3D porosity prediction from seismic inversion and neural networks

In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 37; no. 8; pp. 1174 - 1180
Main Authors Leite, Emilson Pereira, Vidal, Alexandre Campane
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0098-3004
1873-7803
DOI10.1016/j.cageo.2010.08.001

Cover

More Information
Summary:In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L 1-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance.
Bibliography:http://dx.doi.org/10.1016/j.cageo.2010.08.001
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2010.08.001