Introduction to Nanorobotic Manipulation and Assembly

Nanotechnology will allow us to build devices smaller than previously thought possible and will bring fundamental changes to disciplines within engineering, chemistry, medicine, biology, and physics. Understanding the principles of nano manipulation and assembly is tremendously important for those a...

Full description

Saved in:
Bibliographic Details
Main Authors Xi, Ning, Li, Guangyong
Format eBook
LanguageEnglish
Published Norwood, MA Artech House 2011
Edition1
SeriesArtech House series nanoscale science and engineering
Subjects
Online AccessGet full text
ISBN9781608071333
1608071332

Cover

Table of Contents:
  • 10.5 Implementation and Experimental Results -- 10.5.1 Random Drift Compensation -- 10.5.2 Modeling Error Detection and Correction -- 10.6 Conclusion -- References -- 11 CAD Guided Automated Nanorobotic Manipulation and Assembly -- 11.1 Introduction -- 11.2 Framework -- 11.3 CAD Model of Nanostructures -- 11.4 Automated Manipulation of Nanoparticles -- 11.5 Automated Manipulation of Nanorod/Nanowire -- 11.6 Examples -- 11.7 Summary -- References -- 12 Development of Nanoelectronic Devices Using Nanomanipulation -- 12.1 Importance of Carbon Nanotubes -- 12.2 Nanomanipulation of Carbon Nanotube Based Devices -- 12.3 CNT-Based Optical Sensors -- 12.3.1 Design of the Sensors -- 12.3.2 Performance of the Sensors -- 12.4 Nanoelectronic Devices -- 12.5 Summary -- References -- 13 Robotic Manipulations of Biological Objects -- 13.1 Introduction -- 13.2 Uniqueness of Nanorobotic System for Imaging and Manipulation of Single Biomolecules -- 13.3 In Situ Manipulations of Receptors and Investigation of Bio Markers -- References -- Index
  • 7.4.2 AFM Position Control and Topography Data Processing -- 7.5 Experimental Results and Discussion -- 7.5.1 Compressive Sensing Based Fast Imaging System Setup -- 7.5.2 Experimental Setup and Results -- 7.6 Summary -- References -- 8 Stochastic Approach for Feature Based Localization and Planning in Nanomanipulation -- 8.1 Uncertainties on Tip Motion Control -- 8.1.1 Nonlinearity of the Piezo Actuator -- 8.1.2 Thermal Drift -- 8.1.3 Stochastic Characteristics of Uncertainties -- 8.2 Stochastic Feature Based Localization and Planning -- 8.3 Frame Definition and Motion Model of AFM Tip -- 8.4 Stochastic Feature and Local Scan Based Observation -- 8.4.1 Stochastic Feature Map -- 8.4.2 Local Scan-Based Observation -- 8.5 Numerical Simulation and Experiment for Tip Position Localization and Planning -- References -- 9 AFM Based Nanorobotic System Enhanced by Augmented Reality -- 9.1 Overview -- 9.2 3-D Interactive Force Measurement -- 9.3 Position Control -- 9.4 Active Probe for Force and Position Control -- 9.5 Behavior Models of Nanoscale Objects -- 9.6 Tip-Surface-Objects Interaction Models -- 9.6.1 Modeling Tip-Surface-Particle Interaction -- 9.6.2 Modeling the Tip-Substrate-Rod Interaction -- 9.7 System Implementation and Experiment Results -- 9.7.1 Hardware Setup -- 9.7.2 Software Development -- 9.7.3 Experiments on Manipulation of Nanoparticles -- 9.7.4 Assembly of Nanowires -- 9.8 Summary -- References -- 10 Sensor Referenced Real-Time Visual Feedback in Nanorobotic Manipulationand Assembly -- 10.1 Limitation of Augmented Reality System -- 10.2 The Augmented Reality System with Real-Time Fault Detection and Correction -- 10.3 Real-Time Random Drift Compensation with Local Scan -- 10.4 On-Line Fault Detection and Correction -- 10.4.1 Kalman Filter Based Fault Display Detection -- 10.4.2 Fault Display On-Line Correction
  • Introduction to Nanorobotic Manipulation and Assembly -- Contents -- Preface -- 1 Introduction to Nanomanufacturing -- 1.1 Nanomanufacturing -- 1.1.1 Top-Down Nanomanufacturing -- 1.1.2 Bottom-Up Nanomanufacturing -- 1.2 Nanoassembly and Nanomanipulation -- 1.3 Major Challenges in Nanomanufacturing -- 1.4 Overview -- References -- 2 Microscopic Force Analysis in Nanomanipulation -- 2.1 Scaling Effects: Quantum or Classical? -- 2.2 Interaction Forces in Nanomanipulation -- 2.2.1 Attractive Normal Forces -- 2.2.2 Repulsive Normal Forces -- 2.2.3 Lateral Forces -- 2.3 Distinctions Between Macroscopic Forces and Nanoscale Forces -- References -- 3 Actuation Methods for Nanorobotic Manipulation and Assembly -- 3.1 Introduction -- 3.2 Electrokinetic Based Actuation -- 3.2.1 Basic Theory -- 3.2.2 Electrokinetic Manipulation of Carbon Nanotubes, Graphene, and Nanoparticles -- 3.2.3 Electrokinetic Manipulation of Biological Entities -- 3.2.4 Summary -- 3.3 Laser Based Actuation -- 3.3.1 Basic Theory -- 3.3.2 Optical Tweezers Manipulation of Biological Entities -- 3.3.3 Optical Tweezers Manipulation of Chemical Entities -- 3.3.4 Summary -- 3.4 Piezoelectric Enabled Actuators -- 3.4.1 Basic Theory -- 3.4.2 Compensation of PZT Nonlinearity -- 3.4.3 Nanomanipulation with PZT Enabled Actuation -- 3.4.4 Summary -- 3.5 Conclusion -- References -- 4 Nanomanipulation by Dielectrophoresis -- 4.1 Overview -- 4.2 Dielectrophoretic Based Manipulation -- 4.2.1 Principle of Dielectrophoretic Force -- 4.3 Theory of Dielectrophoretic Manipulation -- 4.3.1 Modeling of Electrorotation for Micro- and Nanomanipulation -- 4.3.2 Dynamic Modeling of Rotational Motion of Carbon Nanotubes for Intelligent Manufacturing of CNT Based Devices -- 4.3.3 Dynamic Effect of Fluid Medium Nanoparticles by Dielectrophoresis -- 4.4 Dielectrophoretic Manipulation of Carbon Nanotubes
  • 4.4.1 Introduction -- 4.4.2 Dielectrophoretic Force: Simulation Results -- 4.4.3 Electrorotation (Torque): Simulation Results -- 4.4.4 Rotational Motion of Carbon Nanotubes: Simulation Results -- 4.5 Manipulation of Carbon Nanotubes using Microfluidics -- 4.6 Towards Very-Large-Scale Integrated Micro and Nanofluidics -- 4.6.1 Generation of Microdroplet -- 4.6.2 Biological Applications of Microdispensers -- 4.7 Summary -- References -- 5 Overview of Nanomanipulation by Scanning Probe -- 5.1 Introduction to Atomic Force Microscopy -- 5.2 Interactive Force Between Tip and Sample -- 5.3 AFM Operating Modes -- 5.3.1 Force Modulation Mode -- 5.3.2 Contact Mode -- 5.3.3 Tapping Mode -- 5.4 Historical Review of SPM Based Nanorobotics -- 5.5 Modern Schemes of SPM Based Nanorobotics -- 5.5.1 Interactive Manipulation-Scan-Manipulation -- 5.5.2 Manipulation with Haptic Feedback -- 5.5.3 Parallel Imaging and Manipulation -- 5.5.4 Manipulation with Real-Time Visual Feedback -- 5.6 Problems and Solutions -- References -- 6 Reducing Atomic-Scale Stick-Slip Motion by Feedback Control in Nanomanipulation -- 6.1 Modeling of the Atomic-Scale Nanomanipulation System -- 6.2 Open-Loop Control -- 6.3 Real-Time Feedback Control -- 6.4 Further Discussions Beyond the Original Model -- 6.4.1 Defections on the Surface of the Substrate -- 6.4.2 Colored Noise in the Lateral Force -- References -- 7 Compressive Sensing Based Video Rate Fast Imaging System -- 7.1 Introduction -- 7.2 AFM Based Imaging and Manipulation -- 7.3 Art of Compressive Sensing -- 7.3.1 General Idea of Compressive Sensing -- 7.3.2 Signal Sparse Representation -- 7.3.3 Measurement Matrix and Restricted Isometry Property (RIP) -- 7.3.4 Compressive Sensing Applications -- 7.4 Compressive Sensing Based Fast Imaging System -- 7.4.1 Measurement Matrix for Compressive Sensing Using in AFM Based Fast Imaging System