Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface
Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the memb...
Saved in:
Published in | The journal of physical chemistry. B Vol. 125; no. 38; pp. 10748 - 10758 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
30.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/acs.jpcb.1c06054 |
Cover
Abstract | Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface. |
---|---|
AbstractList | Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface.Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface. Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface. Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface. |
Author | Lanzani, Guglielmo D’Andrea, Cosimo Bondelli, Gaia Paternò, Giuseppe Maria Chiaravalli, Greta Vurro, Vito Sardar, Samim |
AuthorAffiliation | Politecnico di Milano Center for Nano Science and Technology @PoliMi Department of Physics |
AuthorAffiliation_xml | – name: Center for Nano Science and Technology @PoliMi – name: Department of Physics – name: Politecnico di Milano |
Author_xml | – sequence: 1 givenname: Gaia surname: Bondelli fullname: Bondelli, Gaia organization: Center for Nano Science and Technology @PoliMi – sequence: 2 givenname: Samim orcidid: 0000-0003-1783-6974 surname: Sardar fullname: Sardar, Samim organization: Center for Nano Science and Technology @PoliMi – sequence: 3 givenname: Greta surname: Chiaravalli fullname: Chiaravalli, Greta organization: Center for Nano Science and Technology @PoliMi – sequence: 4 givenname: Vito surname: Vurro fullname: Vurro, Vito organization: Center for Nano Science and Technology @PoliMi – sequence: 5 givenname: Giuseppe Maria orcidid: 0000-0003-2349-566X surname: Paternò fullname: Paternò, Giuseppe Maria email: giuseppe.paterno@iit.it organization: Center for Nano Science and Technology @PoliMi – sequence: 6 givenname: Guglielmo orcidid: 0000-0002-2442-4495 surname: Lanzani fullname: Lanzani, Guglielmo email: guglielmo.lanzani@iit.it organization: Center for Nano Science and Technology @PoliMi – sequence: 7 givenname: Cosimo surname: D’Andrea fullname: D’Andrea, Cosimo email: cosimo.dandrea@polimi.it organization: Center for Nano Science and Technology @PoliMi |
BookMark | eNqFUU1v1DAQtVAR_YA7Rx85sMv4O7kgQVWg0kp7aHu2HNvZuMrawXaQ-u_JdpcDSMBhNDOa955m5l2is5iiR-gtgTUBSj4YW9aPk-3WxIIEwV-gCyIorJZQZ6daEpDn6LKURwAqaCNfoXPGBeUNgwu0vRu8cyHu8CbshopTxPeDz3szjk_4NrrZeoe3U03WTMaGaqL12FRcB4-3eWdisPhzSCFWn3tj_Wv0sjdj8W9O-Qo9fLm5v_622my_3l5_2qwM56yuWtZaInmrBAHnFFiueNcq0lq29J62fQMgelBGge-d6wQTtJeC2b6TTjp2hT4edae523tnfazZjHrKYW_yk04m6N8nMQx6l37ohjdNy-gi8O4kkNP32Zeq96FYP44m-jQXTSWTigGQ5v9QoRjnIGm7QOURanMqJfteH35WQzosEUZNQB-M04tx-mCcPhm3EOEP4q9T_kF5f6Q8T9Kc4_Lwv8N_AtZdrXI |
CitedBy_id | crossref_primary_10_1088_1741_2552_acd870 crossref_primary_10_1007_s12551_022_00943_9 crossref_primary_10_1039_D3CP04386J crossref_primary_10_3389_fbioe_2023_1168667 crossref_primary_10_3390_membranes13050538 crossref_primary_10_1021_acs_nanolett_1c04357 crossref_primary_10_1038_s43246_023_00429_5 crossref_primary_10_1021_acsomega_2c04812 crossref_primary_10_3390_v15091830 |
Cites_doi | 10.1021/acs.langmuir.0c01846 10.1038/42408 10.1016/j.bpj.2009.02.016 10.1063/5.0037109 10.1002/adma.201707292 10.1007/s10895-013-1172-3 10.1016/j.bpj.2018.08.041 10.1038/nphoton.2013.34 10.1007/BF00718783 10.1039/c3tb20213e 10.1016/S0006-3495(97)78887-8 10.1038/nmat4874 10.1103/PhysRevX.8.011043 10.1021/bi00529a002 10.1038/nature08540 10.1021/bi00581a025 10.1016/S0006-3495(85)83775-9 10.1021/acsenergylett.6b00197 10.1126/sciadv.1601699 10.1038/srep22718 10.2147/IJN.S51193 10.1038/nprot.2011.419 10.1083/jcb.125.4.783 10.1016/j.bbamem.2014.01.006 10.1038/ncomms1164 10.1038/srep08911 10.1023/A:1020528716621 10.1002/adhm.201300179 10.1021/la011337x 10.1016/S0006-3495(90)82637-0 10.1016/j.bpj.2012.12.057 10.1021/acs.accounts.6b00517 10.1038/s41565-019-0632-6 10.1021/acs.jpcb.0c09496 10.1016/j.neuron.2015.02.033 10.1016/j.bpj.2012.07.010 10.1083/jcb.200210005 10.1126/science.175.4023.720 10.1529/biophysj.104.057497 10.1007/s00249-003-0281-3 10.1111/j.1749-6632.1981.tb20751.x 10.1002/adfm.200900801 10.1002/adma.201200436 10.1016/S0079-6123(01)30005-5 10.1002/adma.200801283 10.1038/s41467-017-00435-5 10.1002/adpr.202000103 10.1038/s41565-020-0696-3 10.1038/nrm.2017.16 10.1016/S0006-3495(98)77905-6 10.1038/ncomms1742 10.1007/978-3-642-33128-2 10.1002/3527600434.eap674 10.1126/sciadv.aav5265 10.1038/s41598-017-08541-6 10.1021/jp4119309 10.1016/S0006-3495(97)78253-5 10.1562/0031-8655(1999)070<0557:AMFTIO>2.3.CO;2 10.3389/fmats.2020.631567 10.1371/journal.pone.0158313 10.1002/adma.201304368 10.1007/s10895-005-0013-4 10.1038/nrm2330 10.1080/09687860500466857 10.1016/S0006-3495(91)82041-0 10.1021/nl062513v 10.1002/advs.201903241 10.1038/nmat4021 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published by American Chemical Society 2021 The Authors. Published by American Chemical Society 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
DBID | AAYXX CITATION 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.jpcb.1c06054 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 10758 |
ExternalDocumentID | PMC8488932 10_1021_acs_jpcb_1c06054 e52708865 |
GrantInformation_xml | – fundername: ; grantid: 20180979 |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI --- -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ XSW YQT ~02 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a443t-939c16497510dd70c474b9719c30dde29f8005f07a70efddb5352f653cfb6d6d3 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Tue Sep 30 16:58:34 EDT 2025 Wed Oct 01 15:08:25 EDT 2025 Thu Jul 10 19:24:29 EDT 2025 Tue Jul 01 04:08:21 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 Sat Oct 02 10:53:52 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a443t-939c16497510dd70c474b9719c30dde29f8005f07a70efddb5352f653cfb6d6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2442-4495 0000-0003-2349-566X 0000-0003-1783-6974 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8488932 |
PMID | 34524830 |
PQID | 2573440629 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8488932 proquest_miscellaneous_2636730018 proquest_miscellaneous_2573440629 crossref_citationtrail_10_1021_acs_jpcb_1c06054 crossref_primary_10_1021_acs_jpcb_1c06054 acs_journals_10_1021_acs_jpcb_1c06054 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-30 |
PublicationDateYYYYMMDD | 2021-09-30 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 Heimburg T. (ref29/cit29) 2008 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 Mély Y. (ref55/cit55) 2013 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1021/acs.langmuir.0c01846 – ident: ref39/cit39 doi: 10.1038/42408 – ident: ref66/cit66 doi: 10.1016/j.bpj.2009.02.016 – ident: ref2/cit2 doi: 10.1063/5.0037109 – ident: ref19/cit19 doi: 10.1002/adma.201707292 – ident: ref58/cit58 doi: 10.1007/s10895-013-1172-3 – ident: ref59/cit59 doi: 10.1016/j.bpj.2018.08.041 – ident: ref10/cit10 doi: 10.1038/nphoton.2013.34 – ident: ref50/cit50 doi: 10.1007/BF00718783 – ident: ref8/cit8 doi: 10.1039/c3tb20213e – ident: ref53/cit53 doi: 10.1016/S0006-3495(97)78887-8 – ident: ref18/cit18 doi: 10.1038/nmat4874 – ident: ref28/cit28 doi: 10.1103/PhysRevX.8.011043 – ident: ref32/cit32 doi: 10.1021/bi00529a002 – ident: ref23/cit23 doi: 10.1038/nature08540 – ident: ref43/cit43 doi: 10.1021/bi00581a025 – ident: ref64/cit64 doi: 10.1016/S0006-3495(85)83775-9 – ident: ref67/cit67 doi: 10.1021/acsenergylett.6b00197 – ident: ref22/cit22 doi: 10.1126/sciadv.1601699 – ident: ref17/cit17 doi: 10.1038/srep22718 – ident: ref7/cit7 doi: 10.2147/IJN.S51193 – ident: ref31/cit31 doi: 10.1038/nprot.2011.419 – ident: ref33/cit33 doi: 10.1083/jcb.125.4.783 – ident: ref36/cit36 doi: 10.1016/j.bbamem.2014.01.006 – ident: ref11/cit11 doi: 10.1038/ncomms1164 – ident: ref16/cit16 doi: 10.1038/srep08911 – ident: ref45/cit45 doi: 10.1023/A:1020528716621 – ident: ref9/cit9 doi: 10.1002/adhm.201300179 – ident: ref62/cit62 doi: 10.1021/la011337x – ident: ref54/cit54 doi: 10.1016/S0006-3495(90)82637-0 – ident: ref57/cit57 doi: 10.1016/j.bpj.2012.12.057 – volume-title: Thermal Biophysics of Membranes year: 2008 ident: ref29/cit29 – ident: ref49/cit49 doi: 10.1021/acs.accounts.6b00517 – ident: ref3/cit3 doi: 10.1038/s41565-019-0632-6 – ident: ref38/cit38 doi: 10.1021/acs.jpcb.0c09496 – ident: ref26/cit26 doi: 10.1016/j.neuron.2015.02.033 – ident: ref30/cit30 doi: 10.1016/j.bpj.2012.07.010 – ident: ref42/cit42 doi: 10.1083/jcb.200210005 – ident: ref35/cit35 doi: 10.1126/science.175.4023.720 – ident: ref47/cit47 doi: 10.1529/biophysj.104.057497 – ident: ref65/cit65 doi: 10.1007/s00249-003-0281-3 – ident: ref44/cit44 doi: 10.1111/j.1749-6632.1981.tb20751.x – ident: ref63/cit63 doi: 10.1002/adfm.200900801 – ident: ref68/cit68 doi: 10.1002/adma.201200436 – ident: ref1/cit1 doi: 10.1016/S0079-6123(01)30005-5 – ident: ref12/cit12 doi: 10.1002/adma.200801283 – ident: ref27/cit27 doi: 10.1038/s41467-017-00435-5 – ident: ref24/cit24 doi: 10.1002/adpr.202000103 – ident: ref21/cit21 doi: 10.1038/s41565-020-0696-3 – ident: ref37/cit37 doi: 10.1038/nrm.2017.16 – ident: ref51/cit51 doi: 10.1016/S0006-3495(98)77905-6 – ident: ref6/cit6 doi: 10.1038/ncomms1742 – volume-title: Fluorescent Methods to Study Biological Membranes year: 2013 ident: ref55/cit55 doi: 10.1007/978-3-642-33128-2 – ident: ref40/cit40 doi: 10.1002/3527600434.eap674 – ident: ref20/cit20 doi: 10.1126/sciadv.aav5265 – ident: ref69/cit69 doi: 10.1038/s41598-017-08541-6 – ident: ref34/cit34 doi: 10.1021/jp4119309 – ident: ref46/cit46 doi: 10.1016/S0006-3495(97)78253-5 – ident: ref52/cit52 doi: 10.1562/0031-8655(1999)070<0557:AMFTIO>2.3.CO;2 – ident: ref25/cit25 doi: 10.3389/fmats.2020.631567 – ident: ref60/cit60 doi: 10.1371/journal.pone.0158313 – ident: ref15/cit15 doi: 10.1002/adma.201304368 – ident: ref61/cit61 doi: 10.1007/s10895-005-0013-4 – ident: ref41/cit41 doi: 10.1038/nrm2330 – ident: ref56/cit56 doi: 10.1080/09687860500466857 – ident: ref48/cit48 doi: 10.1016/S0006-3495(91)82041-0 – ident: ref14/cit14 doi: 10.1021/nl062513v – ident: ref4/cit4 doi: 10.1002/advs.201903241 – ident: ref13/cit13 doi: 10.1038/nmat4021 |
SSID | ssj0025286 |
Score | 2.4312959 |
Snippet | Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell... Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10748 |
SubjectTerms | B: Biomaterials and Membranes capacitance cell membranes fluorescence geometry physical chemistry polymers semiconductors spectroscopy temperature thermal energy viscosity |
Title | Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface |
URI | http://dx.doi.org/10.1021/acs.jpcb.1c06054 https://www.proquest.com/docview/2573440629 https://www.proquest.com/docview/2636730018 https://pubmed.ncbi.nlm.nih.gov/PMC8488932 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025286 issn: 1520-6106 databaseCode: ACS dateStart: 19970101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYGO8BlYwO0wkBGgsMOKXHsOPGxVEMVGnBgSNwi-9kWZVVakfQw_nqe07RQNlUc88OJ8vzs73t6L98j5FghZBvgPoKYm0hYaSOTg4tkrHKd4ije9Dq8vJKDW3Fxl969yOS8zeAn7FRD1X2YgOkyiJF7izXyMZE5C4FWr3-zCK7SpOnqiHAUwqF4npL83xMCEEG1DEQv7HK5NvIV2Jx_nnUtqhqNwlBj8qc7rU0Xnv5VcHzHd2yRTy3npL2Zk3whH1z5lWz0563etsn1zb2zAcTorxCr03FJ0X1wyx6N_tLQ3AOcpdeTGnEPQ-xhHTyF6poieaSznzmBng3HQXri0WtwO-T2_Ofv_iBqOy1EWgheR4orwLhJZbhCrc1iEJkwKmMKOB67RHnklamPM53FzltrgiiMlykHbyTOL98l6-W4dN8ITbXl1jMBXmiRe6ks45BwybXSOdNZh5ygJYp2pVRFkwRPWNGcRPMUrXk65HQ-PQW0cuWha8ZoxYgfixGTmVTHinuP5jNeoK1DkkSXbjytCtzCuECWk6gV90gug84_yzskW3KXxYuDavfylXJ436h357hlImnee6cd9slmEspomhKV72S9fpy6A-RBtTlsFsAzx_wFbA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8la3vIwEBw7ZxrHjxEdYUS2wbSXaSr1FfqoLq-yqyR7g1zP2JlsWoRUc49iOM37MN5rxNwBvJKpsbZhPTMp0wq2wiS6NS0QqS5VjKxZzHZ6civEl_3yVX-0A7e_C4CAa7KmJTvxbdgF6FMq-LYweUpMiBOd34G4kQgloaHS-trHyLCZ3RK0UrKK090z-rYegj0yzqY9uQeZmiORvOuf4PnxdjzaGmnwfLls9ND__IHL8r995APsdAiXvV0vmIey4-hHsjfrEb4_h7Pza2aDSyCRY7mReE1xMeIDPZj9ISPVhnCVnixa1IBrc0zasG6JaglCSrK52GvJhOg9EFDdeGfcELo8_XozGSZd3IVGcszaRTBq0omSB-9XaIjW84FoWVBqGzy6THlFm7tNCFanz1upAEeNFzozXAmebPYXdel67AyC5ssx6yo3nipdeSEuZyZhgSqqSqmIAb1ESVbdvmiq6xDNaxUIUT9WJZwBH_SxVpiMvDzk0ZltavFu3WKyIO7bUfd1PfIWyDi4TVbv5sqnwQGMcMU8mt9QRTATWf1oOoNhYNesPBw7vzTf19DpyeZd4gCKEPvxHObyCvfHFyaSafDr98gzuZSHAJgavPIfd9mbpXiBCavXLuCd-AVSFDdc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NIcFeGDAQHRszEjzwkC6JHSd-ZB3VBmNDGpv2Fvmn1q1KqyV9gL-es5sUOqEKHuPYjnO-830n298BvBPospWmLtIxVREz3ESq0DbisShkhq1oyHX49ZQfXbDPV9nVGmTdXRgcRI091WET31v11LiWYSDZ9-U3U636iY4RhrMH8DDzDHAeEQ3OF3FWloYEj-iZfGQUd7uTf-vB-yRdL_uk30Bz-ZjkH35nuAmXixGH4ya3_Vmj-vrnPTLH__6lp_CkRaLk41x1nsGarZ7D40GXAG4Lzs6vrfGujZz4CJ5MKoJKhQv5ePyD-JQf2hpyNm3QG2LgPWq8_hDZEISUZH7FU5OD0cQTUtw5qe0LuBh--j44itr8C5FkjDaRoEJjNCVytFtj8liznCmRJ0JTfLapcIg2MxfnMo-tM0Z5qhjHM6qd4jjr9CWsV5PKvgKSSUONS5h2TLLCcWESqlPKqRSySGTeg_coibK1n7oMW-NpUoZCFE_ZiqcH-91MlbolMfe5NMYrWnxYtJjOCTxW1H3bTX6JsvZbJ7Kyk1ld4sJGGWKfVKyowyn37P9J0YN8SXMWH_Zc3stvqtF14PQucCFFKL39j3LYg0ffDoflyfHpl9ewkfpzNuEMyw6sN3czu4tAqVFvgln8AtusEFE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shedding+Light+on+Thermally+Induced+Optocapacitance+at+the+Organic+Biointerface&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Bondelli%2C+Gaia&rft.au=Sardar%2C+Samim&rft.au=Chiaravalli%2C+Greta&rft.au=Vurro%2C+Vito&rft.date=2021-09-30&rft.issn=1520-5207&rft.volume=125&rft.issue=38+p.10748-10758&rft.spage=10748&rft.epage=10758&rft_id=info:doi/10.1021%2Facs.jpcb.1c06054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |