei, T, Qi, W, Xie, X, Han, W, Liu, N, Zhang, C, Zhang, X, Yu, H, Zhao, L, Ma, F, Köhler, JR, Luo, HR (B86) 2021; 12 Uppuluri, P, Singh, S, Alqarihi, A, Schmidt, CS, Hennessey, JP, Yeaman, MR, Filler, SG, Edwards, JE, Ibrahim, AS (B124) 2018; 9 Swidergall, M, Khalaji, M, Solis, NV, Moyes, DL, Drummond, RA, Hube, B, Lionakis, MS, Murdoch, C, Filler, SG, Naglik, JR (B70) 2019; 220 Wellington, M, Koselny, K, Sutterwala, FS, Krysan, DJ (B83) 2014; 13 Sudbery, PE (B27) 2011; 9 Besold, AN, Gilston, BA, Radin, JN, Ramsoomair, C, Culbertson, EM, Li, CX, Cormack, BP, Chazin, WJ, Kehl-Fie, TE, Culotta, VC (B106) 2018; 86 Wellington, M, Koselny, K, Krysan, DJ (B82) 2012; 4 Gonçalves, B, Ferreira, C, Alves, CT, Henriques, M, Azeredo, J, Silva, S (B7) 2016; 42 Noble, SM, Gianetti, BA, Witchley, JN (B28) 2017; 15 Mogavero, S, Höfs, S, Lauer, AN, Müller, R, Brunke, S, Allert, S, Gerwien, F, Groth, S, Dolk, E, Wilson, D, Gutsmann, T, Hube, B (B103) 2022; 14 Guiducci, E, Lemberg, C, Küng, N, Schraner, E, Theocharides, APA, LeibundGut-Landmann, S (B76) 2018; 9 Liu, Y, Filler, SG (B50) 2011; 10 Peschel, A, Otto, M (B117) 2013; 11 Fly, JH, Kapoor, S, Bobo, K, Stultz, JS (B110) 2022; 14 Kasper, L, König, A, Koenig, P-A, Gresnigt, MS, Westman, J, Drummond, RA, Lionakis, MS, Groß, O, Ruland, J, Naglik, JR, Hube, B (B80) 2018; 9 Thompson, DS, Carlisle, PL, Kadosh, D (B20) 2011; 10 Schmidt, CS, White, CJ, Ibrahim, AS, Filler, SG, Fu, Y, Yeaman, MR, Edwards, JE, Hennessey, JP (B123) 2012; 30 Verma, AH, Richardson, JP, Zhou, C, Coleman, BM, Moyes, DL, Ho, J, Huppler, AR, Ramani, K, McGeachy, MJ, Mufazalov, IA, Waisman, A, Kane, LP, Biswas, PS, Hube, B, Naglik, JR, Gaffen, SL (B60) 2017; 2 Staab, JF, Bradway, SD, Fidel, PL, Sundstrom, P (B44) 1999; 283 Zhang, T-Y, Chen, Y-Q, Tan, J-C, Zhou, J-A, Chen, W-N, Jiang, T, Zha, J-Y, Zeng, X-K, Li, B-W, Wei, L-Q, Zou, Y, Zhang, L-Y, Hong, Y-M, Wang, X-L, Zhu, R-Z, Xu, W-X, Xi, J, Wang, Q-Q, Pan, L, Zhang, J, Luan, Y, Zhu, R-X, Wang, H, Chen, C, Liu, N-N (B95) 2024; 15 Hoyer, LL, Payne, TL, Bell, M, Myers, AM, Scherer, S (B43) 1998; 33 Valentine, M, Rudolph, P, Dietschmann, A, Tsavou, A, Mogavero, S, Lee, S, Priest, EL, Zhurgenbayeva, G, Jablonowski, N, Timme, S, Eggeling, C, Allert, S, Dolk, E, Naglik, JR, Figge, MT, Gresnigt, MS, Hube, B (B66) 2024; 15 Wösten, HA, Bohlmann, R, Eckerskorn, C, Lottspeich, F, Bölker, M, Kahmann, R (B118) 1996; 15 Naglik, JR, Challacombe, SJ, Hube, B (B49) 2003; 67 Olivier, FAB, Hilsenstein, V, Weerasinghe, H, Weir, A, Hughes, S, Crawford, S, Vince, JE, Hickey, MJ, Traven, A (B79) 2022; 40 Liang, S-H, Sircaik, S, Dainis, J, Kakade, P, Penumutchu, S, McDonough, LD, Chen, Y-H, Frazer, C, Schille, TB, Allert, S, Elshafee, O, Hänel, M, Mogavero, S, Vaishnava, S, Cadwell, K, Belenky, P, Perez, JC, Hube, B, Ene, IV, Bennett, RJ (B128) 2024; 627 Ponde, NO, Lortal, L, Tsavou, A, Hepworth, OW, Wickramasinghe, DN, Ho, J, Richardson, JP, Moyes, DL, Gaffen, SL, Naglik, JR (B62) 2022; 298 Memariani, H, Memariani, M (B116) 2020; 104 Zhong, H, Lu, R-Y, Wang, Y (B64) 2022; 13 Manns, JM, Mosser, DM, Buckley, HR (B97) 1994; 62 Gonzalez, MR, Bischofberger, M, Pernot, L, van der Goot, FG, Frêche, B (B119) 2008; 65 Edwards, JE, Schwartz, MM, Schmidt, CS, Sobel, JD, Nyirjesy, P, Schodel, F, Marchus, E, Lizakowski, M, DeMontigny, EA, Hoeg, J, Holmberg, T, Cooke, MT, Hoover, K, Edwards, L, Jacobs, M, Sussman, S, Augenbraun, M, Drusano, M, Yeaman, MR, Ibrahim, AS, Filler, SG, Hennessey, JP (B122) 2018; 66 Drummond, RA, Swamydas, M, Oikonomou, V, Zhai, B, Dambuza, IM, Schaefer, BC, Bohrer, AC, Mayer-Barber, KD, Lira, SA, Iwakura, Y, Filler, SG, Brown, GD, Hube, B, Naglik, JR, Hohl, TM, Lionakis, MS (B71) 2019; 20 Richardson, JP, Mogavero, S, Moyes, DL, Blagojevic, M, Krüger, T, Verma, AH, Coleman, BM, De La Cruz Diaz, J, Schulz, D, Ponde, NO, Carrano, G, Kniemeyer, O, Wilson, D, Bader, O, Enoiu, SI, Ho, J, Kichik, N, Gaffen, SL, Hube, B, Naglik, JR (B39) 2018; 9 Bongomin, F, Gago, S, Oladele, RO, Denning, DW (B1) 2017; 3 Nikou, S-A, Zhou, C, Griffiths, JS, Kotowicz, NK, Coleman, BM, Green, MJ, Moyes, DL, Gaffen, SL, Naglik, JR, Parker, PJ (B59) 2022; 15 Kornitzer, D (B29) 2019; 5 Villa, S, Hamideh, M, Weinstock, A, Qasim, MN, Hazbun, TR, Sellam, A, Hernday, AD, Thangamani, S (B31) 2020; 20 Banoth, B, Tuladhar, S, Karki, R, Sharma, BR, Briard, B, Kesavardhana, S, Burton, A, Kanneganti, T-D (B81) 2020; 295 Pellon, A, Sadeghi Nasab, SD, Moyes, DL (B18) 2020; 10 Mogavero, S, Sauer, FM, Brunke, S, Allert, S, Schulz, D, Wisgott, S, Jablonowski, N, Elshafee, O, Krüger, T, Kniemeyer, O, Brakhage, AA, Naglik, JR, Dolk, E, Hube, B (B52) 2021; 23 Rogiers, O, Frising, UC, Kucharíková, S, Jabra-Rizk, MA, van Loo, G, Van Dijck, P, Wullaert, A (B87) 2019; 10 Moyes, DL, Richardson, JP, Naglik, JR (B46) 2015; 6 Lionakis, MS, Drummond, RA, Hohl, TM (B67) 2023; 23 Yano, J, Noverr, MC, Fidel, PL (B69) 2017; 8 Moyes, DL, Wilson, D, Richardson, JP, Mogavero, S, Tang, SX, Wernecke, J, Höfs, S, Gratacap, RL, Robbins, J, Runglall, M (B13) 2016; 532 Engku Nasrullah Satiman, EAF, Ahmad, H, Ramzi, AB, Abdul Wahab, R, Kaderi, MA, Wan Harun, WHA, Dashper, S, McCullough, M, Arzmi, MH (B17) 2020; 49 Willems, HME, Ahmed, SS, Liu, J, Xu, Z, Peters, BM (B8) 2020; 6 Liu, J, Willems, HME, Sansevere, EA, Allert, S, Barker, KS, Lowes, DJ, Dixson, AC, Xu, Z, Miao, J, DeJarnette, C, Tournu, H, Palmer, GE, Richardson, JP, Barrera, FN, Hube, B, Naglik, JR, Peters, BM (B40) 2021; 17 Brinkmann, V, Zychlinsky, A (B74) 2012; 198 Richardson, JP, Brown, R, Kichik, N, Lee, S, Priest, E, Mogavero, S, Maufrais, C, Wickramasinghe, DN, Tsavou, A, Kotowicz, NK, Hepworth, OW, Gallego-Cortés, A, Ponde, NO, Ho, J, Moyes, DL, Wilson, D, D’Enfert, C, Hube, B, Naglik, JR (B113) 2022; 13 Citiulo, F, Jacobsen, ID, Miramón, P, Schild, L, Brunke, S, Zipfel, P, Brock, M, Hube, B, Wilson, D (B107) 2012; 8 Mayer, FL, Wilson, D, Hube, B (B11) 2013; 4 Bischofberger, M, Iacovache, I, van der Goot, FG (B120) 2012; 12 Blagojevic, M, Camilli, G, Maxson, M, Hube, B, Moyes, DL, Richardson, JP, Naglik, JR (B54) 2021; 23 Neville, BA, d’Enfert, C, Bougnoux, M-E (B5) 2015; 15 Ponde, NO, Lortal, L, Ramage, G, Naglik, JR, Richardson, JP (B24) 2021; 47 Kornitzer, D, Roy, U (B102) 2020; 1867 Richardson, JP, Willems, HME, Moyes, DL, Shoaie, S, Barker, KS |
References_xml | – ident: e_1_3_2_6_2 doi: 10.1093/femsyr/fov081 – ident: e_1_3_2_86_2 doi: 10.1371/journal.ppat.1004139 – ident: e_1_3_2_7_2 doi: 10.1146/annurev-micro-091014-104330 – ident: e_1_3_2_51_2 doi: 10.1128/EC.00279-10 – ident: e_1_3_2_121_2 doi: 10.1016/j.chom.2012.08.005 – ident: e_1_3_2_35_2 doi: 10.1128/msystems.00539-22 – ident: e_1_3_2_31_2 doi: 10.1080/21505594.2020.1748930 – ident: e_1_3_2_39_2 doi: 10.1186/1471-2180-8-116 – ident: e_1_3_2_52_2 doi: 10.1073/pnas.1117676109 – ident: e_1_3_2_60_2 doi: 10.1126/scisignal.abj6915 – ident: e_1_3_2_103_2 doi: 10.1016/j.bbamcr.2020.118817 – ident: e_1_3_2_64_2 doi: 10.1371/journal.ppat.1009221 – ident: e_1_3_2_11_2 doi: 10.2147/TCRM.S40160 – ident: e_1_3_2_87_2 doi: 10.1038/s41467-021-27034-9 – ident: e_1_3_2_48_2 doi: 10.1111/j.1462-5822.2009.01394.x – ident: e_1_3_2_15_2 doi: 10.1016/j.mib.2019.06.002 – ident: e_1_3_2_124_2 doi: 10.1016/j.vaccine.2012.10.038 – ident: e_1_3_2_120_2 doi: 10.1007/s00018-007-7434-y – ident: e_1_3_2_93_2 doi: 10.1128/mBio.00531-21 – ident: e_1_3_2_99_2 doi: 10.1006/bbrc.1997.6247 – ident: e_1_3_2_77_2 doi: 10.3389/fimmu.2018.01573 – ident: e_1_3_2_101_2 doi: 10.1038/srep36055 – ident: e_1_3_2_78_2 doi: 10.1371/journal.ppat.1012319 – ident: e_1_3_2_49_2 doi: 10.1371/journal.pone.0036952 – ident: e_1_3_2_66_2 doi: 10.1128/IAI.00645-17 – ident: e_1_3_2_104_2 doi: 10.3390/toxins14120874 – ident: e_1_3_2_108_2 doi: 10.1371/journal.ppat.1002777 – ident: e_1_3_2_8_2 doi: 10.3109/1040841X.2015.1091805 – ident: e_1_3_2_18_2 doi: 10.1111/jop.13014 – ident: e_1_3_2_47_2 doi: 10.1080/21505594.2015.1012981 – ident: e_1_3_2_57_2 doi: 10.1016/j.celrep.2021.110187 – ident: e_1_3_2_94_2 doi: 10.1016/j.job.2023.03.002 – ident: e_1_3_2_122_2 doi: 10.1038/nrmicro.2015.3 – ident: e_1_3_2_75_2 doi: 10.1083/jcb.201203170 – ident: e_1_3_2_41_2 doi: 10.1371/journal.ppat.1009884 – ident: e_1_3_2_110_2 doi: 10.3164/jcbn.18-74 – ident: e_1_3_2_69_2 doi: 10.1128/IAI.72.5.2939-2946.2004 – ident: e_1_3_2_43_2 doi: 10.1016/s0966-842x(01)02094-7 – ident: e_1_3_2_56_2 doi: 10.1038/s41467-019-09915-2 – ident: e_1_3_2_125_2 doi: 10.3389/fimmu.2018.01349 – ident: e_1_3_2_61_2 doi: 10.1126/sciimmunol.aam8834 – ident: e_1_3_2_29_2 doi: 10.1038/nrmicro.2016.157 – ident: e_1_3_2_4_2 doi: 10.15698/mic2020.06.718 – ident: e_1_3_2_74_2 doi: 10.15252/embr.202357571 – ident: e_1_3_2_40_2 doi: 10.1128/mBio.02178-17 – ident: e_1_3_2_90_2 doi: 10.1038/s41564-024-01606-z – ident: e_1_3_2_45_2 doi: 10.1126/science.283.5407.1535 – ident: e_1_3_2_107_2 doi: 10.1128/IAI.00779-17 – ident: e_1_3_2_118_2 doi: 10.1038/nrmicro3110 – ident: e_1_3_2_111_2 doi: 10.1007/s40506-022-00258-z – ident: e_1_3_2_25_2 doi: 10.1080/1040841X.2020.1843400 – ident: e_1_3_2_33_2 doi: 10.3390/pathogens10070859 – ident: e_1_3_2_3_2 doi: 10.1016/S1473-3099(23)00692-8 – ident: e_1_3_2_129_2 doi: 10.1038/s41586-024-07142-4 – ident: e_1_3_2_10_2 doi: 10.1016/S1473-3099(18)30103-8 – ident: e_1_3_2_73_2 doi: 10.1016/j.celrep.2023.113240 – ident: e_1_3_2_106_2 doi: 10.1371/journal.ppat.1000217 – ident: e_1_3_2_20_2 doi: 10.1111/imm.13255 – ident: e_1_3_2_95_2 doi: 10.1038/s41564-024-01794-8 – ident: e_1_3_2_28_2 doi: 10.1038/nrmicro2636 – ident: e_1_3_2_92_2 doi: 10.1016/j.mucimm.2024.01.003 – ident: e_1_3_2_42_2 doi: 10.7554/eLife.75490 – ident: e_1_3_2_13_2 doi: 10.1016/j.mib.2016.08.006 – ident: e_1_3_2_37_2 doi: 10.1128/spectrum.00253-23 – ident: e_1_3_2_81_2 doi: 10.1038/s41467-018-06607-1 – ident: e_1_3_2_12_2 doi: 10.4161/viru.22913 – ident: e_1_3_2_97_2 doi: 10.3181/00379727-76-18653 – ident: e_1_3_2_19_2 doi: 10.3389/fcimb.2020.00081 – ident: e_1_3_2_114_2 doi: 10.1128/mbio.03510-21 – ident: e_1_3_2_105_2 doi: 10.1086/322044 – ident: e_1_3_2_123_2 doi: 10.1093/cid/ciy185 – ident: e_1_3_2_46_2 doi: 10.1371/journal.pbio.0050064 – ident: e_1_3_2_127_2 doi: 10.3389/fmicb.2022.919501 – ident: e_1_3_2_59_2 doi: 10.1371/journal.pone.0026580 – ident: e_1_3_2_50_2 doi: 10.1128/MMBR.67.3.400-428.2003 – ident: e_1_3_2_63_2 doi: 10.1016/j.jbc.2022.102419 – ident: e_1_3_2_54_2 doi: 10.3390/cells9030699 – ident: e_1_3_2_88_2 doi: 10.1128/mBio.02221-18 – ident: e_1_3_2_38_2 doi: 10.1128/mBio.00206-20 – ident: e_1_3_2_98_2 doi: 10.1128/iai.62.11.5154-5156.1994 – ident: e_1_3_2_24_2 doi: 10.3390/pathogens8020053 – ident: e_1_3_2_9_2 doi: 10.3390/jof6010027 – ident: e_1_3_2_27_2 doi: 10.1016/j.tim.2004.05.008 – ident: e_1_3_2_58_2 doi: 10.1016/j.chom.2010.08.002 – ident: e_1_3_2_36_2 doi: 10.1128/iai.61.9.3648-3655.1993 – ident: e_1_3_2_91_2 doi: 10.1016/j.immuni.2021.08.009 – ident: e_1_3_2_44_2 doi: 10.1007/s002940050359 – ident: e_1_3_2_89_2 doi: 10.1128/mBio.01226-18 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pone.0058613 – ident: e_1_3_2_71_2 doi: 10.1093/infdis/jiz322 – ident: e_1_3_2_80_2 doi: 10.1016/j.celrep.2022.111374 – ident: e_1_3_2_26_2 doi: 10.1128/mmbr.00043-22 – ident: e_1_3_2_55_2 doi: 10.1111/cmi.13371 – ident: e_1_3_2_67_2 doi: 10.1128/mbio.03409-23 – ident: e_1_3_2_2_2 doi: 10.3390/jof3040057 – ident: e_1_3_2_65_2 doi: 10.3389/fimmu.2022.977493 – ident: e_1_3_2_102_2 doi: 10.1128/mbio.00095-23 – ident: e_1_3_2_96_2 doi: 10.1038/s41467-024-46141-x – ident: e_1_3_2_17_2 doi: 10.3390/toxins12080469 – ident: e_1_3_2_23_2 doi: 10.1155/2011/346307 – ident: e_1_3_2_82_2 doi: 10.1074/jbc.RA120.015924 – ident: e_1_3_2_68_2 doi: 10.1038/s41577-022-00826-w – ident: e_1_3_2_70_2 doi: 10.1128/mBio.00211-17 – ident: e_1_3_2_112_2 doi: 10.1371/journal.ppat.1012031 – ident: e_1_3_2_14_2 doi: 10.1038/nature17625 – ident: e_1_3_2_32_2 doi: 10.1093/femsyr/foaa005 – ident: e_1_3_2_22_2 doi: 10.1016/S0092-8674(00)80358-X – ident: e_1_3_2_85_2 doi: 10.1128/mBio.00003-14 – ident: e_1_3_2_21_2 doi: 10.1128/EC.05085-11 – ident: e_1_3_2_115_2 doi: 10.1128/mbio.00107-23 – ident: e_1_3_2_79_2 doi: 10.1016/j.chom.2020.09.004 – ident: e_1_3_2_72_2 doi: 10.1038/s41590-019-0377-2 – ident: e_1_3_2_128_2 doi: 10.3201/eid2907.221771 – ident: e_1_3_2_76_2 doi: 10.1083/jcb.200806072 – ident: e_1_3_2_117_2 doi: 10.1007/s00253-020-10701-0 – ident: e_1_3_2_119_2 doi: 10.1002/j.1460-2075.1996.tb00802.x – ident: e_1_3_2_16_2 doi: 10.1016/j.mib.2017.10.030 – ident: e_1_3_2_113_2 doi: 10.1016/j.tim.2018.11.001 – ident: e_1_3_2_30_2 doi: 10.3390/jof5010021 – ident: e_1_3_2_84_2 doi: 10.1128/EC.00336-13 – ident: e_1_3_2_5_2 doi: 10.1136/pmj.78.922.455 – ident: e_1_3_2_126_2 doi: 10.1038/s41564-022-01172-2 – ident: e_1_3_2_109_2 doi: 10.1126/scitranslmed.adi3363 – ident: e_1_3_2_100_2 doi: 10.1099/13500872-145-3-689 – ident: e_1_3_2_53_2 doi: 10.1111/cmi.13378 – ident: e_1_3_2_116_2 doi: 10.1128/mbio.03351-23 – ident: e_1_3_2_62_2 doi: 10.1093/intimm/dxaa070 – ident: e_1_3_2_83_2 doi: 10.1128/mBio.00433-12 – volume: 14 year: 2023 ident: B101 article-title: Candida albicans oropharyngeal infection is an exception to iron-based nutritional immunity publication-title: mBio doi: 10.1128/mbio.00095-23 – volume: 15 year: 2024 ident: B95 article-title: Global fungal-host interactome mapping identifies host targets of candidalysin publication-title: Nat Commun doi: 10.1038/s41467-024-46141-x – volume: 6 start-page: 338 year: 2015 end-page: 346 ident: B46 article-title: Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface publication-title: Virulence doi: 10.1080/21505594.2015.1012981 – volume: 184 start-page: 205 year: 2009 end-page: 213 ident: B75 article-title: Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation publication-title: J Cell Biol doi: 10.1083/jcb.200806072 – volume: 28 start-page: 798 year: 2020 end-page: 812 ident: B78 article-title: Lysosome fusion maintains phagosome integrity during fungal infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.09.004 – volume: 8 year: 2017 ident: B69 article-title: Vaginal heparan sulfate linked to neutrophil dysfunction in the acute inflammatory response associated with experimental vulvovaginal candidiasis publication-title: mBio doi: 10.1128/mBio.00211-17 – volume: 86 year: 2018 ident: B106 article-title: Role of calprotectin in withholding zinc and copper from Candida albicans publication-title: Infect Immun doi: 10.1128/IAI.00779-17 – volume: 15 year: 2023 ident: B108 article-title: Zinc prevents vaginal candidiasis by inhibiting expression of an inflammatory fungal protein publication-title: Sci Transl Med doi: 10.1126/scitranslmed.adi3363 – volume: 64 start-page: 170 year: 2019 end-page: 173 ident: B109 article-title: Zinc supplementation reduces Candida infections in pediatric intensive care unit: a randomized placebo-controlled clinical trial publication-title: J Clin Biochem Nutr doi: 10.3164/jcbn.18-74 – volume: 11 start-page: 667 year: 2013 end-page: 673 ident: B117 article-title: Phenol-soluble modulins and staphylococcal infection publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3110 – volume: 38 year: 2022 ident: B56 article-title: Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion publication-title: Cell Rep doi: 10.1016/j.celrep.2021.110187 – volume: 61 start-page: 3648 year: 1993 end-page: 3655 ident: B35 article-title: Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans publication-title: Infect Immun doi: 10.1128/iai.61.9.3648-3655.1993 – volume: 34 start-page: 111 year: 2016 end-page: 118 ident: B12 article-title: Cell biology of Candida albicans–host interactions publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2016.08.006 – volume: 7 start-page: 1127 year: 2022 end-page: 1140 ident: B125 article-title: COVID-19-associated fungal infections publication-title: Nat Microbiol doi: 10.1038/s41564-022-01172-2 – volume: 12 year: 2020 ident: B16 article-title: The dual function of the fungal toxin candidalysin during Candida albicans—macrophage interaction and virulence publication-title: Toxins (Basel) doi: 10.3390/toxins12080469 – volume: 13 year: 2022 ident: B126 article-title: COVID-19-associated fungal infections: an urgent need for alternative therapeutic approach? publication-title: Front Microbiol doi: 10.3389/fmicb.2022.919501 – volume: 47 start-page: 91 year: 2021 end-page: 111 ident: B24 article-title: Candida albicans biofilms and polymicrobial interactions publication-title: Crit Rev Microbiol doi: 10.1080/1040841X.2020.1843400 – volume: 8 year: 2008 ident: B38 article-title: Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris publication-title: BMC Microbiol doi: 10.1186/1471-2180-8-116 – volume: 23 start-page: 433 year: 2023 end-page: 452 ident: B67 article-title: Immune responses to human fungal pathogens and therapeutic prospects publication-title: Nat Rev Immunol doi: 10.1038/s41577-022-00826-w – volume: 9 year: 2018 ident: B39 article-title: Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence publication-title: mBio doi: 10.1128/mBio.02178-17 – volume: 10 year: 2019 ident: B87 article-title: Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae publication-title: mBio doi: 10.1128/mBio.02221-18 – volume: 76 start-page: 852 year: 1951 end-page: 854 ident: B96 article-title: Hemolysin from the yeastlike phases of some pathogenic fungi publication-title: Exp Biol Med (Maywood) doi: 10.3181/00379727-76-18653 – volume: 5 year: 2007 ident: B45 article-title: Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050064 – volume: 10 year: 2014 ident: B85 article-title: Catching fire: Candida albicans, macrophages, and pyroptosis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004139 – volume: 20 start-page: 559 year: 2019 end-page: 570 ident: B71 article-title: CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment publication-title: Nat Immunol doi: 10.1038/s41590-019-0377-2 – volume: 14 year: 2022 ident: B103 article-title: Candidalysin is the hemolytic factor of Candida albicans publication-title: Toxins (Basel) doi: 10.3390/toxins14120874 – volume: 10 start-page: 2297 year: 2019 ident: B55 article-title: Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor publication-title: Nat Commun doi: 10.1038/s41467-019-09915-2 – volume: 42 start-page: 113240 year: 2023 ident: B72 article-title: Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis publication-title: Cell Rep doi: 10.1016/j.celrep.2023.113240 – volume: 17 start-page: 182 year: 2024 end-page: 200 ident: B91 article-title: Immunity to pathogenic mucosal C. albicans infections mediated by oral megakaryocytes activated by IL-17 and candidalysin publication-title: Mucosal Immunol doi: 10.1016/j.mucimm.2024.01.003 – volume: 12 year: 2021 ident: B92 article-title: Albumin neutralizes hydrophobic toxins and modulates Candida albicans pathogenicity publication-title: mBio doi: 10.1128/mBio.00531-21 – volume: 4 year: 2012 ident: B82 article-title: Candida albicans morphogenesis is not required for macrophage interleukin 1β production publication-title: mBio doi: 10.1128/mBio.00433-12 – volume: 13 start-page: 329 year: 2014 end-page: 340 ident: B83 article-title: Candida albicans triggers NLRP3-mediated pyroptosis in macrophages publication-title: Eukaryot Cell doi: 10.1128/EC.00336-13 – volume: 12 start-page: 266 year: 2012 end-page: 275 ident: B120 article-title: Pathogenic pore-forming proteins: function and host response publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.08.005 – volume: 33 start-page: 451 year: 1998 end-page: 459 ident: B43 article-title: Candida albicans ALS3 and insights into the nature of the ALS gene family publication-title: Curr Genet doi: 10.1007/s002940050359 – volume: 66 start-page: 1928 year: 2018 end-page: 1936 ident: B122 article-title: A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis—a phase 2 randomized, double-blind, placebo-controlled trial publication-title: Clin Infect Dis doi: 10.1093/cid/ciy185 – volume: 232 start-page: 350 year: 1997 end-page: 353 ident: B98 article-title: Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1997.6247 – volume: 30 start-page: 7594 year: 2012 end-page: 7600 ident: B123 article-title: NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults publication-title: Vaccine (Auckl) doi: 10.1016/j.vaccine.2012.10.038 – volume: 23 year: 2021 ident: B54 article-title: Candidalysin triggers epithelial cellular stresses that induce necrotic death publication-title: Cell Microbiol doi: 10.1111/cmi.13371 – volume: 109 start-page: 14194 year: 2012 end-page: 14199 ident: B51 article-title: EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1117676109 – volume: 40 start-page: 111374 year: 2022 ident: B79 article-title: The escape of Candida albicans from macrophages is enabled by the fungal toxin candidalysin and two host cell death pathways publication-title: Cell Rep doi: 10.1016/j.celrep.2022.111374 – volume: 6 year: 2020 ident: B8 article-title: Vulvovaginal candidiasis: a current understanding and burning questions publication-title: J Fungi (Basel) doi: 10.3390/jof6010027 – volume: 15 year: 2022 ident: B59 article-title: The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways publication-title: Sci Signal doi: 10.1126/scisignal.abj6915 – volume: 298 year: 2022 ident: B62 article-title: Receptor-kinase EGFR-MAPK adaptor proteins mediate the epithelial response to Candida albicans via the cytolytic peptide toxin, candidalysin publication-title: J Biol Chem doi: 10.1016/j.jbc.2022.102419 – volume: 8 year: 2012 ident: B107 article-title: Candida albicans scavenges host zinc via Pra1 during endothelial invasion publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002777 – volume: 9 year: 2018 ident: B124 article-title: Human anti-Als3p antibodies are surrogate markers of NDV-3A vaccine efficacy against recurrent vulvovaginal candidiasis publication-title: Front Immunol doi: 10.3389/fimmu.2018.01349 – volume: 14 year: 2023 ident: B114 article-title: A new phenotype in Candida-epithelial cell interaction distinguishes colonization- versus vulvovaginal candidiasis-associated strains publication-title: mBio doi: 10.1128/mbio.00107-23 – volume: 54 start-page: 2595 year: 2021 end-page: 2610 ident: B90 article-title: Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization publication-title: Immunity doi: 10.1016/j.immuni.2021.08.009 – volume: 3 year: 2017 ident: B1 article-title: Global and multi-national prevalence of fungal diseases—estimate precision publication-title: J Fungi (Basel) doi: 10.3390/jof3040057 – volume: 10 start-page: 168 year: 2011 end-page: 173 ident: B50 article-title: Candida albicans Als3, a multifunctional adhesin and invasin publication-title: Eukaryot Cell doi: 10.1128/EC.00279-10 – volume: 86 year: 2018 ident: B65 article-title: Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa publication-title: Infect Immun doi: 10.1128/IAI.00645-17 – volume: 532 start-page: 64 year: 2016 end-page: 68 ident: B13 article-title: Candidalysin is a fungal peptide toxin critical for mucosal infection publication-title: Nature doi: 10.1038/nature17625 – volume: 40 start-page: 104 year: 2017 end-page: 112 ident: B15 article-title: Candida albicans–epithelial interactions and induction of mucosal innate immunity publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2017.10.030 – volume: 10 start-page: 859 year: 2021 ident: B32 article-title: From Jekyll to Hyde: the yeast–hyphal transition of Candida albicans publication-title: Pathogens doi: 10.3390/pathogens10070859 – volume: 9 start-page: 2553 year: 2024 end-page: 2569 ident: B94 article-title: Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin publication-title: Nat Microbiol doi: 10.1038/s41564-024-01794-8 – volume: 104 start-page: 6513 year: 2020 end-page: 6526 ident: B116 article-title: Anti-fungal properties and mechanisms of melittin publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-10701-0 – volume: 15 start-page: 4274 year: 1996 end-page: 4281 ident: B118 article-title: A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00802.x – volume: 15 start-page: 96 year: 2017 end-page: 108 ident: B28 article-title: Candida albicans cell-type switching and functional plasticity in the mammalian host publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.157 – volume: 9 start-page: 327 year: 2001 end-page: 335 ident: B42 article-title: Virulence factors of Candida albicans publication-title: Trends Microbiol doi: 10.1016/s0966-842x(01)02094-7 – volume: 11 start-page: 337 year: 2020 end-page: 348 ident: B30 article-title: The regulation of hyphae growth in Candida albicans publication-title: Virulence doi: 10.1080/21505594.2020.1748930 – volume: 198 start-page: 773 year: 2012 end-page: 783 ident: B74 article-title: Neutrophil extracellular traps: is immunity the second function of chromatin? publication-title: J Cell Biol doi: 10.1083/jcb.201203170 – volume: 12 year: 2021 ident: B86 article-title: Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages publication-title: Nat Commun doi: 10.1038/s41467-021-27034-9 – volume: 69 start-page: 71 year: 2015 end-page: 92 ident: B6 article-title: Candida albicans biofilms and human disease publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-091014-104330 – volume: 42 start-page: 905 year: 2016 end-page: 927 ident: B7 article-title: Vulvovaginal candidiasis: epidemiology, microbiology and risk factors publication-title: Crit Rev Microbiol doi: 10.3109/1040841X.2015.1091805 – volume: 29 start-page: 1433 year: 2023 end-page: 1437 ident: B127 article-title: Increased hospitalizations involving fungal infections during COVID-19 pandemic, United States, January 2020–December 2021 publication-title: Emerg Infect Dis doi: 10.3201/eid2907.221771 – volume: 184 start-page: 337 year: 2001 end-page: 344 ident: B104 article-title: Host‐pathogen interactions: the attributes of virulence publication-title: J Infect Dis doi: 10.1086/322044 – volume: 6 year: 2011 ident: B58 article-title: Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells publication-title: PLoS One doi: 10.1371/journal.pone.0026580 – volume: 78 start-page: 455 year: 2002 end-page: 459 ident: B4 article-title: Oral candidiasis publication-title: Postgrad Med J doi: 10.1136/pmj.78.922.455 – volume: 7 year: 2022 ident: B34 article-title: Systematic metabolic profiling identifies de novo sphingolipid synthesis as hypha associated and essential for Candida albicans filamentation publication-title: mSystems doi: 10.1128/msystems.00539-22 – volume: 8 start-page: 225 year: 2010 end-page: 235 ident: B57 article-title: A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.08.002 – volume: 283 start-page: 1535 year: 1999 end-page: 1538 ident: B44 article-title: Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1 publication-title: Science doi: 10.1126/science.283.5407.1535 – volume: 23 year: 2021 ident: B52 article-title: Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans publication-title: Cell Microbiol doi: 10.1111/cmi.13378 – volume: 2011 year: 2011 ident: B22 article-title: Mucosal immunity and Candida albicans infection publication-title: Clin Dev Immunol doi: 10.1155/2011/346307 – volume: 20 year: 2024 ident: B111 article-title: Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFκB-mediated barrier protection publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1012031 – volume: 14 start-page: 77 year: 2016 end-page: 92 ident: B121 article-title: Pore-forming toxins: ancient, but never really out of fashion publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2015.3 – volume: 11 year: 2020 ident: B37 article-title: Ahr1 and Tup1 contribute to the transcriptional control of virulence-associated genes in Candida albicans publication-title: mBio doi: 10.1128/mBio.00206-20 – volume: 10 start-page: 95 year: 2014 end-page: 105 ident: B10 article-title: Epidemiology and risk factors for invasive candidiasis publication-title: Ther Clin Risk Manag doi: 10.2147/TCRM.S40160 – volume: 17 year: 2021 ident: B40 article-title: A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009884 – volume: 49 start-page: 835 year: 2020 end-page: 841 ident: B17 article-title: The role of Candida albicans candidalysin ECE1 gene in oral carcinogenesis publication-title: J Oral Pathol Med doi: 10.1111/jop.13014 – volume: 15 year: 2024 ident: B66 article-title: Nanobody-mediated neutralization of candidalysin prevents epithelial damage and inflammatory responses that drive vulvovaginal candidiasis pathogenesis publication-title: mBio doi: 10.1128/mbio.03409-23 – volume: 4 year: 2008 ident: B105 article-title: The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000217 – volume: 7 start-page: 143 year: 2020 end-page: 145 ident: B3 article-title: Fungal infections in humans: the silent crisis publication-title: Microb Cell doi: 10.15698/mic2020.06.718 – volume: 11 year: 2023 ident: B36 article-title: Functional analysis of the Candida albicans ECE1 promoter publication-title: Microbiol Spectr doi: 10.1128/spectrum.00253-23 – volume: 145 start-page: 689 year: 1999 end-page: 694 ident: B99 article-title: Characterization of a haemolytic factor from Candida albicans publication-title: Microbiology (Reading, Engl) doi: 10.1099/13500872-145-3-689 – volume: 9 start-page: 669 year: 2024 end-page: 683 ident: B89 article-title: Secretion of the fungal toxin candidalysin is dependent on conserved precursor peptide sequences publication-title: Nat Microbiol doi: 10.1038/s41564-024-01606-z – volume: 6 year: 2016 ident: B100 article-title: Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions publication-title: Sci Rep doi: 10.1038/srep36055 – volume: 9 year: 2018 ident: B88 article-title: Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization publication-title: mBio doi: 10.1128/mBio.01226-18 – volume: 24 start-page: e428 year: 2024 end-page: e438 ident: B2 article-title: Global incidence and mortality of severe fungal disease publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(23)00692-8 – volume: 20 year: 2020 ident: B31 article-title: Transcriptional control of hyphal morphogenesis in Candida albicans publication-title: FEMS Yeast Res doi: 10.1093/femsyr/foaa005 – volume: 1867 start-page: 118817 year: 2020 ident: B102 article-title: Pathways of heme utilization in fungi publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2020.118817 – volume: 5 start-page: 21 year: 2019 ident: B29 article-title: Regulation of Candida albicans hyphal morphogenesis by endogenous signals publication-title: J Fungi doi: 10.3390/jof5010021 – volume: 9 start-page: 699 year: 2020 ident: B53 article-title: Candidalysin is a potent trigger of alarmin and antimicrobial peptide release in epithelial cells publication-title: Cells doi: 10.3390/cells9030699 – volume: 62 start-page: 5154 year: 1994 end-page: 5156 ident: B97 article-title: Production of a hemolytic factor by Candida albicans publication-title: Infect Immun doi: 10.1128/iai.62.11.5154-5156.1994 – volume: 10 start-page: 1173 year: 2011 end-page: 1182 ident: B20 article-title: Coevolution of morphology and virulence in Candida species publication-title: Eukaryot Cell doi: 10.1128/EC.05085-11 – volume: 24 year: 2023 ident: B73 article-title: Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin publication-title: EMBO Rep doi: 10.15252/embr.202357571 – volume: 33 start-page: 161 year: 2021 end-page: 170 ident: B61 article-title: IL-1α released from oral epithelial cells upon candidalysin exposure initiates an early innate epithelial response publication-title: Int Immunol doi: 10.1093/intimm/dxaa070 – volume: 72 start-page: 2939 year: 2004 end-page: 2946 ident: B68 article-title: An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis publication-title: Infect Immun doi: 10.1128/IAI.72.5.2939-2946.2004 – volume: 14 start-page: 15 year: 2022 end-page: 34 ident: B110 article-title: Updates in the pharmacologic prophylaxis and treatment of invasive candidiasis in the pediatric and neonatal intensive care units: updates in the pharmacologic prophylaxis publication-title: Curr Treat Options Infect Dis doi: 10.1007/s40506-022-00258-z – volume: 52 start-page: 100 year: 2019 end-page: 109 ident: B14 article-title: Candidalysin: discovery and function in Candida albicans infections publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2019.06.002 – volume: 7 year: 2012 ident: B48 article-title: Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process publication-title: PLoS One doi: 10.1371/journal.pone.0036952 – volume: 2 year: 2017 ident: B60 article-title: Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin publication-title: Sci Immunol doi: 10.1126/sciimmunol.aam8834 – volume: 65 start-page: 206 year: 2023 end-page: 210 ident: B93 article-title: Heparin interacts with candidalysin and neutralizes its cytotoxicity to oral epithelial cells publication-title: J Oral Biosci doi: 10.1016/j.job.2023.03.002 – volume: 27 start-page: 219 year: 2019 end-page: 230 ident: B112 article-title: Memory in fungal pathogens promotes immune evasion, colonisation, and infection publication-title: Trends Microbiol doi: 10.1016/j.tim.2018.11.001 – volume: 4 start-page: 119 year: 2013 end-page: 128 ident: B11 article-title: Candida albicans pathogenicity mechanisms publication-title: Virulence doi: 10.4161/viru.22913 – volume: 162 start-page: 11 year: 2021 end-page: 16 ident: B19 article-title: Candida albicans and candidalysin in inflammatory disorders and cancer publication-title: Immunology doi: 10.1111/imm.13255 – volume: 220 start-page: 1477 year: 2019 end-page: 1488 ident: B70 article-title: Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection publication-title: J Infect Dis doi: 10.1093/infdis/jiz322 – volume: 15 year: 2024 ident: B115 article-title: Variations in candidalysin amino acid sequence influence toxicity and host responses publication-title: mBio doi: 10.1128/mbio.03351-23 – volume: 9 year: 2018 ident: B76 article-title: Candida albicans-induced NETosis is independent of peptidylarginine deiminase 4 publication-title: Front Immunol doi: 10.3389/fimmu.2018.01573 – volume: 295 start-page: 18276 year: 2020 end-page: 18283 ident: B81 article-title: ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015924 – volume: 15 year: 2015 ident: B5 article-title: Candida albicans commensalism in the gastrointestinal tract publication-title: FEMS Yeast Res doi: 10.1093/femsyr/fov081 – volume: 20 year: 2024 ident: B77 article-title: Regulation of candidalysin underlies Candida albicans persistence in intravascular catheters by modulating NETosis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1012319 – volume: 65 start-page: 493 year: 2008 end-page: 507 ident: B119 article-title: Bacterial pore-forming toxins: the (w)hole story? publication-title: Cell Mol Life Sci doi: 10.1007/s00018-007-7434-y – volume: 90 start-page: 939 year: 1997 end-page: 949 ident: B21 article-title: Nonfilamentous C. albicans mutants are avirulent publication-title: Cell doi: 10.1016/S0092-8674(00)80358-X – volume: 88 year: 2024 ident: B25 article-title: White-opaque switching in Candida albicans: cell biology, regulation, and function publication-title: Microbiol Mol Biol Rev doi: 10.1128/mmbr.00043-22 – volume: 5 year: 2014 ident: B84 article-title: The pathogen Candida albicans hijacks pyroptosis for escape from macrophages publication-title: mBio doi: 10.1128/mBio.00003-14 – volume: 13 year: 2022 ident: B113 article-title: Candidalysins are a new family of cytolytic fungal peptide toxins publication-title: mBio doi: 10.1128/mbio.03510-21 – volume: 10 year: 2020 ident: B18 article-title: New insights in Candida albicans innate immunity at the mucosa: toxins, epithelium, metabolism, and beyond publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00081 – volume: 12 start-page: 317 year: 2004 end-page: 324 ident: B26 article-title: The distinct morphogenic states of Candida albicans publication-title: Trends Microbiol doi: 10.1016/j.tim.2004.05.008 – volume: 9 start-page: 737 year: 2011 end-page: 748 ident: B27 article-title: Growth of Candida albicans hyphae publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2636 – volume: 9 start-page: 4260 year: 2018 ident: B80 article-title: The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes publication-title: Nat Commun doi: 10.1038/s41467-018-06607-1 – volume: 18 start-page: e339 year: 2018 end-page: e347 ident: B9 article-title: Global burden of recurrent vulvovaginal candidiasis: a systematic review publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(18)30103-8 – volume: 17 year: 2021 ident: B63 article-title: Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009221 – volume: 67 start-page: 400 year: 2003 end-page: 428 ident: B49 article-title: Candida albicans secreted aspartyl proteinases in virulence and pathogenesis publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.67.3.400-428.2003 – volume: 11 year: 2022 ident: B41 article-title: The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells publication-title: Elife doi: 10.7554/eLife.75490 – volume: 8 year: 2013 ident: B33 article-title: A core filamentation response network in Candida albicans is restricted to eight genes publication-title: PLoS One doi: 10.1371/journal.pone.0058613 – volume: 13 year: 2022 ident: B64 article-title: Neutrophil extracellular traps in fungal infections: a seesaw battle in hosts publication-title: Front Immunol doi: 10.3389/fimmu.2022.977493 – volume: 627 start-page: 620 year: 2024 end-page: 627 ident: B128 article-title: The hyphal-specific toxin candidalysin promotes fungal gut commensalism publication-title: Nature doi: 10.1038/s41586-024-07142-4 – volume: 8 year: 2019 ident: B23 article-title: Candida albicans interactions with mucosal surfaces during health and disease publication-title: Pathogens doi: 10.3390/pathogens8020053 – volume: 12 start-page: 248 year: 2010 end-page: 271 ident: B47 article-title: Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01394.x |
SSID | ssj0000331830 |
Score | 2.4204583 |
SecondaryResourceType | review_article |
Snippet | is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in... Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major... Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major... ABSTRACT Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0060324 |
SubjectTerms | Animals Candida albicans Candida albicans - genetics Candida albicans - immunology Candida albicans - metabolism Candida albicans - pathogenicity candidalysin Candidiasis - immunology Candidiasis - microbiology Epithelial Cells - immunology Epithelial Cells - microbiology fungal infection Fungal Proteins - genetics Fungal Proteins - immunology Fungal Proteins - metabolism Host-Pathogen Interactions Humans immune mechanisms Immunity, Innate Macrophages - immunology Macrophages - microbiology Minireview Mycology Neutrophils - immunology Neutrophils - microbiology toxins |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIb9cXK4q3pckm2U2OWixF0JOF3kKySbCHbsW2B_-9mey2tKJ48ZoNZPgmycxkZ75B6NY5WfHC4sx6rjMmnYMz5zJflcw7a72I2e7PL8VgyJ5GfLTW6gtywhp64Aa4LjalqLQk0nDPnOXG4tx6xyzB3ujcwu2LJV4LpuIdTGGv4iWpZi66EzOeQhIXphlUt3f0bJJv2KJI2f-Tn_k9XXLN_vT30G7rOKb3jcD7aMvVB2i7aSX5eYhID-pTbGQYqdOWWikNYylULjTvrunUp1DUkcJr_ewIDfuPr71B1rZDyDRj5TwjpiABWRscJh9OpmUC-6ognlcGqlE99QF0z-BPXiltaYHJRwacKitKR52kx6hTT2t3ilKuS214UbmChnCIEKBssQW8K1ZaBLOZoBvAR7X7eaZiqJALBSiqiKLKWYLulvCp94Yb47eJDwDuahJQWseBoGjVKlr9pegEXS9Vo8IRAKR07aaLmaJAmAM18TJBJ42qVkuF8Dh4qIInSGwocUOWzS_1-C3SbAPvBqV5efYf0p-jnRw6B0PXI3KBOvOPhbsM7szcXMWd-wVckvSM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1REFIvqOWjBFoURNVbII7txDlUVYtYrZDg1JW4WXZst0hsAptdCf49HiehLKISV8dWkjcee8aeeQPw1dqy4rlJE-O4SlhpLeqcTVxVMGeNcSJEu19c5uMJO7_iV_8ohXoA21ddO6wnNZndHN_fPfzwCv-9S4ARJ1N93WB8VkqTjL2DtXBVhFF8vaUfFmWKkzcdWDZfjvILsmqn2dLmFDj8XzM8X8ZPPtuQRh9go7ck45-d6D_Ciq03Yb2rLfmwBeQUE1ZMoByp455rKfZtMaYydAexceNizPKI8fi-3YbJ6Oz36Tjp6yMkirFinhCdEw-18RaU86pqmEhdlRPHK43pqY46LwXH8GqvKE1hkNqnZIZURhSW2pLuwGrd1HYXYq4KpXle2Zx6_4gQ5HAxOR40Vkr4fTSCI8RHDvKRwXfIhEQUZUBRZiyCbwN88rYjy_hfx18I7lMn5LgODc3sj-xVRqa6EJUqSam5Y9ZwbdLMOOt_IHVaZSaCw0E00usEIqVq2yxaSZFBB5Pkywg-daJ6epX3l73JKngEYkmIS9-y_KS-_ht4t5GIg9Ks2HsTGPvwPsNawVjniHyG1flsYb94A2auD8LUfAQgEe5_ priority: 102 providerName: Scholars Portal |
Title | Candidalysin biology and activation of host cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40293285 https://journals.asm.org/doi/10.1128/mbio.00603-24 https://www.proquest.com/docview/3195801909 https://pubmed.ncbi.nlm.nih.gov/PMC12153327 https://doaj.org/article/0b78ca919b5f4ed5bd02dfe4d10fba2d |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUKVeqrZQSB8oFYhb2viVOMcF8VAr4MJKe7Ps2FY5kEXscui_74yTrLqoSFxycJzXN554Zuz5BuAwhKZVlS8LH5UtZBMC6VwoYlvLGLyPOu12v7yqLqby50zNNoCPuTADgovvdnGXFvJXms31jzt3O6eNWKUouHwFWwrNfXS4tiaT6fWvVWSlFDROy5FQ8-l1-O_Fe_O1eSjR9f_Pxny6VfKfuefsHbwdjMZ80kv5PWyE7gO87stI_tkGdkK5KT6xi3T5QKuUY1tOWQt9zDWfx5wSOnKK1C92YHp2enNyUQylEAorZb0smKsYourRWIqolV7qMrYVi6p1lIkaRUTAo6RVvLrxtScWn0Z61npdBxEa8RE2u3kX9iBXtrZOVW2oBLpCjBFdi68opthajVNmBgeEjxklYZKbwLUhFE1C0XCZwdEIn7nveTGe63hM4K46EZ11akDhmkE7TOlq3dqGNU5FGbxyvuQ-BvyAMjrLfQbfRtEYHP6ElO3C_HFhBJHlUD58k8FuL6rVo9A1RutUqwz0mhDX3mX9THf7O1FsE-eGELz-9CIwPsMbTmWBqaQR-wKby4fH8BVtlaXbHwbnfvL18Xg-Y3i8lPov4bLpTA |
linkProvider | American Society for Microbiology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVoheEI-WhmcQiFtaPxP7uFRUC31w6Uq9WXZsi0Vsgsj20H9fT5JdsVWRuDq2nHwzE4_Hnm8APoaga1l6UvgobSF0CGhzoYh1JWLwPqr-tvv5RTmdiW9X8moLylUuzE-sy_urO7Tdoj_HR8PGQPRYj1AdLdy8xctYhBdMPIAdyTRJ-r0zmcy-n66jK4SjrpIVqebdcen_myZgG2tRT9l_n59597rkX-vPyRN4PDqO-WSQ9FPYCs0zeDiUkrx5DvQY81N8zzDS5CO1Up7acsxcGOKueRtzTOrIMVrf7cHs5Mvl8bQYyyEUVohqWVBX0oSsTw5TTJbphSKxLmmUtcNs1MhjAj0KPMmrtK88Mvlo4WntVRV40Hwftpu2CQeQS1tZJ8s6lDxthyhFyhZfYlyxtiotmxl8QHzMqM-d6bcKTBlE0fQoGiYy-LSCz_weuDH-1fEzgrvuhJTWfUOSsBktxBBXqdpqqp2MInjpPGE-hvQBJDrLfAbvV6IxyQQQKduE9rozHAlzMCdeZ_BiENV6qrQ9Th6qkhmoDSFuvMvmk2b-o6fZRt4Nzln18r_AeAePppfnZ-bs68XpK9hlWCYYSxzR17C9_HMd3iTfZenejop6C9Yx6t0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7RRa24VOWdPiAI1Fsgju3EOW6BFS2PcuhK3Cw7YwsOZBG7HPj39eSx6iIqcXWch7_xxDNjzzcAB86VlcwxTdBLk4jSOdI5l_iqEN4hetWcdr-8ys_G4teNvFmCvM-F6RCcHprpfbORT5r9gL6rR6iO7u3dhA5jpTzJxDtYlrRTNoDl4XD8-3weXUk5zdW0J9V8eV_4_4bnZwtrUUPZ_5qd-fK45D_rz-gTfOwMx3jYSnoVlly9Bu_bUpLP68COKT8FG4aROu6oleLQFlPmQht3jSc-pqSOmKL10w0Yj07_HJ8lXTmExAhRzBJmcxaQxWAw-aCZKFTqq5x5WVnKRvXcB9C9oJ28osQCicmnFMgqVIXjruSbMKgntduGWJrCWJlXLufBHWKMKFswp7hiZVRYNiPYJ3x0Lw3duAqZ0oSiblDUmYjgew-ffmi5Mf7X8QeBO-9ElNZNQxCw7jREp7ZQlSlZaaUXDqXFNEPvwgBSb02GEez1otFBBQgpU7vJ01RzIsyhnPgygq1WVPNXBfc4WKhKRqAWhLjwLYtX6rvbhmabeDc4z4rPbwJjFz5cn4z0xc-r8y-wklGVYKpwxL7CYPb45L4F02Vmd7p5-hfpoOqC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Candidalysin+biology+and+activation+of+host+cells&rft.jtitle=mBio&rft.au=Lortal%2C+L%C3%A9a&rft.au=Lyon%2C+Claire+M.&rft.au=Sprague%2C+Jakob+L.&rft.au=Sonnberger%2C+Johannes&rft.date=2025-06-11&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=16&rft.issue=6&rft_id=info:doi/10.1128%2Fmbio.00603-24&rft.externalDocID=mbio00603-24 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |