Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model
In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributin...
Saved in:
| Published in | AIMS mathematics Vol. 8; no. 12; pp. 28280 - 28307 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.20231447 |
Cover
| Abstract | In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributing to increasing infections of this deadly virus is crowding. We believe that it is necessary to model this effect mathematically to predict the possible outcomes. Hence, the study of neural network-based models related to the spread of this virus can yield new results. This paper also introduces the use of artificial neural networks (ANNs) to approximate the solutions, which is a significant contribution in this regard. We suggest employing this new method to solve a system of integral equations that explain the dynamics of infectious diseases instead of the classical numerical methods. Our study shows that, compared to the Adams-Bashforth algorithm, the ANN is a reliable candidate for solving the problems. |
|---|---|
| AbstractList | In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributing to increasing infections of this deadly virus is crowding. We believe that it is necessary to model this effect mathematically to predict the possible outcomes. Hence, the study of neural network-based models related to the spread of this virus can yield new results. This paper also introduces the use of artificial neural networks (ANNs) to approximate the solutions, which is a significant contribution in this regard. We suggest employing this new method to solve a system of integral equations that explain the dynamics of infectious diseases instead of the classical numerical methods. Our study shows that, compared to the Adams-Bashforth algorithm, the ANN is a reliable candidate for solving the problems. |
| Author | Tariboon, Jessada Etemad, Sina Bensayah, Abdallah Rezapour, Shahram Tellab, Brahim Ntouyas, Sotiris K. Najafi, Hashem |
| Author_xml | – sequence: 1 givenname: Hashem surname: Najafi fullname: Najafi, Hashem organization: Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran – sequence: 2 givenname: Abdallah surname: Bensayah fullname: Bensayah, Abdallah organization: Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla 30000, Algeria – sequence: 3 givenname: Brahim surname: Tellab fullname: Tellab, Brahim organization: Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla 30000, Algeria – sequence: 4 givenname: Sina surname: Etemad fullname: Etemad, Sina organization: Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran – sequence: 5 givenname: Sotiris K. surname: Ntouyas fullname: Ntouyas, Sotiris K. organization: Department of Mathematics, University of Ioannina, Ioannina 451 10, Greece – sequence: 6 givenname: Shahram surname: Rezapour fullname: Rezapour, Shahram organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam, Department of Mathematics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan – sequence: 7 givenname: Jessada surname: Tariboon fullname: Tariboon, Jessada organization: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand |
| BookMark | eNqFUctOwzAQtBBIlNIj9_xAil95HauKR6VKXOAcbfxoXZy4chKV8vU4KSCEhDh4x9qdGXm8V-i8cY1C6IbgOSsYv62h284ppoxwnp2hCeUZi9Miz89_3C_RrG13GGNKKKcZn6B-sd9792aCXEVNXytvBNgI7MZ5023rNoJGRuA7o40wYdKo3o_QHZx_bSPtfKCAPb6bZhNBpD2IDmw8onFhEg1PU6GMzrWTyl6jCw22VbNPnKKX-7vn5WO8fnpYLRfrGDjnXZwUCa400zgTFUkoTiWEo0WWgMyKVEvFc0xEoRNZCS1xVnGhMU8kLgjkXLApWp18pYNdufchpj-WDkw5NpzflEM0YVWZFxmpiKZaEM1BplAJLhVLKsbTHCgNXvOTV9_s4XgAa78NCS6HHZRD0PJrB0EQnwTCu7b1Sv_LZ7_4wnQw_GHnwdg_VB-bw6AU |
| CitedBy_id | crossref_primary_10_1063_5_0206277 crossref_primary_10_3934_math_2024536 |
| Cites_doi | 10.1155/2021/2524027 10.1016/j.chaos.2020.109867 10.1016/j.chaos.2017.04.027 10.1080/17513758.2023.2220349 10.1186/s13662-021-03359-z 10.1016/j.chaos.2019.04.020 10.1016/j.chaos.2020.110048 10.1186/s13662-021-03600-9 10.1017/S0962492900002919 10.1016/j.chaos.2020.109946 10.1016/j.chaos.2020.110032 10.1073/pnas.27.4.222 10.1186/s13662-021-03642-z 10.1016/0893-6080(91)90009-T 10.1016/j.rinp.2021.105130 10.1016/j.chaos.2020.109828 10.1002/mma.9347 10.1007/s11766-004-0027-8 10.1186/s13661-020-01361-0 10.1016/j.aej.2021.02.011 10.1016/j.chaos.2021.110672 10.1186/s13662-020-02783-x 10.1007/978-3-319-72317-4 10.46793/match.90-3.609X 10.1016/j.chaos.2022.111821 10.1016/j.idm.2017.02.001 10.1007/978-0-387-21593-8 10.11948/20210313 10.1186/s13662-020-02853-0 10.1186/s13662-020-03092-z 10.3390/fractalfract5040166 10.1155/2022/4320865 10.1007/s12559-023-10155-2 10.1016/j.rinp.2022.105800 10.46793/match.89-1.073X 10.1016/j.chaos.2020.110007 10.46793/match.89-3.529M 10.1155/2022/6502598 10.1016/j.na.2011.10.014 10.1037/h0042519 10.1007/BF02551274 10.1016/S0893-6080(05)80131-5 10.1016/j.apm.2023.02.019 10.1016/j.chaos.2020.110033 10.1016/j.jksus.2022.101914 10.3389/fpubh.2023.1101436 10.1016/j.health.2022.100114 10.1007/BF02478259 10.1155/2021/1273405 10.11948/2016004 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.20231447 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 28307 |
| ExternalDocumentID | oai_doaj_org_article_8971b1f2fc1f4ad6abc4de35b3468a22 10.3934/math.20231447 10_3934_math_20231447 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a444t-5950bf3f07cb15206da06dfc75ad796fde4801c9f5dbcfd07b4cf045d091a84c3 |
| IEDL.DBID | DOA |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:26 EDT 2025 Mon Sep 15 10:07:00 EDT 2025 Tue Jul 01 03:57:07 EDT 2025 Thu Apr 24 23:14:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a444t-5950bf3f07cb15206da06dfc75ad796fde4801c9f5dbcfd07b4cf045d091a84c3 |
| OpenAccessLink | https://doaj.org/article/8971b1f2fc1f4ad6abc4de35b3468a22 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8971b1f2fc1f4ad6abc4de35b3468a22 unpaywall_primary_10_3934_math_20231447 crossref_primary_10_3934_math_20231447 crossref_citationtrail_10_3934_math_20231447 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20231447-30 key-10.3934/math.20231447-31 key-10.3934/math.20231447-38 key-10.3934/math.20231447-39 key-10.3934/math.20231447-36 key-10.3934/math.20231447-37 key-10.3934/math.20231447-34 key-10.3934/math.20231447-35 key-10.3934/math.20231447-32 key-10.3934/math.20231447-33 key-10.3934/math.20231447-41 key-10.3934/math.20231447-42 key-10.3934/math.20231447-40 key-10.3934/math.20231447-49 key-10.3934/math.20231447-47 key-10.3934/math.20231447-48 key-10.3934/math.20231447-45 key-10.3934/math.20231447-46 key-10.3934/math.20231447-43 key-10.3934/math.20231447-44 key-10.3934/math.20231447-52 key-10.3934/math.20231447-53 key-10.3934/math.20231447-50 key-10.3934/math.20231447-51 key-10.3934/math.20231447-16 key-10.3934/math.20231447-17 key-10.3934/math.20231447-14 key-10.3934/math.20231447-15 key-10.3934/math.20231447-12 key-10.3934/math.20231447-13 key-10.3934/math.20231447-9 key-10.3934/math.20231447-10 key-10.3934/math.20231447-54 key-10.3934/math.20231447-11 key-10.3934/math.20231447-7 key-10.3934/math.20231447-8 key-10.3934/math.20231447-5 key-10.3934/math.20231447-6 key-10.3934/math.20231447-3 key-10.3934/math.20231447-4 key-10.3934/math.20231447-1 key-10.3934/math.20231447-18 key-10.3934/math.20231447-2 key-10.3934/math.20231447-19 key-10.3934/math.20231447-20 key-10.3934/math.20231447-27 key-10.3934/math.20231447-28 key-10.3934/math.20231447-25 key-10.3934/math.20231447-26 key-10.3934/math.20231447-23 key-10.3934/math.20231447-24 key-10.3934/math.20231447-21 key-10.3934/math.20231447-22 key-10.3934/math.20231447-29 |
| References_xml | – ident: key-10.3934/math.20231447-5 doi: 10.1155/2021/2524027 – ident: key-10.3934/math.20231447-54 – ident: key-10.3934/math.20231447-16 doi: 10.1016/j.chaos.2020.109867 – ident: key-10.3934/math.20231447-40 doi: 10.1016/j.chaos.2017.04.027 – ident: key-10.3934/math.20231447-37 doi: 10.1080/17513758.2023.2220349 – ident: key-10.3934/math.20231447-11 doi: 10.1186/s13662-021-03359-z – ident: key-10.3934/math.20231447-50 – ident: key-10.3934/math.20231447-41 doi: 10.1016/j.chaos.2019.04.020 – ident: key-10.3934/math.20231447-24 doi: 10.1016/j.chaos.2020.110048 – ident: key-10.3934/math.20231447-6 doi: 10.1186/s13662-021-03600-9 – ident: key-10.3934/math.20231447-49 doi: 10.1017/S0962492900002919 – ident: key-10.3934/math.20231447-26 doi: 10.1016/j.chaos.2020.109946 – ident: key-10.3934/math.20231447-3 doi: 10.1016/j.chaos.2020.110032 – ident: key-10.3934/math.20231447-53 doi: 10.1073/pnas.27.4.222 – ident: key-10.3934/math.20231447-13 doi: 10.1186/s13662-021-03642-z – ident: key-10.3934/math.20231447-47 doi: 10.1016/0893-6080(91)90009-T – ident: key-10.3934/math.20231447-9 doi: 10.1016/j.rinp.2021.105130 – ident: key-10.3934/math.20231447-17 doi: 10.1016/j.chaos.2020.109828 – ident: key-10.3934/math.20231447-51 – ident: key-10.3934/math.20231447-33 doi: 10.1002/mma.9347 – ident: key-10.3934/math.20231447-1 doi: 10.1007/s11766-004-0027-8 – ident: key-10.3934/math.20231447-10 doi: 10.1186/s13661-020-01361-0 – ident: key-10.3934/math.20231447-8 doi: 10.1016/j.aej.2021.02.011 – ident: key-10.3934/math.20231447-7 doi: 10.1016/j.chaos.2021.110672 – ident: key-10.3934/math.20231447-23 doi: 10.1186/s13662-020-02783-x – ident: key-10.3934/math.20231447-18 doi: 10.1007/978-3-319-72317-4 – ident: key-10.3934/math.20231447-34 doi: 10.46793/match.90-3.609X – ident: key-10.3934/math.20231447-28 doi: 10.1016/j.chaos.2022.111821 – ident: key-10.3934/math.20231447-19 doi: 10.1016/j.idm.2017.02.001 – ident: key-10.3934/math.20231447-43 doi: 10.1007/978-0-387-21593-8 – ident: key-10.3934/math.20231447-52 – ident: key-10.3934/math.20231447-35 doi: 10.11948/20210313 – ident: key-10.3934/math.20231447-29 doi: 10.1186/s13662-020-02853-0 – ident: key-10.3934/math.20231447-15 doi: 10.1186/s13662-020-03092-z – ident: key-10.3934/math.20231447-14 doi: 10.3390/fractalfract5040166 – ident: key-10.3934/math.20231447-12 doi: 10.1155/2022/4320865 – ident: key-10.3934/math.20231447-38 doi: 10.1007/s12559-023-10155-2 – ident: key-10.3934/math.20231447-21 doi: 10.1016/j.rinp.2022.105800 – ident: key-10.3934/math.20231447-36 doi: 10.46793/match.89-1.073X – ident: key-10.3934/math.20231447-22 doi: 10.1016/j.chaos.2020.110007 – ident: key-10.3934/math.20231447-39 doi: 10.46793/match.89-3.529M – ident: key-10.3934/math.20231447-31 doi: 10.1155/2022/6502598 – ident: key-10.3934/math.20231447-42 doi: 10.1016/j.na.2011.10.014 – ident: key-10.3934/math.20231447-45 doi: 10.1037/h0042519 – ident: key-10.3934/math.20231447-46 doi: 10.1007/BF02551274 – ident: key-10.3934/math.20231447-48 doi: 10.1016/S0893-6080(05)80131-5 – ident: key-10.3934/math.20231447-27 doi: 10.1016/j.apm.2023.02.019 – ident: key-10.3934/math.20231447-20 doi: 10.1016/j.chaos.2020.110033 – ident: key-10.3934/math.20231447-4 doi: 10.1016/j.jksus.2022.101914 – ident: key-10.3934/math.20231447-32 doi: 10.3389/fpubh.2023.1101436 – ident: key-10.3934/math.20231447-30 doi: 10.1016/j.health.2022.100114 – ident: key-10.3934/math.20231447-44 doi: 10.1007/BF02478259 – ident: key-10.3934/math.20231447-25 doi: 10.1155/2021/1273405 – ident: key-10.3934/math.20231447-2 doi: 10.11948/2016004 |
| SSID | ssj0002124274 |
| Score | 2.2298608 |
| Snippet | In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 28280 |
| SubjectTerms | artificial neural networks fixed-point theorem fractal-fractional derivative |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gA98EYsL_mA4ILL7tqO4-OCWFVIVBxYqZyisR1DRZpW3UTQ_npmkmxUQDwOkeNoIlueSeazPf4G4FlmddAOlcyTc1J75yV6FSQ5w0QmgN74LkD2INtf63eH5nAIouGzMJf275VT-hXBNt4yIBSitb0KO5khyD2BnfXBh-UnThynrZKZy_OeP_P3d37yNx0t_y5ca-tTPP-GVXXJl6xuwmrbiz6E5Ote2_i9cPELQeM_u3kLbgxoUix79d-GK2V9B3bfj1Ssm7vQLpk1_PsR1UtRt_0GTSWw-nxydtR8Od4IrKNgA-q5JAQzXHZFFx--EYRqSQSr8wvycgJF4nNVWMmu7BYSxfHYIFc4t849WK_efnyzL4dcCxK11o00zsx8UmlmgyeXPssi0pWCNRity1IsmWcmkAKjDynOrNchERyMhDcw10Hdh0l9UpcPQMyRU5ibGFWiuSZaRzCjzIPJ7YL-Ft5O4eVWI0UYiMg5H0ZV0ISER7PgXhfb0ZzC81H8tGfg-JPga1bvKMTE2d0DUlQxfIdF7uzcz9MihXnSGDP0QcdSGa90luNiMYUXo3H8vbmH_y35CK7zbb9w8xgmzVlbPiEo0_ingyH_AEfy8vk priority: 102 providerName: Unpaywall |
| Title | Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model |
| URI | https://doi.org/10.3934/math.20231447 https://doaj.org/article/8971b1f2fc1f4ad6abc4de35b3468a22 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: AMVHM dateStart: 20220701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iB_UgPnF9kYPoxWJ3kzbNcRVlEVY8uKKnMkkaFWoVdxcfv96ZdC17US8eSkgZmnQyzXyTpN8wtp8qaaUGEWVe60gabSIwwkboDD2aAJjEhAOyl2lvIC9uk9upVF90JqymB64Vd5xp1TZt3_G27SW4FIyVrhCJETLNoBNm3zjTU8EUzcE4IUuMt2pSTaGFPEb8R3sPCGckpVKZckKBq3-RzY-rF_h4g7KccjDny2xpggx5t-7RCpspqlW22G9oVYdrbNwlBvD3R6wXvBrXmy0lh_L-GWP8h6chh8pxeqeaF4ITW2UowlnvIUeEiiJQfnyix-LAPf0jBWUUyrAoyJ-aBqlCeXLW2eD87Pq0F03yJkQgpRxFiU5i44WPlTXonuPUAV7eqgSc0ql3BXHGWBwMZ6x3sTLSeoR2DrEDZNKKDTZbPVfFJuNtoHTkiXPCY9wISiNkKDKbZKqDX75RLXb0rcjcTkjFKbdFmWNwQXrPqdf5t95b7KARf6nZNH4SPKFRaYSIBDvcQNPIJ6aR_2UaLXbYjOnvzW39R3PbbIGeV6_P7LDZ0eu42EXEMjJ7bK7bv-n194KRYm1wedW9-wIJbfBH |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gA98EYsL_mA4ILL7tqO4-OCWFVIVBxYqZyisR1DRZpW3UTQ_npmkmxUQDwOkeNoIlueSeazPf4G4FlmddAOlcyTc1J75yV6FSQ5w0QmgN74LkD2INtf63eH5nAIouGzMJf275VT-hXBNt4yIBSitb0KO5khyD2BnfXBh-UnThynrZKZy_OeP_P3d37yNx0t_y5ca-tTPP-GVXXJl6xuwmrbiz6E5Ote2_i9cPELQeM_u3kLbgxoUix79d-GK2V9B3bfj1Ssm7vQLpk1_PsR1UtRt_0GTSWw-nxydtR8Od4IrKNgA-q5JAQzXHZFFx--EYRqSQSr8wvycgJF4nNVWMmu7BYSxfHYIFc4t849WK_efnyzL4dcCxK11o00zsx8UmlmgyeXPssi0pWCNRity1IsmWcmkAKjDynOrNchERyMhDcw10Hdh0l9UpcPQMyRU5ibGFWiuSZaRzCjzIPJ7YL-Ft5O4eVWI0UYiMg5H0ZV0ISER7PgXhfb0ZzC81H8tGfg-JPga1bvKMTE2d0DUlQxfIdF7uzcz9MihXnSGDP0QcdSGa90luNiMYUXo3H8vbmH_y35CK7zbb9w8xgmzVlbPiEo0_ingyH_AEfy8vk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+numerical+algorithms+and+artificial+neural+networks+for+analyzing+a+fractal-fractional+mathematical+model&rft.jtitle=AIMS+mathematics&rft.au=Hashem+Najafi&rft.au=Abdallah+Bensayah&rft.au=Brahim+Tellab&rft.au=Sina+Etemad&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=28280&rft.epage=28307&rft_id=info:doi/10.3934%2Fmath.20231447&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8971b1f2fc1f4ad6abc4de35b3468a22 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |