Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface

Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the memb...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 125; no. 38; pp. 10748 - 10758
Main Authors Bondelli, Gaia, Sardar, Samim, Chiaravalli, Greta, Vurro, Vito, Paternò, Giuseppe Maria, Lanzani, Guglielmo, D’Andrea, Cosimo
Format Journal Article
LanguageEnglish
Published American Chemical Society 30.09.2021
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/acs.jpcb.1c06054

Cover

Abstract Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface.
AbstractList Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface.Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface.
Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface.
Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell membrane. In turn, this leads to the modulation of the membrane electrical capacitance that is assigned to a geometrical modification of the membrane structure. However, the nature of such a change is not understood. In this work, we employ an all-optical spectroscopic approach, based on the use of fluorescent probes, to monitor the membrane polarity, viscosity, and order directly in living cells under thermal excitation transduced by a photoexcited polymer film. We report two major results. First, we show that rising temperature does not just change the geometry of the membrane but indeed it affects the membrane dielectric characteristics by water penetration. Second, we find an additional effect, which is peculiar for the photoexcited semiconducting polymer film, that contributes to the system perturbation and that we tentatively assigned to the photoinduced polarization of the polymer interface.
Author Lanzani, Guglielmo
D’Andrea, Cosimo
Bondelli, Gaia
Paternò, Giuseppe Maria
Chiaravalli, Greta
Vurro, Vito
Sardar, Samim
AuthorAffiliation Politecnico di Milano
Center for Nano Science and Technology @PoliMi
Department of Physics
AuthorAffiliation_xml – name: Center for Nano Science and Technology @PoliMi
– name: Department of Physics
– name: Politecnico di Milano
Author_xml – sequence: 1
  givenname: Gaia
  surname: Bondelli
  fullname: Bondelli, Gaia
  organization: Center for Nano Science and Technology @PoliMi
– sequence: 2
  givenname: Samim
  orcidid: 0000-0003-1783-6974
  surname: Sardar
  fullname: Sardar, Samim
  organization: Center for Nano Science and Technology @PoliMi
– sequence: 3
  givenname: Greta
  surname: Chiaravalli
  fullname: Chiaravalli, Greta
  organization: Center for Nano Science and Technology @PoliMi
– sequence: 4
  givenname: Vito
  surname: Vurro
  fullname: Vurro, Vito
  organization: Center for Nano Science and Technology @PoliMi
– sequence: 5
  givenname: Giuseppe Maria
  orcidid: 0000-0003-2349-566X
  surname: Paternò
  fullname: Paternò, Giuseppe Maria
  email: giuseppe.paterno@iit.it
  organization: Center for Nano Science and Technology @PoliMi
– sequence: 6
  givenname: Guglielmo
  orcidid: 0000-0002-2442-4495
  surname: Lanzani
  fullname: Lanzani, Guglielmo
  email: guglielmo.lanzani@iit.it
  organization: Center for Nano Science and Technology @PoliMi
– sequence: 7
  givenname: Cosimo
  surname: D’Andrea
  fullname: D’Andrea, Cosimo
  email: cosimo.dandrea@polimi.it
  organization: Center for Nano Science and Technology @PoliMi
BookMark eNqFUU1v1DAQtVAR_YA7Rx85sMv4O7kgQVWg0kp7aHu2HNvZuMrawXaQ-u_JdpcDSMBhNDOa955m5l2is5iiR-gtgTUBSj4YW9aPk-3WxIIEwV-gCyIorJZQZ6daEpDn6LKURwAqaCNfoXPGBeUNgwu0vRu8cyHu8CbshopTxPeDz3szjk_4NrrZeoe3U03WTMaGaqL12FRcB4-3eWdisPhzSCFWn3tj_Wv0sjdj8W9O-Qo9fLm5v_622my_3l5_2qwM56yuWtZaInmrBAHnFFiueNcq0lq29J62fQMgelBGge-d6wQTtJeC2b6TTjp2hT4edae523tnfazZjHrKYW_yk04m6N8nMQx6l37ohjdNy-gi8O4kkNP32Zeq96FYP44m-jQXTSWTigGQ5v9QoRjnIGm7QOURanMqJfteH35WQzosEUZNQB-M04tx-mCcPhm3EOEP4q9T_kF5f6Q8T9Kc4_Lwv8N_AtZdrXI
CitedBy_id crossref_primary_10_1088_1741_2552_acd870
crossref_primary_10_1007_s12551_022_00943_9
crossref_primary_10_1039_D3CP04386J
crossref_primary_10_3389_fbioe_2023_1168667
crossref_primary_10_3390_membranes13050538
crossref_primary_10_1021_acs_nanolett_1c04357
crossref_primary_10_1038_s43246_023_00429_5
crossref_primary_10_1021_acsomega_2c04812
crossref_primary_10_3390_v15091830
Cites_doi 10.1021/acs.langmuir.0c01846
10.1038/42408
10.1016/j.bpj.2009.02.016
10.1063/5.0037109
10.1002/adma.201707292
10.1007/s10895-013-1172-3
10.1016/j.bpj.2018.08.041
10.1038/nphoton.2013.34
10.1007/BF00718783
10.1039/c3tb20213e
10.1016/S0006-3495(97)78887-8
10.1038/nmat4874
10.1103/PhysRevX.8.011043
10.1021/bi00529a002
10.1038/nature08540
10.1021/bi00581a025
10.1016/S0006-3495(85)83775-9
10.1021/acsenergylett.6b00197
10.1126/sciadv.1601699
10.1038/srep22718
10.2147/IJN.S51193
10.1038/nprot.2011.419
10.1083/jcb.125.4.783
10.1016/j.bbamem.2014.01.006
10.1038/ncomms1164
10.1038/srep08911
10.1023/A:1020528716621
10.1002/adhm.201300179
10.1021/la011337x
10.1016/S0006-3495(90)82637-0
10.1016/j.bpj.2012.12.057
10.1021/acs.accounts.6b00517
10.1038/s41565-019-0632-6
10.1021/acs.jpcb.0c09496
10.1016/j.neuron.2015.02.033
10.1016/j.bpj.2012.07.010
10.1083/jcb.200210005
10.1126/science.175.4023.720
10.1529/biophysj.104.057497
10.1007/s00249-003-0281-3
10.1111/j.1749-6632.1981.tb20751.x
10.1002/adfm.200900801
10.1002/adma.201200436
10.1016/S0079-6123(01)30005-5
10.1002/adma.200801283
10.1038/s41467-017-00435-5
10.1002/adpr.202000103
10.1038/s41565-020-0696-3
10.1038/nrm.2017.16
10.1016/S0006-3495(98)77905-6
10.1038/ncomms1742
10.1007/978-3-642-33128-2
10.1002/3527600434.eap674
10.1126/sciadv.aav5265
10.1038/s41598-017-08541-6
10.1021/jp4119309
10.1016/S0006-3495(97)78253-5
10.1562/0031-8655(1999)070<0557:AMFTIO>2.3.CO;2
10.3389/fmats.2020.631567
10.1371/journal.pone.0158313
10.1002/adma.201304368
10.1007/s10895-005-0013-4
10.1038/nrm2330
10.1080/09687860500466857
10.1016/S0006-3495(91)82041-0
10.1021/nl062513v
10.1002/advs.201903241
10.1038/nmat4021
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
7X8
7S9
L.6
5PM
DOI 10.1021/acs.jpcb.1c06054
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 10758
ExternalDocumentID PMC8488932
10_1021_acs_jpcb_1c06054
e52708865
GrantInformation_xml – fundername: ;
  grantid: 20180979
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
XSW
YQT
~02
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a443t-939c16497510dd70c474b9719c30dde29f8005f07a70efddb5352f653cfb6d6d3
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Tue Sep 30 16:58:34 EDT 2025
Wed Oct 01 15:08:25 EDT 2025
Thu Jul 10 19:24:29 EDT 2025
Tue Jul 01 04:08:21 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Sat Oct 02 10:53:52 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a443t-939c16497510dd70c474b9719c30dde29f8005f07a70efddb5352f653cfb6d6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2442-4495
0000-0003-2349-566X
0000-0003-1783-6974
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8488932
PMID 34524830
PQID 2573440629
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8488932
proquest_miscellaneous_2636730018
proquest_miscellaneous_2573440629
crossref_citationtrail_10_1021_acs_jpcb_1c06054
crossref_primary_10_1021_acs_jpcb_1c06054
acs_journals_10_1021_acs_jpcb_1c06054
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-30
PublicationDateYYYYMMDD 2021-09-30
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-30
  day: 30
PublicationDecade 2020
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
Heimburg T. (ref29/cit29) 2008
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
Mély Y. (ref55/cit55) 2013
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1021/acs.langmuir.0c01846
– ident: ref39/cit39
  doi: 10.1038/42408
– ident: ref66/cit66
  doi: 10.1016/j.bpj.2009.02.016
– ident: ref2/cit2
  doi: 10.1063/5.0037109
– ident: ref19/cit19
  doi: 10.1002/adma.201707292
– ident: ref58/cit58
  doi: 10.1007/s10895-013-1172-3
– ident: ref59/cit59
  doi: 10.1016/j.bpj.2018.08.041
– ident: ref10/cit10
  doi: 10.1038/nphoton.2013.34
– ident: ref50/cit50
  doi: 10.1007/BF00718783
– ident: ref8/cit8
  doi: 10.1039/c3tb20213e
– ident: ref53/cit53
  doi: 10.1016/S0006-3495(97)78887-8
– ident: ref18/cit18
  doi: 10.1038/nmat4874
– ident: ref28/cit28
  doi: 10.1103/PhysRevX.8.011043
– ident: ref32/cit32
  doi: 10.1021/bi00529a002
– ident: ref23/cit23
  doi: 10.1038/nature08540
– ident: ref43/cit43
  doi: 10.1021/bi00581a025
– ident: ref64/cit64
  doi: 10.1016/S0006-3495(85)83775-9
– ident: ref67/cit67
  doi: 10.1021/acsenergylett.6b00197
– ident: ref22/cit22
  doi: 10.1126/sciadv.1601699
– ident: ref17/cit17
  doi: 10.1038/srep22718
– ident: ref7/cit7
  doi: 10.2147/IJN.S51193
– ident: ref31/cit31
  doi: 10.1038/nprot.2011.419
– ident: ref33/cit33
  doi: 10.1083/jcb.125.4.783
– ident: ref36/cit36
  doi: 10.1016/j.bbamem.2014.01.006
– ident: ref11/cit11
  doi: 10.1038/ncomms1164
– ident: ref16/cit16
  doi: 10.1038/srep08911
– ident: ref45/cit45
  doi: 10.1023/A:1020528716621
– ident: ref9/cit9
  doi: 10.1002/adhm.201300179
– ident: ref62/cit62
  doi: 10.1021/la011337x
– ident: ref54/cit54
  doi: 10.1016/S0006-3495(90)82637-0
– ident: ref57/cit57
  doi: 10.1016/j.bpj.2012.12.057
– volume-title: Thermal Biophysics of Membranes
  year: 2008
  ident: ref29/cit29
– ident: ref49/cit49
  doi: 10.1021/acs.accounts.6b00517
– ident: ref3/cit3
  doi: 10.1038/s41565-019-0632-6
– ident: ref38/cit38
  doi: 10.1021/acs.jpcb.0c09496
– ident: ref26/cit26
  doi: 10.1016/j.neuron.2015.02.033
– ident: ref30/cit30
  doi: 10.1016/j.bpj.2012.07.010
– ident: ref42/cit42
  doi: 10.1083/jcb.200210005
– ident: ref35/cit35
  doi: 10.1126/science.175.4023.720
– ident: ref47/cit47
  doi: 10.1529/biophysj.104.057497
– ident: ref65/cit65
  doi: 10.1007/s00249-003-0281-3
– ident: ref44/cit44
  doi: 10.1111/j.1749-6632.1981.tb20751.x
– ident: ref63/cit63
  doi: 10.1002/adfm.200900801
– ident: ref68/cit68
  doi: 10.1002/adma.201200436
– ident: ref1/cit1
  doi: 10.1016/S0079-6123(01)30005-5
– ident: ref12/cit12
  doi: 10.1002/adma.200801283
– ident: ref27/cit27
  doi: 10.1038/s41467-017-00435-5
– ident: ref24/cit24
  doi: 10.1002/adpr.202000103
– ident: ref21/cit21
  doi: 10.1038/s41565-020-0696-3
– ident: ref37/cit37
  doi: 10.1038/nrm.2017.16
– ident: ref51/cit51
  doi: 10.1016/S0006-3495(98)77905-6
– ident: ref6/cit6
  doi: 10.1038/ncomms1742
– volume-title: Fluorescent Methods to Study Biological Membranes
  year: 2013
  ident: ref55/cit55
  doi: 10.1007/978-3-642-33128-2
– ident: ref40/cit40
  doi: 10.1002/3527600434.eap674
– ident: ref20/cit20
  doi: 10.1126/sciadv.aav5265
– ident: ref69/cit69
  doi: 10.1038/s41598-017-08541-6
– ident: ref34/cit34
  doi: 10.1021/jp4119309
– ident: ref46/cit46
  doi: 10.1016/S0006-3495(97)78253-5
– ident: ref52/cit52
  doi: 10.1562/0031-8655(1999)070<0557:AMFTIO>2.3.CO;2
– ident: ref25/cit25
  doi: 10.3389/fmats.2020.631567
– ident: ref60/cit60
  doi: 10.1371/journal.pone.0158313
– ident: ref15/cit15
  doi: 10.1002/adma.201304368
– ident: ref61/cit61
  doi: 10.1007/s10895-005-0013-4
– ident: ref41/cit41
  doi: 10.1038/nrm2330
– ident: ref56/cit56
  doi: 10.1080/09687860500466857
– ident: ref48/cit48
  doi: 10.1016/S0006-3495(91)82041-0
– ident: ref14/cit14
  doi: 10.1021/nl062513v
– ident: ref4/cit4
  doi: 10.1002/advs.201903241
– ident: ref13/cit13
  doi: 10.1038/nmat4021
SSID ssj0025286
Score 2.4312959
Snippet Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell...
Photothermal perturbation of the cell membrane is typically achieved using transducers that convert light into thermal energy, eventually heating the cell...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10748
SubjectTerms B: Biomaterials and Membranes
capacitance
cell membranes
fluorescence
geometry
physical chemistry
polymers
semiconductors
spectroscopy
temperature
thermal energy
viscosity
Title Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface
URI http://dx.doi.org/10.1021/acs.jpcb.1c06054
https://www.proquest.com/docview/2573440629
https://www.proquest.com/docview/2636730018
https://pubmed.ncbi.nlm.nih.gov/PMC8488932
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025286
  issn: 1520-6106
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYGO8BlYwO0wkBGgsMOKXHsOPGxVEMVGnBgSNwi-9kWZVVakfQw_nqe07RQNlUc88OJ8vzs73t6L98j5FghZBvgPoKYm0hYaSOTg4tkrHKd4ije9Dq8vJKDW3Fxl969yOS8zeAn7FRD1X2YgOkyiJF7izXyMZE5C4FWr3-zCK7SpOnqiHAUwqF4npL83xMCEEG1DEQv7HK5NvIV2Jx_nnUtqhqNwlBj8qc7rU0Xnv5VcHzHd2yRTy3npL2Zk3whH1z5lWz0563etsn1zb2zAcTorxCr03FJ0X1wyx6N_tLQ3AOcpdeTGnEPQ-xhHTyF6poieaSznzmBng3HQXri0WtwO-T2_Ofv_iBqOy1EWgheR4orwLhJZbhCrc1iEJkwKmMKOB67RHnklamPM53FzltrgiiMlykHbyTOL98l6-W4dN8ITbXl1jMBXmiRe6ks45BwybXSOdNZh5ygJYp2pVRFkwRPWNGcRPMUrXk65HQ-PQW0cuWha8ZoxYgfixGTmVTHinuP5jNeoK1DkkSXbjytCtzCuECWk6gV90gug84_yzskW3KXxYuDavfylXJ436h357hlImnee6cd9slmEspomhKV72S9fpy6A-RBtTlsFsAzx_wFbA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8la3vIwEBw7ZxrHjxEdYUS2wbSXaSr1FfqoLq-yqyR7g1zP2JlsWoRUc49iOM37MN5rxNwBvJKpsbZhPTMp0wq2wiS6NS0QqS5VjKxZzHZ6civEl_3yVX-0A7e_C4CAa7KmJTvxbdgF6FMq-LYweUpMiBOd34G4kQgloaHS-trHyLCZ3RK0UrKK090z-rYegj0yzqY9uQeZmiORvOuf4PnxdjzaGmnwfLls9ND__IHL8r995APsdAiXvV0vmIey4-hHsjfrEb4_h7Pza2aDSyCRY7mReE1xMeIDPZj9ISPVhnCVnixa1IBrc0zasG6JaglCSrK52GvJhOg9EFDdeGfcELo8_XozGSZd3IVGcszaRTBq0omSB-9XaIjW84FoWVBqGzy6THlFm7tNCFanz1upAEeNFzozXAmebPYXdel67AyC5ssx6yo3nipdeSEuZyZhgSqqSqmIAb1ESVbdvmiq6xDNaxUIUT9WJZwBH_SxVpiMvDzk0ZltavFu3WKyIO7bUfd1PfIWyDi4TVbv5sqnwQGMcMU8mt9QRTATWf1oOoNhYNesPBw7vzTf19DpyeZd4gCKEPvxHObyCvfHFyaSafDr98gzuZSHAJgavPIfd9mbpXiBCavXLuCd-AVSFDdc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NIcFeGDAQHRszEjzwkC6JHSd-ZB3VBmNDGpv2Fvmn1q1KqyV9gL-es5sUOqEKHuPYjnO-830n298BvBPospWmLtIxVREz3ESq0DbisShkhq1oyHX49ZQfXbDPV9nVGmTdXRgcRI091WET31v11LiWYSDZ9-U3U636iY4RhrMH8DDzDHAeEQ3OF3FWloYEj-iZfGQUd7uTf-vB-yRdL_uk30Bz-ZjkH35nuAmXixGH4ya3_Vmj-vrnPTLH__6lp_CkRaLk41x1nsGarZ7D40GXAG4Lzs6vrfGujZz4CJ5MKoJKhQv5ePyD-JQf2hpyNm3QG2LgPWq8_hDZEISUZH7FU5OD0cQTUtw5qe0LuBh--j44itr8C5FkjDaRoEJjNCVytFtj8liznCmRJ0JTfLapcIg2MxfnMo-tM0Z5qhjHM6qd4jjr9CWsV5PKvgKSSUONS5h2TLLCcWESqlPKqRSySGTeg_coibK1n7oMW-NpUoZCFE_ZiqcH-91MlbolMfe5NMYrWnxYtJjOCTxW1H3bTX6JsvZbJ7Kyk1ld4sJGGWKfVKyowyn37P9J0YN8SXMWH_Zc3stvqtF14PQucCFFKL39j3LYg0ffDoflyfHpl9ewkfpzNuEMyw6sN3czu4tAqVFvgln8AtusEFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shedding+Light+on+Thermally+Induced+Optocapacitance+at+the+Organic+Biointerface&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Bondelli%2C+Gaia&rft.au=Sardar%2C+Samim&rft.au=Chiaravalli%2C+Greta&rft.au=Vurro%2C+Vito&rft.date=2021-09-30&rft.issn=1520-5207&rft.volume=125&rft.issue=38+p.10748-10758&rft.spage=10748&rft.epage=10758&rft_id=info:doi/10.1021%2Facs.jpcb.1c06054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon