Liquid–Liquid Extraction of Formic Acid with 2‑Methyltetrahydrofuran: Experiments, Process Modeling, and Economics

Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)­association of the components and the prese...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 60; no. 15; pp. 5588 - 5599
Main Authors Laitinen, Antero T, Parsana, Vyomesh M, Jauhiainen, Olli, Huotari, Marco, van den Broeke, Leo J. P, de Jong, Wiebren, Vlugt, Thijs J. H, Ramdin, Mahinder
Format Journal Article
LanguageEnglish
Published American Chemical Society 21.04.2021
Subjects
Online AccessGet full text
ISSN0888-5885
1520-5045
1520-5045
DOI10.1021/acs.iecr.1c00159

Cover

Abstract Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)­association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid–liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO2 electrolysis process, which typically contains <20 wt % of FA. Vapor–liquid equilibrium (VLE) data of the binary system 2-MTHF–FA and liquid–liquid equilibrium (LLE) data of the ternary system 2-MTHF–FA–water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction–distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).
AbstractList Formic acid (FA) is an interesting hydrogen (H₂) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO₂) using renewable energy. The separation of FA from water is challenging due to the strong (cross)association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid–liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO₂ electrolysis process, which typically contains <20 wt % of FA. Vapor–liquid equilibrium (VLE) data of the binary system 2-MTHF–FA and liquid–liquid equilibrium (LLE) data of the ternary system 2-MTHF–FA–water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction–distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).
Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid–liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO2 electrolysis process, which typically contains <20 wt % of FA. Vapor–liquid equilibrium (VLE) data of the binary system 2-MTHF–FA and liquid–liquid equilibrium (LLE) data of the ternary system 2-MTHF–FA–water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction–distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).
Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid-liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO2 electrolysis process, which typically contains <20 wt % of FA. Vapor-liquid equilibrium (VLE) data of the binary system 2-MTHF-FA and liquid-liquid equilibrium (LLE) data of the ternary system 2-MTHF-FA-water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction-distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid-liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO2 electrolysis process, which typically contains <20 wt % of FA. Vapor-liquid equilibrium (VLE) data of the binary system 2-MTHF-FA and liquid-liquid equilibrium (LLE) data of the ternary system 2-MTHF-FA-water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction-distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).
Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)­association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid–liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO2 electrolysis process, which typically contains <20 wt % of FA. Vapor–liquid equilibrium (VLE) data of the binary system 2-MTHF–FA and liquid–liquid equilibrium (LLE) data of the ternary system 2-MTHF–FA–water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction–distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).
Author Parsana, Vyomesh M
Ramdin, Mahinder
de Jong, Wiebren
van den Broeke, Leo J. P
Vlugt, Thijs J. H
Laitinen, Antero T
Huotari, Marco
Jauhiainen, Olli
AuthorAffiliation Department of Chemical Engineering, V.V.P. Engineering College
Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering
Delft University of Technology
Large-Scale Energy Storage, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering
Gujarat Technological University
AuthorAffiliation_xml – name: Large-Scale Energy Storage, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering
– name: Gujarat Technological University
– name: Department of Chemical Engineering, V.V.P. Engineering College
– name: Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering
– name: Delft University of Technology
Author_xml – sequence: 1
  givenname: Antero T
  surname: Laitinen
  fullname: Laitinen, Antero T
– sequence: 2
  givenname: Vyomesh M
  orcidid: 0000-0002-7473-1354
  surname: Parsana
  fullname: Parsana, Vyomesh M
  organization: Gujarat Technological University
– sequence: 3
  givenname: Olli
  surname: Jauhiainen
  fullname: Jauhiainen, Olli
– sequence: 4
  givenname: Marco
  surname: Huotari
  fullname: Huotari, Marco
– sequence: 5
  givenname: Leo J. P
  surname: van den Broeke
  fullname: van den Broeke, Leo J. P
  organization: Delft University of Technology
– sequence: 6
  givenname: Wiebren
  surname: de Jong
  fullname: de Jong, Wiebren
  organization: Delft University of Technology
– sequence: 7
  givenname: Thijs J. H
  orcidid: 0000-0003-3059-8712
  surname: Vlugt
  fullname: Vlugt, Thijs J. H
  organization: Delft University of Technology
– sequence: 8
  givenname: Mahinder
  orcidid: 0000-0002-8476-7035
  surname: Ramdin
  fullname: Ramdin, Mahinder
  email: m.ramdin@tudelft.nl
  organization: Delft University of Technology
BookMark eNqNkc1OGzEUha2KqoSfPctZdpEJtsfOeFhUQggKUlBZwNry-IcYTexge4DseAXEG_IkdZhIFZVasbpXuuc7uvfcHbDlvNMAHCA4QRCjQyHjxGoZJkhCiGjzBYwQxbCkkNAtMIKMsZIyRrfBTox3EEJKCfkGtisCKcEIjcDDzN73Vr09vw5NcfqUgpDJeld4U5z5sLCyOJZ58mjTvMBvzy-XOs1XXdJZOF-p4E0fhDvK5FIHu9AuxXFxFbzUMRaXXunOuttxIVw2l975bBj3wFcjuqj3N3UX3JydXp-cl7NfPy9OjmelIKRKZaNaqFs1JYgxhaumrlFjagKVEsQQ0rQtwiZ3ShkqZT1VTDct0oaKVkFCVLUL0ODbu6VYPYqu48u8owgrjiBfZ8hzhnydId9kmJkfA7Ps24VWMh8UxB_OC8s_Tpyd81v_wBnK6VZVNvi-MQj-vtcx8YWNUnedcNr3kWNKUVNRVn9GWlGEMX2XwkEqg48xaPOZS6Z_IdImsf5t3tt2_wPHA7ie3Pk-uPykf8t_Axc4z_I
CitedBy_id crossref_primary_10_2174_0122133461272026231101094324
crossref_primary_10_1002_anie_202111351
crossref_primary_10_1016_j_molliq_2022_119684
crossref_primary_10_1016_j_xcrp_2023_101256
crossref_primary_10_1039_D2GC02311C
crossref_primary_10_3389_fchem_2024_1467810
crossref_primary_10_1039_D2GC00409G
crossref_primary_10_1016_j_enconman_2024_118601
crossref_primary_10_1021_acs_iecr_2c02647
crossref_primary_10_3390_molecules29010242
crossref_primary_10_1021_acssuschemeng_4c04908
crossref_primary_10_1016_j_jtice_2023_105003
crossref_primary_10_1021_acs_jced_2c00593
crossref_primary_10_1016_j_jece_2021_106394
crossref_primary_10_1016_j_jiec_2024_07_005
crossref_primary_10_1002_ange_202111351
crossref_primary_10_1016_j_indcrop_2022_116023
crossref_primary_10_1016_j_mtener_2023_101433
crossref_primary_10_1039_D4GC02507E
Cites_doi 10.1021/acs.iecr.8b02443
10.1016/B978-1-4557-2553-3.00012-X
10.3389/fchem.2019.00392
10.1016/j.seppur.2018.10.023
10.1021/acs.iecr.5b03914
10.1021/acs.iecr.9b03970
10.1021/op060155c
10.1038/ncomms5017
10.1021/acs.jced.0c00291
10.1021/acs.iecr.8b04944
10.1016/j.seppur.2017.05.036
10.1016/j.fluid.2017.11.001
10.1016/j.jcou.2020.101349
10.1002/ep.670140123
10.1021/acs.iecr.8b00883
10.1021/acssuschemeng.0c03269
10.1002/14356007.a12_013.pub3
10.1016/j.fluid.2016.11.004
10.1016/0378-3812(89)80327-9
10.1021/acs.iecr.8b03031
10.1080/00986445.2020.1771323
10.1002/9780470747537
10.3390/c6020042
10.1134/s0040579517050037
10.1021/acsenergylett.6b00574
10.1016/j.cesx.2019.100021
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society.
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society.
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1021/acs.iecr.1c00159
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 5599
ExternalDocumentID 10.1021/acs.iecr.1c00159
PMC8154433
10_1021_acs_iecr_1c00159
a804182227
GrantInformation_xml – fundername: ;
  grantid: NA
GroupedDBID .K2
02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
53G
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
~02
7X8
7S9
L.6
5PM
1WB
ABHMW
ACRPL
ADNMO
ADTOC
AEYZD
AGQPQ
ANPPW
ANTXH
EJD
H~9
IHE
RNS
UNPAY
XOL
YXE
ZY4
ID FETCH-LOGICAL-a443t-9db0ebd64188d2397719f740dda4f449bb12f4f4ddf5cc76d8e9b1ef5abd044d3
IEDL.DBID UNPAY
ISSN 0888-5885
1520-5045
IngestDate Wed Oct 29 12:15:46 EDT 2025
Tue Sep 30 16:43:21 EDT 2025
Thu Jul 10 19:32:13 EDT 2025
Thu Jul 10 17:48:57 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Jul 01 04:23:46 EDT 2025
Fri Apr 23 03:23:48 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a443t-9db0ebd64188d2397719f740dda4f449bb12f4f4ddf5cc76d8e9b1ef5abd044d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3059-8712
0000-0002-7473-1354
0000-0002-8476-7035
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c00159
PMID 34054211
PQID 2535122573
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1021_acs_iecr_1c00159
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154433
proquest_miscellaneous_2551935873
proquest_miscellaneous_2535122573
crossref_primary_10_1021_acs_iecr_1c00159
crossref_citationtrail_10_1021_acs_iecr_1c00159
acs_journals_10_1021_acs_iecr_1c00159
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-21
PublicationDateYYYYMMDD 2021-04-21
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-21
  day: 21
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
Gmehling J. (ref26/cit26) 2014
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
Kontogeorgis G. (ref23/cit23) 2010
ref10/cit10
ref19/cit19
ref21/cit21
ref12/cit12
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
Prausnitz J. (ref15/cit15) 1999
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1021/acs.iecr.8b02443
– ident: ref20/cit20
– ident: ref27/cit27
  doi: 10.1016/B978-1-4557-2553-3.00012-X
– ident: ref6/cit6
  doi: 10.3389/fchem.2019.00392
– ident: ref12/cit12
  doi: 10.1016/j.seppur.2018.10.023
– ident: ref21/cit21
  doi: 10.1021/acs.iecr.5b03914
– ident: ref19/cit19
– ident: ref14/cit14
  doi: 10.1021/acs.iecr.9b03970
– ident: ref18/cit18
  doi: 10.1021/op060155c
– ident: ref3/cit3
  doi: 10.1038/ncomms5017
– ident: ref17/cit17
  doi: 10.1021/acs.jced.0c00291
– ident: ref28/cit28
– ident: ref5/cit5
  doi: 10.1021/acs.iecr.8b04944
– ident: ref13/cit13
  doi: 10.1016/j.seppur.2017.05.036
– ident: ref24/cit24
  doi: 10.1016/j.fluid.2017.11.001
– volume-title: Springer Materials
  year: 2014
  ident: ref26/cit26
– ident: ref7/cit7
  doi: 10.1016/j.jcou.2020.101349
– ident: ref10/cit10
  doi: 10.1002/ep.670140123
– ident: ref30/cit30
  doi: 10.1021/acs.iecr.8b00883
– ident: ref4/cit4
  doi: 10.1021/acssuschemeng.0c03269
– ident: ref9/cit9
  doi: 10.1002/14356007.a12_013.pub3
– ident: ref25/cit25
  doi: 10.1016/j.fluid.2016.11.004
– volume-title: Molecular Thermodynamics of Fluid-phase Equilibria
  year: 1999
  ident: ref15/cit15
– ident: ref16/cit16
  doi: 10.1016/0378-3812(89)80327-9
– ident: ref29/cit29
  doi: 10.1021/acs.iecr.8b03031
– ident: ref22/cit22
  doi: 10.1080/00986445.2020.1771323
– volume-title: Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories
  year: 2010
  ident: ref23/cit23
  doi: 10.1002/9780470747537
– ident: ref8/cit8
  doi: 10.3390/c6020042
– ident: ref11/cit11
  doi: 10.1134/s0040579517050037
– ident: ref1/cit1
  doi: 10.1021/acsenergylett.6b00574
– ident: ref31/cit31
  doi: 10.1016/j.cesx.2019.100021
SSID ssj0005544
Score 2.4880154
Snippet Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2)...
Formic acid (FA) is an interesting hydrogen (H₂) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO₂)...
Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2)...
SourceID unpaywall
pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5588
SubjectTerms carbon dioxide
carbon monoxide
cost effectiveness
distillation
electrochemistry
electrolysis
formic acid
hybrids
hydrogen
liquid-liquid extraction
process design
renewable energy sources
Separations
solvents
SummonAdditionalLinks – databaseName: American Chemical Society Journals
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADb0R5yUhwADXbtWMnDrdVtasKUS5QqbfITzXqKluapKWc-hcQ_7C_hJkk3e0WtPQWxY8k9tjzOTPzDSFvdZykzqsk8pqJSGipI229iJQwiU-Dz7TGAOedL8n2rvi0J_cWNDlXLficbWpbDQqAUANmUcFnN8ktnqQpuu-Ntr4u3Dlkm7gVFg1GEinZmyT_1QMqIlstK6IFurzqG3m7KQ_16YmeTi8pnsn9LoNR1fIVor_JwaCpzcD-_JvN8Rrf9IDc6_EnHXUC85Dc8OUjcvcSK-Fjcvy5-N4U7vzsd3dBxz_qoy7-gc4CnQDKLSwdWSjBv7iUn5_92vEw4dPaQ8X9Uwd7ewM68CMdz_MHVBu0j0mgmH4Ng-A3qC6h8z4yunpCdifjb1vbUZ-eIdJCxHWUOTP0xiWCKeU4AkmWhVQMndMiCJEZw3iAK-eCtDZNnPKZYT5IbdxQCBc_JWvlrPTPCEXWM0x2Did7wG9B6dQykBI4iskQc8PWyTsYsrxfXlXeWs45y_EmjmPej-M62byY09z2HOeYamO6osX7eYvDjt9jRd03F2KSwyJEy4ou_aypci5jAE6w-8Wr6iBYlgrrpEsyNn8wUn0vl5TFfkv5rZA0KYaWH-bS-N_XfX7NQXtB7nB01BmKiLOXZK0-avwrQFq1ed0usT9WdSrB
  priority: 102
  providerName: American Chemical Society
Title Liquid–Liquid Extraction of Formic Acid with 2‑Methyltetrahydrofuran: Experiments, Process Modeling, and Economics
URI http://dx.doi.org/10.1021/acs.iecr.1c00159
https://www.proquest.com/docview/2535122573
https://www.proquest.com/docview/2551935873
https://pubmed.ncbi.nlm.nih.gov/PMC8154433
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c00159
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5045
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005544
  issn: 1520-5045
  databaseCode: ACS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAceFeUR2UkOICabZzYeXBbVbuqkFohwaJyivxUV6yyS5MIyon_wD_klzCTeEO3Qot6s-yx4zhjz-fY8w0hL2WcpMZmSWAl4wGXQgZSWx5kXCU2dTaXEh2cj0-Soyl_dypOt4hY-cJAJypoqWoP8XFWL43zDAPsAPNngKaGTKOtz2-Q7UQABB-Q7enJ-9HnDjGiJ1EbihNMUxgIwCz-ePJfTaBR0tW6UfqLNK_ek7zZlEt58U3O55eM0OQu-dR3v7178mXY1Gqof1xhdrz2-90jdzwspaNOj-6TLVs-ILcvkRU-JLBt_drMzO-fv7oEHX-vzzu3CLpwdALgd6bpSEMJ_tylUXBsQQvmtQWxswsDC34DhvEtHfdBBap96h0VKMZkQ8_4fSpLaNq7S1ePyHQy_nh4FPiYDYHkPK6D3KjQKpNwlmUmQnTJcpfy0BjJHee5UixykDLGCa3TxGQ2V8w6IZUJOTfxDhmUi9I-JhSp0DACOmz3AdS5TKaagerA_ky4OFJsl7yCASv8nKuK9jg9YgVm4igWfhR3ycHq4xbaE59j_I35hhqv-xrLjvRjg-yLlb4UMDPxuEWWdtFURSRiQFOwJMabZBBBiwxl0jVl6x-M_N_rJeXsrOUBz5BJKYaab3q1_G93n1xH-Cm5FeEVnpAHEXtGBvV5Y58DBqvVHuxBDj_s-Xn3BzNmNQg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKORQO5VnR8jISHEDNdp3YicNtVe1qgd0eoJV6i_yKGrHKliYByql_AfEP-0uYyWaz3QotcIv8imOPPZ8znm8IeamCMLJOhp5TjHtcCeUp47gnuQ5dlLpYKXRwHh-EwyP-_lgcrxE294WBThTQUlEb8RfsAmwP0zJAUh1mUM_HN8hNEXKG563e_qfFrQ5Rx2-FtYMORVI0lsk_tYD6yBTL-mgBMq9fkdyo8lN1_k1NJlf0z-AO-dj2vL528rlTlbpjflwjdfyvT7tLNhs0Snsz8blH1lx-n9y-wlH4gHwdZV-qzF5e_Jo90P738mzmDUGnKR0A5s0M7RnIwX-61L-8-Dl2MP2T0kHBk3MLO30FGvEt7bfRBIpd2ngoUAzGhi7xu1Tl0HjjJ108JEeD_uH-0GuCNXiK86D0Yqu7TluYEimtj7CSxWnEu9YqnnIea838FJ6sTYUxUWilizVzqVDadjm3wRZZz6e5e0QocqBh6HM45wOaS6WKDAOZgYOZSANfs23yCoYsaRZbkdR2dJ8lmIjjmDTjuE325lObmIbxHANvTFbUeN3WOJ2xfawo-2IuLQksSbSzqNxNqyLxRQAwCvbCYFUZhM5CYploSdTaFyPx93JOnp3UBOASKZQCqPmmFcq_dnfnHwftOdkYHo5HyejdwYfH5JaPV3i63PPZE7JenlXuKWCwUj-rV91voxQzIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkXgceKOWp5HgAGq268ROHG5V2VWBtkKCot4iP9WIVXbbJEA59S8g_mF_CTPZbNqt0AI3y684zoznc-z5hpDnKooT62QcOMV4wJVQgTKOB5Lr2CXepUqhg_PObry1x9_ti_0lIma-MDCIEnoqm0N81OqJ9S3DAFvH_BzQVI8ZtPXpJXJZxKDpiIg2P57d7BBNDFfQH3QqkqI9nfxTD2iTTDlvk86A5sVrklfrYqKOv6nR6JwNGt4kn7vRN1dPvvTqSvfMjwvEjv_9erfIjRaV0o2pGN0mS664Q66f4yq8S75u54d1bk9Pfk0TdPC9Opp6RdCxp0PAvrmhGwZK8N8uDU9Pfu44EINR5aDiwbGFFb8Gy_iaDrqoAuUabT0VKAZlQ9f4NaoK6Lz1ly7vkb3h4NPmVtAGbQgU51EVpFb3nbYxZ1LaEOElS33C-9Yq7jlPtWahh5S1XhiTxFa6VDPnhdK2z7mN7pPlYly4FUKRCw1DoMN-H1CdlyoxDGQHNmjCR6Fmq-QFTFnWKl2ZNefpIcswE-cxa-dxlazPPm9mWuZzDMAxWtDiZddiMmX9WFD32UxiMlBNPG9RhRvXZRaKCOAUrInRojoIoYXEOsmcuHUPRgLw-ZIiP2iIwCVSKUXQ8lUnmH8d7oN_nLSn5MqHN8Ns--3u-4fkWog3efo8CNkjslwd1e4xQLFKP2kU7zc-LDWm
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAceCPKS0aCA6jerhM7D24rtKsKqRUHFpVT5Ke6YpVdmkRQTvwH_iG_hJnEG7oVWtSbZY8dxxl7Pseebwh5qeIktS5LmFNcMKGkYso4wTKhE5d6lyuFDs5Hx8nhTLw_kSc7RK59YaATFbRUtYf4OKtX1geGAX6A-XNAU0Nu0Nbn18huIgGCD8ju7PjD-HOHGNGTqA3FCaZpxCRglnA8-a8m0CiZatMo_UWal-9JXm_KlTr_phaLC0Zoept86rvf3j35MmxqPTQ_LjE7Xvn97pBbAZbScadHd8mOK--RmxfICu8T2LZ-beb2989fXYJOvtdnnVsEXXo6BfA7N3RsoAR_7tKIHTnQgkXtQOz03MKC34BhfEsnfVCBap8GRwWKMdnQM36fqhKaDu7S1QMym04-vjtkIWYDU0LENcutHjltE8GzzEaILnnuUzGyVgkvRK41jzykrPXSmDSxmcs1d14qbUdC2PghGZTL0j0iFKnQMAI6bPcB1PlMpYaD6sD-TPo40nyPvIIBK8Kcq4r2OD3iBWbiKBZhFPfIwfrjFiYQn2P8jcWWGq_7GquO9GOL7Iu1vhQwM_G4RZVu2VRFJGNAU7AkxttkEEHLDGXSDWXrH4z835sl5fy05QHPkEkphppverX8b3cfX0X4CbkR4RWekWARf0oG9VnjngEGq_XzMOP-APrsNBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid%E2%80%93Liquid+Extraction+of+Formic+Acid+with+2-Methyltetrahydrofuran%3A+Experiments%2C+Process+Modeling%2C+and+Economics&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Laitinen%2C+Antero+T&rft.au=Parsana%2C+Vyomesh+M.&rft.au=Jauhiainen%2C+Olli&rft.au=Huotari%2C+Marco&rft.date=2021-04-21&rft.issn=1520-5045&rft.volume=60&rft.issue=15+p.5588-5599&rft.spage=5588&rft.epage=5599&rft_id=info:doi/10.1021%2Facs.iecr.1c00159&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon