Active Role of Proton in Excited State Intramolecular Proton Transfer Reaction
Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is active or passive, has been the subject of intense investigations. Here we demonstrate the active role of proton in the excited state intramo...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 117; no. 7; pp. 1400 - 1405 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
21.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1089-5639 1520-5215 1520-5215 |
DOI | 10.1021/jp311884b |
Cover
Abstract | Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is active or passive, has been the subject of intense investigations. Here we demonstrate the active role of proton in the excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ). The ESIPT of HBQ proceeds in 12 ± 6 fs, and the rate is slowed down to 25 ± 5 fs for DBQ where the reactive hydrogen is replaced by deuterium. The results are consistent with the ballistic proton wave packet transfer within the experimental uncertainty. This ultrafast proton transfer leads to the coherent excitation of the vibrational modes of the product state. In contrast, ESIPT of 2-(2′-hydroxyphenyl)benzothiazole (HBT) is much slower at 62 fs and shows no isotope dependence implying complete passive role of the proton. |
---|---|
AbstractList | Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is active or passive, has been the subject of intense investigations. Here we demonstrate the active role of proton in the excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ). The ESIPT of HBQ proceeds in 12 plus or minus 6 fs, and the rate is slowed down to 25 plus or minus 5 fs for DBQ where the reactive hydrogen is replaced by deuterium. The results are consistent with the ballistic proton wave packet transfer within the experimental uncertainty. This ultrafast proton transfer leads to the coherent excitation of the vibrational modes of the product state. In contrast, ESIPT of 2-(2'-hydroxyphenyl)benzothiazole (HBT) is much slower at 62 fs and shows no isotope dependence implying complete passive role of the proton. Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is active or passive, has been the subject of intense investigations. Here we demonstrate the active role of proton in the excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ). The ESIPT of HBQ proceeds in 12 ± 6 fs, and the rate is slowed down to 25 ± 5 fs for DBQ where the reactive hydrogen is replaced by deuterium. The results are consistent with the ballistic proton wave packet transfer within the experimental uncertainty. This ultrafast proton transfer leads to the coherent excitation of the vibrational modes of the product state. In contrast, ESIPT of 2-(2'-hydroxyphenyl)benzothiazole (HBT) is much slower at 62 fs and shows no isotope dependence implying complete passive role of the proton. Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is active or passive, has been the subject of intense investigations. Here we demonstrate the active role of proton in the excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ). The ESIPT of HBQ proceeds in 12 ± 6 fs, and the rate is slowed down to 25 ± 5 fs for DBQ where the reactive hydrogen is replaced by deuterium. The results are consistent with the ballistic proton wave packet transfer within the experimental uncertainty. This ultrafast proton transfer leads to the coherent excitation of the vibrational modes of the product state. In contrast, ESIPT of 2-(2'-hydroxyphenyl)benzothiazole (HBT) is much slower at 62 fs and shows no isotope dependence implying complete passive role of the proton.Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is active or passive, has been the subject of intense investigations. Here we demonstrate the active role of proton in the excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ). The ESIPT of HBQ proceeds in 12 ± 6 fs, and the rate is slowed down to 25 ± 5 fs for DBQ where the reactive hydrogen is replaced by deuterium. The results are consistent with the ballistic proton wave packet transfer within the experimental uncertainty. This ultrafast proton transfer leads to the coherent excitation of the vibrational modes of the product state. In contrast, ESIPT of 2-(2'-hydroxyphenyl)benzothiazole (HBT) is much slower at 62 fs and shows no isotope dependence implying complete passive role of the proton. |
Author | Joo, Taiha Lee, Junghwa Kim, Chul Hoon |
AuthorAffiliation | Pohang University of Science and Technology Max Planck Center for Attosecond Science |
AuthorAffiliation_xml | – name: Pohang University of Science and Technology – name: Max Planck Center for Attosecond Science |
Author_xml | – sequence: 1 givenname: Junghwa surname: Lee fullname: Lee, Junghwa – sequence: 2 givenname: Chul Hoon surname: Kim fullname: Kim, Chul Hoon – sequence: 3 givenname: Taiha surname: Joo fullname: Joo, Taiha email: thjoo@postech.ac.kr |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27130708$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23374075$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLxDAQB_Agiu-DX0B6EfRQzeTRtEcRHwui4uMcpmkKXbrJmrSi394s7iqI4CkZ-M2Q-WeHrDvvLCEHQE-BMjibzjlAWYp6jWyDZDSXDOR6utOyymXBqy2yE-OUUgqciU2yxThXgiq5Te7OzdC92ezR9zbzbfYQ_OBd1rns8t10g22ypwEHm03cEHCWkBl7DCv2HNDF1obs0WKa490e2Wixj3Z_ee6Sl6vL54ub_Pb-enJxfpujEGLIi1qZmlrRyKaqjEgFYyVlqBiAxMaqAmRVNGWRiqpta6GapqRWgmJYolF8lxx_zZ0H_zraOOhZF43te3TWj1GDklxSKtLy_1IODBRUIBM9XNKxntlGz0M3w_ChV3ElcLQEGA32bVrfdPHHKeBU0TK5sy9ngo8x2FanLHERUEqx6zVQvfg4_f1xqePkV8dq6F92-Qo0UU_9GFyK-g_3CUkhohg |
CitedBy_id | crossref_primary_10_1021_acs_jpca_7b04504 crossref_primary_10_1002_cjoc_202200313 crossref_primary_10_1021_jacs_3c10405 crossref_primary_10_1007_s12039_020_1745_z crossref_primary_10_1063_5_0226236 crossref_primary_10_1021_acs_jpclett_4c03665 crossref_primary_10_1002_chem_201504133 crossref_primary_10_1016_j_jlumin_2018_08_019 crossref_primary_10_1039_D2CP04488A crossref_primary_10_1021_acs_jctc_6b00893 crossref_primary_10_1088_2040_8986_ac675b crossref_primary_10_1039_D0CP00741B crossref_primary_10_1021_ct501106d crossref_primary_10_1039_D1CS00516B crossref_primary_10_1002_slct_201800380 crossref_primary_10_1021_acs_jpca_7b04594 crossref_primary_10_1007_s43630_021_00112_z crossref_primary_10_1063_1_5129446 crossref_primary_10_1002_mas_21699 crossref_primary_10_1016_j_jlumin_2020_117224 crossref_primary_10_1063_5_0216442 crossref_primary_10_1002_anie_202214483 crossref_primary_10_1007_s00214_023_03045_1 crossref_primary_10_1039_C3CP54546F crossref_primary_10_1063_1_5088674 crossref_primary_10_1021_jp4016036 crossref_primary_10_1021_acs_jpca_0c11072 crossref_primary_10_1038_s41467_024_50532_5 crossref_primary_10_1002_bkcs_10160 crossref_primary_10_1021_acs_jpclett_9b03488 crossref_primary_10_1021_jp5068507 crossref_primary_10_1016_j_jlumin_2014_12_049 crossref_primary_10_1002_ange_202214483 crossref_primary_10_1016_j_porgcoat_2019_05_034 crossref_primary_10_3847_1538_4357_ab60a1 crossref_primary_10_1021_jp5120459 crossref_primary_10_1021_acs_chemrev_1c00623 crossref_primary_10_1039_D1RA07042H crossref_primary_10_1021_jp411227r crossref_primary_10_1063_5_0188613 crossref_primary_10_1039_C7CP01944K crossref_primary_10_1039_D1CP03513D crossref_primary_10_1002_cptc_202000254 crossref_primary_10_1016_j_jphotochem_2021_113583 crossref_primary_10_1021_jp501612f crossref_primary_10_1063_10_0003519 crossref_primary_10_1016_j_chemphys_2018_11_018 crossref_primary_10_1021_acs_jpca_7b01215 crossref_primary_10_1039_D2CP00505K crossref_primary_10_1073_pnas_2212114119 crossref_primary_10_1063_1674_0068_28_cjcp1504078 crossref_primary_10_1016_j_cplett_2015_06_081 crossref_primary_10_1016_j_jlumin_2019_02_056 crossref_primary_10_1021_acs_jpclett_1c02483 crossref_primary_10_1016_j_jphotochem_2016_12_033 crossref_primary_10_1021_jp312351r crossref_primary_10_1002_bio_3106 crossref_primary_10_1021_jp505036d crossref_primary_10_3389_fchem_2019_00932 crossref_primary_10_5012_bkcs_2014_35_3_881 crossref_primary_10_1039_D1CP05084B crossref_primary_10_1038_s41467_019_09154_5 crossref_primary_10_1021_jp5088306 crossref_primary_10_1039_C7CP06145E crossref_primary_10_1021_acs_jpca_6b04666 crossref_primary_10_1039_C5RA17980G crossref_primary_10_1039_D3CP00026E crossref_primary_10_1515_nanoph_2023_0684 crossref_primary_10_3390_ijms222111926 crossref_primary_10_1063_1_4879060 crossref_primary_10_1021_acs_jpca_2c06887 crossref_primary_10_1063_5_0227515 crossref_primary_10_1021_acs_jpca_1c04192 crossref_primary_10_1016_j_jphotochem_2016_04_021 crossref_primary_10_1021_acs_jpca_0c09454 crossref_primary_10_1039_C7QO01127J crossref_primary_10_1002_cphc_201901179 crossref_primary_10_1039_D0CP03408H crossref_primary_10_1039_C7CP04476C crossref_primary_10_1021_acs_jpclett_4c02687 crossref_primary_10_1016_j_comptc_2017_05_008 crossref_primary_10_1021_acs_chemrev_7b00110 crossref_primary_10_1002_poc_3756 crossref_primary_10_1016_j_dyepig_2016_07_004 crossref_primary_10_1021_jacs_1c05602 crossref_primary_10_1021_acsphyschemau_2c00038 crossref_primary_10_1039_C8SM00552D crossref_primary_10_1002_slct_201901570 crossref_primary_10_1021_acs_jctc_4c00666 crossref_primary_10_1039_C5RA20057A crossref_primary_10_1021_acs_chemrev_6b00491 crossref_primary_10_1021_acs_jpca_5b03557 crossref_primary_10_1007_s00214_015_1786_4 crossref_primary_10_1021_acs_jpclett_9b01248 |
Cites_doi | 10.1021/ja00492a005 10.1021/jz201042u 10.1063/1.1345876 10.1021/jp035204r 10.1021/jp0519013 10.1016/0009-2614(86)80331-1 10.1016/j.chemphys.2007.10.021 10.1038/nature08527 10.1021/j100196a012 10.1109/JQE.1987.1073483 10.1021/j150655a012 10.1364/OL.30.000096 10.1021/jp002942w 10.1016/j.cplett.2010.12.087 10.1016/j.cplett.2004.11.114 10.1039/df9653900183 10.1002/anie.196400011 10.1073/pnas.93.16.8362 10.1039/b915768a 10.1021/j100178a028 10.1021/j100269a010 10.1021/jp035203z 10.1364/OE.16.020742 10.1021/jz301141d 10.1063/1.451595 10.1021/j100019a027 10.1063/1.1914764 10.1063/1.481711 10.1016/S0009-2614(96)01268-7 10.1002/anie.200461102 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/jp311884b |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Biology |
EISSN | 1520-5215 |
EndPage | 1405 |
ExternalDocumentID | 23374075 27130708 10_1021_jp311884b a632006315 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 186 3O- 6TJ 9M8 ACRPL ADNMO ADXHL AETEA AEYZD AFFNX AGQPQ AI. ANPPW ANTXH IQODW MVM NHB UQL VH1 VOH VQP ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a444t-6b7cb0e4d5d99c47cb22802a72115ade761596d865ad9ffb47dd80e5172a8ac73 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Fri Jul 11 03:15:58 EDT 2025 Fri Jul 11 09:08:56 EDT 2025 Mon Jul 21 06:00:54 EDT 2025 Mon Jul 21 09:16:30 EDT 2025 Tue Jul 01 01:27:07 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Thu Aug 27 13:43:01 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Deuterium Fluorescence spectrum Hydrogen Nitrogen heterocycle Proton transfer Quinoline derivatives Excited states Intramolecular charge transfer Wave packets Emission spectra Vibrational modes Excitation Absorption spectra Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-6b7cb0e4d5d99c47cb22802a72115ade761596d865ad9ffb47dd80e5172a8ac73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23374075 |
PQID | 1312171915 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753500456 proquest_miscellaneous_1312171915 pubmed_primary_23374075 pascalfrancis_primary_27130708 crossref_citationtrail_10_1021_jp311884b crossref_primary_10_1021_jp311884b acs_journals_10_1021_jp311884b |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-21 |
PublicationDateYYYYMMDD | 2013-02-21 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Peteanu L. A. (ref18/cit18) 1992; 96 Chattoraj M. (ref2/cit2) 1996; 93 Frisch M. J. (ref24/cit24) 2009 Kim S. Y. (ref32/cit32) 2012; 3 Takeuchi S. (ref12/cit12) 2005; 109 Goodman J. (ref8/cit8) 1978; 100 Millhauser G. L. (ref30/cit30) 1986; 85 Schriever C. (ref13/cit13) 2011; 503 Chou P. T. (ref26/cit26) 2001; 105 Kim S. K. (ref20/cit20) 1995; 99 de Vivie-Riedle R. (ref11/cit11) 2003; 107 Kim C. H. (ref23/cit23) 2008; 16 Weller A. (ref6/cit6) 1961; 1 Kwon O.-H. (ref21/cit21) 2004; 43 Lochbrunner S. (ref15/cit15) 2003; 107 Frey W. (ref27/cit27) 1991; 95 Chudoba C. (ref9/cit9) 1996; 263 Lochbrunner S. (ref28/cit28) 2001; 114 Elsaesser T. (ref5/cit5) 1986; 128 Ernsting N. P. (ref4/cit4) 1985; 89 Sanz M. (ref29/cit29) 2005; 401 Higashi M. (ref17/cit17) 2011; 2 Schriever C. (ref16/cit16) 2008; 347 Rhee H. (ref22/cit22) 2005; 30 Wise F. W. (ref31/cit31) 1987; 23 Fang C. (ref3/cit3) 2009; 462 Eigen M. (ref1/cit1) 1964; 3 Lochbrunner S. (ref10/cit10) 2000; 112 Lochbrunner S. (ref19/cit19) 2005; 122 McMorrow D. (ref25/cit25) 1984; 88 Beens H. (ref7/cit7) 1965; 39 Kim C. H. (ref14/cit14) 2009; 11 |
References_xml | – volume: 100 start-page: 7472 year: 1978 ident: ref8/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00492a005 – volume: 2 start-page: 2366 year: 2011 ident: ref17/cit17 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201042u – volume: 114 start-page: 2519 year: 2001 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.1345876 – volume: 107 start-page: 10591 year: 2003 ident: ref11/cit11 publication-title: J. Phys. Chem. A doi: 10.1021/jp035204r – volume: 109 start-page: 10199 year: 2005 ident: ref12/cit12 publication-title: J. Phys. Chem. A doi: 10.1021/jp0519013 – volume: 128 start-page: 231 year: 1986 ident: ref5/cit5 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(86)80331-1 – volume: 347 start-page: 446 year: 2008 ident: ref16/cit16 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.10.021 – volume: 462 start-page: 200 year: 2009 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature08527 – volume: 96 start-page: 6910 year: 1992 ident: ref18/cit18 publication-title: J. Phys. Chem. doi: 10.1021/j100196a012 – volume: 23 start-page: 1116 year: 1987 ident: ref31/cit31 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1987.1073483 – volume: 88 start-page: 2235 year: 1984 ident: ref25/cit25 publication-title: J. Phys. Chem. doi: 10.1021/j150655a012 – volume: 30 start-page: 96 year: 2005 ident: ref22/cit22 publication-title: Opt. Lett. doi: 10.1364/OL.30.000096 – volume: 1 start-page: 188 year: 1961 ident: ref6/cit6 publication-title: Prog. React. Kinet. – volume: 105 start-page: 1731 year: 2001 ident: ref26/cit26 publication-title: J. Phys. Chem. A doi: 10.1021/jp002942w – volume: 503 start-page: 61 year: 2011 ident: ref13/cit13 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.12.087 – volume: 401 start-page: 435 year: 2005 ident: ref29/cit29 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.11.114 – volume: 39 start-page: 183 year: 1965 ident: ref7/cit7 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9653900183 – volume-title: Gaussian 09 year: 2009 ident: ref24/cit24 – volume: 3 start-page: 1 year: 1964 ident: ref1/cit1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.196400011 – volume: 93 start-page: 8362 year: 1996 ident: ref2/cit2 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.16.8362 – volume: 11 start-page: 10266 year: 2009 ident: ref14/cit14 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b915768a – volume: 95 start-page: 10391 year: 1991 ident: ref27/cit27 publication-title: J. Phys. Chem. doi: 10.1021/j100178a028 – volume: 89 start-page: 4932 year: 1985 ident: ref4/cit4 publication-title: J. Phys. Chem. doi: 10.1021/j100269a010 – volume: 107 start-page: 10580 year: 2003 ident: ref15/cit15 publication-title: J. Phys. Chem. A doi: 10.1021/jp035203z – volume: 16 start-page: 20742 year: 2008 ident: ref23/cit23 publication-title: Opt. Express doi: 10.1364/OE.16.020742 – volume: 3 start-page: 2761 year: 2012 ident: ref32/cit32 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301141d – volume: 85 start-page: 63 year: 1986 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.451595 – volume: 99 start-page: 7421 year: 1995 ident: ref20/cit20 publication-title: J. Phys. Chem. doi: 10.1021/j100019a027 – volume: 122 start-page: 244315 year: 2005 ident: ref19/cit19 publication-title: J. Chem. Phys. doi: 10.1063/1.1914764 – volume: 112 start-page: 10699 year: 2000 ident: ref10/cit10 publication-title: J. Chem. Phys. doi: 10.1063/1.481711 – volume: 263 start-page: 622 year: 1996 ident: ref9/cit9 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(96)01268-7 – volume: 43 start-page: 5792 year: 2004 ident: ref21/cit21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461102 |
SSID | ssj0001324 |
Score | 2.4141343 |
Snippet | Proton transfer is one of the most important elementary reactions in chemistry and biology. The role of proton in the course of proton transfer, whether it is... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1400 |
SubjectTerms | Atomic and molecular physics Benzothiazoles - chemistry Biology Coherence Deuterium Exact sciences and technology Excitation Fluorescence and phosphorescence spectra Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion) Isotopes Molecular properties and interactions with photons Molecular Structure Phenols - chemistry Physical chemistry Physics Protons Quinolines - chemistry Spectroscopy, Fourier Transform Infrared Uncertainty Wave packets |
Title | Active Role of Proton in Excited State Intramolecular Proton Transfer Reaction |
URI | http://dx.doi.org/10.1021/jp311884b https://www.ncbi.nlm.nih.gov/pubmed/23374075 https://www.proquest.com/docview/1312171915 https://www.proquest.com/docview/1753500456 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xHEBC7EtZKrMcuKS0jpfkWJUi4FAhoFJvVew4ElCSqouE-HrGTlNAUDhamsjxeDLzXsaeAThTaLM6lNSm_mOPYRDwFPWFJ4VMgqp21zHtaYuWuG6z2w7vzMHpjAw-rV08930EwQFT87BIBcYXi38aD1N3i3SK5afoQ49jvC3KB3191IYePfwWelb60RC1kOTtK2bjSxdnrtbgsritkx8veamMR6qi338Wb_xrCeuwOsGZpJ4bxgbMmXQTlhpFe7ctaNWdpyP3Wc-QLCF3gwxhIHlKSfNNWxxKHA4lN_bv72vRRLcQcyEuMQNyb_KbEdvQvmo-Nq69SXMFL2KMjTyhpFZVw2Ieh6FmOLCFcWhkGSGPYiMR6oQiDgQOwiRRTMZxUDUcAU8URFr6O7CQZqnZA6JpbF2DVhETzJgk4Dg2QcKFqipdkyUoo_a7k49j2HV5b4q8o1BLCc6LjenqSWly2yGj95voyVS0n9fj-E2o_G13p5IUKTn6uKAEx8V2d1HtNkcSpSYb47v5NSRpSGL5HzJI8bjDwiXYzW3lcwbfl8iR-f5_az6AZeo6a1CP1g5hYTQYmyPENyNVdvb9AeMD8fg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeCjSxPgc2UYxiAde0rWOP5LHqurUwahQ6aS9RbHjSEBJqiaV0P76nZ2kXafx8Wjpkjjny93vl7PvAD4otFkdSWpT_6nPMAj4igbCl0JmYV-745h2t8VUTC7Zpyt-1ZTJsWdhcBIl3ql0SfxtdYHB6Y9lgFg4ZOohPOKCCdumYTj6tvG6yKpYvZk-8jmG3baK0O1LbQTS5U4E2l8mJSojq7tY_BlmunBzdlD3LXITdbtMfvbWlerp6zs1HP_vTZ7CkwZ1kmFtJs_ggcmfQ2fUNnt7AdOh83tkViwMKTLydVUgKCTfczL-rS0qJQ6VknP7L_hX21K3FXMBLzMrMjP1OYmXcHk2no8mftNqwU8YY5UvlNSqb1jK0yjSDAe2TA5NLD_kSWokAp9IpKHAQZRlisk0DfuGI_xJwkTL4BXs5UVuXgPRNLWOQquECWZMFnIcmzDjQvWVHkgPuqiVuPlUythlwSmykFYtHnxs1yfWTaFy2y9jcZ_o-43osq7OcZ9Qd2eRN5IUCTp6vNCDd-2qx6h2mzFJclOscW7BACkbUlr-FxkkfNwhYw8Oa5PZPiEIJDJmfvSvd34Lncn8y0V8cT79fAyPqeu5QX06OIG9arU2bxD5VKrrTP4GeSL6Wg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tILFJEwzYR4F1ZuKBl7DGsePksSpUsKGCGEi8RfGXBGNJ1bTSxF_P2Uk6QIzt0dIlsc9n3--Xs-8AdiTarEoFdaF_HTB0AoGkURyIWNikp_x1THfaYhQfXrBvl_yyIYruLgx2osI3VT6I71b1WNsmw0D49XocIR5OmHwJiwhEQleqoT_4Md95kVmx-kB9GnB0vW0mofuPOi-kqgde6M04r1Ahtq5k8Xeo6V3OcAVO5p31J01-7s2mck_dPsrj-P-jeQvLDfok_dpcVuGFKdbg1aAt-rYOo77f_8hZeWNIacnppERwSK4KcvBbOXRKPDolR-6f8K-2tG4r5h2fNRNyZur7Eu_gYnhwPjgMmpILQc4YmwaxFEr2DNNcp6li2HDpcmjueCLPtREIgNJYJzE2UmslE1onPcMRBuVJrkT0HhaKsjAfgSiq3YahZM5iZoxNOLZNYnkse1KFogNd1EzWLJkq89FwimykVUsHdts5ylSTsNzVzbh5SvTLXHRcZ-l4Sqj7YKLnkhSJOu58SQe225nPUO0ucpIXppxh36IQqRtSW_6MDBI_7hFyBz7UZvPnC1EkkDnzjX-N-TMsne4Ps-Oj0fdNeE196Q0a0HALFqaTmfmEAGgqu97q7wCUIvzU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Role+of+Proton+in+Excited+State+Intramolecular+Proton+Transfer+Reaction&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Lee%2C+Junghwa&rft.au=Kim%2C+Chul+Hoon&rft.au=Joo%2C+Taiha&rft.date=2013-02-21&rft.pub=American+Chemical+Society&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=117&rft.issue=7&rft.spage=1400&rft.epage=1405&rft_id=info:doi/10.1021%2Fjp311884b&rft.externalDocID=a632006315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |