Fundamentals of inkjet printing : the science of inkjet and droplets

From droplet formation to final applications, this practical book presents the subject in a comprehensive and clear form, using only content derived from the latest published results. Starting at the very beginning, the topic of fluid mechanics is explained, allowing for a suitable regime for printi...

Full description

Saved in:
Bibliographic Details
Main Author Hoath, Stephen D.
Format eBook Book
LanguageEnglish
Published Weinheim Wiley-VCH 2016
John Wiley & Sons, Incorporated
Edition1
Subjects
Online AccessGet full text
ISBN9783527337859
3527337857

Cover

Table of Contents:
  • Chapter 10 Droplets Drying on Surfaces -- 10.1 Overview -- 10.2 Evaporation of Single Solvents -- 10.3 Evaporation of Mixed Solvents -- 10.3.1 Marangoni Flows -- 10.3.1.1 Thermal Marangoni Flows -- 10.3.1.2 Solutal Marangoni Flows -- 10.4 Particle Transport in Drying Droplets -- 10.4.1 The "Coffee Ring Effect -- 10.4.1.1 Disadvantages to the Ring-Shaped Pattern -- 10.4.1.2 Exploiting the Coffee Ring Effect -- 10.4.1.3 Avoiding the Coffee Ring Effect -- 10.4.2 Particle Migration -- 10.5 Drying of Complex Fluids -- 10.5.1 Contact Line Motion -- 10.5.2 Particle Character -- 10.5.3 Segregation of Solids -- 10.5.4 Local Environment -- 10.5.5 Substrate Patterning -- 10.5.6 Destabilization of Colloids during Drying -- 10.6 Problems -- References -- Chapter 11 Simulation of Drops on Surfaces -- 11.1 Introduction -- 11.2 Continuum-Based Modeling of Drop Dynamics -- 11.2.1 Finite Element Analysis -- 11.2.2 Finite Element Boundary Conditions for Free Surfaces -- 11.2.3 The Moving Contact-Line Problem -- 11.2.3.1 The Contact Angle as a Boundary Condition -- 11.2.3.2 An Interface Formation Model -- 11.2.4 The Volume of Fluid Method -- 11.3 Challenging Contact Angle Phenomena -- 11.3.1 Apparent Contact Angles -- 11.3.2 Contact Angle Hysteresis -- 11.3.3 Dynamic Contact Angles -- 11.3.4 Dynamic Contact Angles in Numerical Simulations -- 11.3.5 Resting Time Effect -- 11.4 Diffuse-Interface Models -- 11.5 Lattice Boltzmann Simulations of Drop Dynamics -- 11.5.1 Background and Advantages of the Method -- 11.5.2 Multiphase Flow and Wetting -- 11.5.3 Capturing Contact Angle Hysteresis -- 11.5.4 Rough Surfaces -- 11.5.5 Chemically Inhomogeneous Surfaces -- 11.6 Conclusion and Outlook -- Acknowledgment -- References -- Chapter 12 Visualization and Measurement -- 12.1 Introduction -- 12.2 Basic Imaging of Droplets and Jets -- 12.3 Strobe Illumination
  • 7.3 One-Dimensional Modelling -- 7.3.1 The Long-Wavelength Approximation -- 7.3.2 A Simple CIJ Model -- 7.3.3 Error Analysis for Simple Jetting -- 7.3.4 Validation of the Model by Rayleigh's Theory -- 7.3.5 Exploring the Parameter Space -- 7.3.6 A Numerical Experiment -- 7.4 Axisymmetric Modelling -- 7.4.1 Continuous Inkjet -- 7.4.2 Drop-on-Demand -- 7.5 Three-Dimensional Simulation -- References -- Chapter 8 Drops on Substrates -- 8.1 Introduction -- 8.2 Experimental Observation of Newtonian Drop Impact on Wettable Surface -- 8.2.1 Effect of Initial Speed on Drop Impact and Spreading -- 8.2.2 Effect of Surface Wettability on Drop Impact and Spreading -- 8.2.3 Effect of Fluid Properties on Drop Impact and Spreading -- 8.3 Dimensional Analysis: The Buckingham Pi Theorem -- 8.4 Drop Impact Dynamics: The Maximum Spreading Diameter -- 8.4.1 Viscous Dissipation Dominates Surface Tension -- 8.4.2 The Flattened-Pancake Model -- 8.4.3 The Kinetic Energy Transfers Completely into Surface Energy -- 8.4.3.1 Evaporation: A Scaling Exponent of the Radius -- References -- Chapter 9 Coalescence and Line Formation -- 9.1 Implication of Drop Coalescence on Printed Image Formation -- 9.2 Implication of Drop Coalescence on Functional and 3D Printing -- 9.3 Coalescence of Inkjet-Printed Drops -- 9.3.1 Coalescence of a Pair of Liquid Drops on Surface -- 9.3.2 Coalescence with Drop Impact -- 9.3.3 Coalescence of a Pair of Inkjet-Printed Drops -- 9.3.3.1 Experimental Setup -- 9.3.3.2 Necking Stage Dynamics -- 9.3.3.3 Discussion -- 9.3.3.4 Summary -- 9.4 2D Features and Line Printing -- 9.4.1 Model of Drop-Bead Coalescence -- 9.4.2 Experiment and Observations -- 9.4.2.1 Effect of Drop Spacing -- 9.4.2.2 Effect of Drop Deposition Interval -- 9.4.3 Stability Regimes and Discussion -- 9.4.4 Summary -- 9.5 Summary and Concluding Remarks -- 9.6 Working Questions -- References
  • 3.2.4 Problems Associated with Pressure and Heat Generated in TIJs -- 3.2.4.1 Cavitation Damage on the Heater Surface -- 3.2.4.2 Ink Residue Scorching (Kogation) on the Heater Surface -- 3.2.5 Evaporation of Water in Aqueous Ink -- 3.2.5.1 Approaches to Compensate for Condensed Ink through Evaporation -- 3.2.5.2 Measurement of Physical Properties of Flying Droplets -- 3.3 Future Prospects for Inkjets -- 3.3.1 Printing Speed Limit Estimated by Drop Behavior -- 3.3.2 Control of Bleeding Caused by High-Speed Drying -- 3.4 Continuous Inkjet (CIJ) -- 3.5 Examples and Problems (TIJ) -- 3.5.1 Example -- 3.5.2 Problem -- 3.6 Piezo Inkjet Printhead -- 3.6.1 Introduction -- 3.6.2 Working Principle -- 3.6.3 Ink Channel Behavior -- 3.6.3.1 Residual Oscillations -- 3.6.4 Control of Inkjet Printhead -- 3.6.4.1 Constrained Actuation Pulse Design -- 3.6.4.2 Complex Actuation Pulse Design: Feedforward Control Approach -- 3.6.5 Industrial Applications -- References -- Chapter 4 Drop Formation in Inkjet Printing -- 4.1 Introduction -- 4.1.1 Continuous Inkjet Printing -- 4.1.2 Drop-on-Demand Inkjet Printing -- 4.2 Drop Formation in Continuous Inkjet Printing -- 4.2.1 Rayleigh-Plateau Instability -- 4.2.2 Satellite Formation -- 4.2.3 Final Droplet Velocity -- 4.2.3.1 Capillary Deceleration -- 4.2.3.2 Acceleration due to Advection -- 4.3 Analysis of Droplet Formation in Drop-on-Demand Inkjet Printing -- 4.3.1 The Scenario of the Analyzed Droplet Formation -- 4.3.1.1 Head Droplet Formation -- 4.3.1.2 Tail Formation -- 4.3.1.3 Pinch-Off and Tail Breakup -- 4.4 Worked Examples -- 4.4.1 Tail Formation for the Purely Inertial Case -- 4.4.2 Dispersion Relation of the Rayleigh-Plateau Instability -- Acknowledgment -- References -- Chapter 5 Polymers in Inkjet Printing -- 5.1 Introduction -- 5.2 Polymer Definition -- 5.3 Source- and Architecture-Based Polymer Classification
  • 5.4 Molecular Weight and Size -- 5.5 Polymer Solutions -- 5.6 Effect of Structure and Physical Form on Inkjet Formulation Properties -- 5.7 Zimm Interpretation for Polymers in High Shear Environments -- 5.8 Printability of Polymer-Containing Inkjet Fluids -- 5.9 Simulation of the Inkjet Printing of High-Molecular-Weight Polymers -- 5.10 Molecular Weight Stability of Polymers during DOD Inkjet Printing -- 5.11 Molecular Weight Stability of Polymers during CIJ Printing -- 5.12 Molecular Weight Stability of Associating Polymers During DOD Inkjet Printing -- 5.13 Case Studies of Polymers in Inkjet Formulation -- 5.13.1 Role of Polymer Architecture -- 5.13.2 Inkjet Printing of PEDOT:PSS -- 5.13.3 Inkjet Printing of Polymer-Graphene and CNT Composites -- References -- Chapter 6 Colloid Particles in Ink Formulations -- 6.1 Introduction -- 6.1.1 Colloids -- 6.1.2 Inkjet (Complex) Fluids -- 6.2 Dyes versus Pigment Inks -- 6.3 Stability of Colloids -- 6.3.1 DLVO Theory -- 6.3.2 van der Waals Attractive Force -- 6.3.3 Electrostatic Repulsive Force -- 6.3.4 Stabilization of Colloidal Systems -- 6.4 Particle-Polymer Interactions -- 6.4.1 Steric Stabilization -- 6.4.2 Bridging Flocculation -- 6.4.3 Depletion Flocculation -- 6.5 Effect of Other Ink Components on Colloidal Interactions -- 6.5.1 Surfactants -- 6.5.2 Viscosity Modifiers -- 6.5.3 Humectants -- 6.5.4 Glycol Ethers -- 6.5.5 Storage -Buffers and Biocides -- 6.5.6 Other Additives -- 6.6 Characterization of Colloidal Dispersions -- 6.6.1 Dynamic Light Scattering (DLS) -- 6.6.2 Electrophoretic Mobility (Zeta Potential) -- 6.6.3 Rheology -- 6.6.4 Bulk Colloidal Dispersion -- 6.6.5 Jetting -- 6.7 Sedimentation/Settling -- 6.7.1 Sedimentation Characterization Techniques -- 6.8 Conclusions/Outlook -- References -- Chapter 7 Jetting Simulations -- 7.1 Introduction -- 7.2 Key Considerations for Modelling
  • Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Introductory Remarks -- 1.1 Introduction -- 1.2 Drop Formation: Continuous Inkjet and Drop-on-Demand -- 1.3 Surface Tension and Viscosity -- 1.4 Dimensionless Groups in Inkjet Printing -- 1.5 Length and Time Scales in Inkjet Printing -- 1.6 The Structure of This Book -- 1.7 Symbols Used -- References -- Chapter 2 Fluid Mechanics for Inkjet Printing -- 2.1 Introduction -- 2.2 Fluid Mechanics -- 2.3 Dimensions and Units -- 2.4 Fluid Properties -- 2.4.1 Density -- 2.4.2 Viscosity -- 2.4.2.1 Newtonian Fluids -- 2.4.2.2 Non-Newtonian Fluids -- 2.4.3 Surface Tension -- 2.5 Force, Pressure, Velocity -- 2.6 Fluid Dynamics -- 2.6.1 Equations of Fluid Dynamics -- 2.6.1.1 Conservation of Mass -- 2.6.1.2 Conservation of Momentum -- 2.6.1.3 Conservation of Energy -- 2.6.2 Solving the Equations of Fluid Dynamics -- 2.7 Computational Fluid Dynamics -- 2.7.1 Preprocessor -- 2.7.2 Solver -- 2.7.3 Postprocessor -- 2.8 Inkjet Systems -- 2.8.1 Inkjet Modeling Challenges -- 2.8.1.1 Free-Surface Analysis -- 2.8.1.2 Fluid-Structure Interaction -- 2.8.1.3 Phase Change Analysis -- 2.8.1.4 Ink-Media Interaction -- 2.8.1.5 Non-Newtonian Fluids -- 2.8.2 Inkjet Processes -- 2.8.2.1 DOD Droplet Generation -- 2.8.2.2 CIJ Droplet Generation -- 2.8.2.3 Crosstalk -- 2.8.2.4 Aerodynamic Effects -- 2.8.2.5 Ink-Media Interactions -- Summary -- Acknowledgments -- References -- Chapter 3 Inkjet Printheads -- 3.1 Thermal versus Piezoelectric Inkjet Printing -- 3.2 Thermal Inkjet -- 3.2.1 Boiling Mechanism -- 3.2.1.1 Theoretical Model -- 3.2.1.2 Observation of Boiling Bubble Behavior -- 3.2.2 Printhead Structure -- 3.2.3 Jetting Characteristics of TIJs -- 3.2.3.1 Input Power Characteristics and Heat Control of TIJs -- 3.2.3.2 Frequency Response and Crosstalk Control
  • 12.4 Holographic Methods