Rapid Detection of SARS-CoV‑2 Variants Using an Angiotensin-Converting Enzyme 2‑Based Surface-Enhanced Raman Spectroscopy Sensor Enhanced by CoVari Deep Learning Algorithms

An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS sp...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 9; no. 6; pp. 3158 - 3169
Main Authors Yang, Yanjun, Cui, Jiaheng, Luo, Dan, Murray, Jackelyn, Chen, Xianyan, Hülck, Sebastian, Tripp, Ralph A., Zhao, Yiping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.06.2024
Subjects
Online AccessGet full text
ISSN2379-3694
2379-3694
DOI10.1021/acssensors.4c00488

Cover

Abstract An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R 2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
AbstractList An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R 2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
Author Cui, Jiaheng
Luo, Dan
Tripp, Ralph A.
Zhao, Yiping
Yang, Yanjun
Chen, Xianyan
Hülck, Sebastian
Murray, Jackelyn
AuthorAffiliation School of Electrical and Computer Engineering, College of Engineering
The University of Georgia
Department of Statistics
Department of Physics and Astronomy
Department of Infectious Diseases, College of Veterinary Medicine
Department of Epidemiology & Biostatistics, College of Public Health
Tec5USA Inc
AuthorAffiliation_xml – name: School of Electrical and Computer Engineering, College of Engineering
– name: The University of Georgia
– name: Department of Physics and Astronomy
– name: Department of Statistics
– name: Department of Infectious Diseases, College of Veterinary Medicine
– name: Tec5USA Inc
– name: Department of Epidemiology & Biostatistics, College of Public Health
Author_xml – sequence: 1
  givenname: Yanjun
  orcidid: 0000-0002-1822-7364
  surname: Yang
  fullname: Yang, Yanjun
  email: YanjunYang@uga.edu
  organization: The University of Georgia
– sequence: 2
  givenname: Jiaheng
  surname: Cui
  fullname: Cui, Jiaheng
  organization: School of Electrical and Computer Engineering, College of Engineering
– sequence: 3
  givenname: Dan
  surname: Luo
  fullname: Luo, Dan
  organization: The University of Georgia
– sequence: 4
  givenname: Jackelyn
  surname: Murray
  fullname: Murray, Jackelyn
  organization: The University of Georgia
– sequence: 5
  givenname: Xianyan
  surname: Chen
  fullname: Chen, Xianyan
  organization: The University of Georgia
– sequence: 6
  givenname: Sebastian
  surname: Hülck
  fullname: Hülck, Sebastian
  organization: Tec5USA Inc
– sequence: 7
  givenname: Ralph A.
  surname: Tripp
  fullname: Tripp, Ralph A.
  organization: The University of Georgia
– sequence: 8
  givenname: Yiping
  orcidid: 0000-0002-3710-4159
  surname: Zhao
  fullname: Zhao, Yiping
  email: zhaoy@uga.edu
  organization: The University of Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38843447$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhUeoiJbSF2CBvGQzwfZ4_lYopCkgRUJKaLfWHc-dxNWMPdgzRWHVV-BNeCaeBIeEtrCoWNnyPd891z5-Hh0ZazCKXjI6YZSzN6C8R-Ot8xOhKBVF8SQ64UlexklWiqMH--PozPtrSilLM54W9Fl0nBSFSITIT6IfS-h1Tc5xQDVoa4htyGq6XMUze_Xz9jsnV-A0mMGTS6_NmoAhU7PWdgje2gSVuUE37Cpz823bIeGBegcea7IaXQMK47nZgFHhYAldwFd9cHLWK9tvyer3FcidpNqSYBwsw0TYkwWCM7vm03ZtnR42nX8RPW2g9Xh2WE-jy4v559mHePHp_cfZdBGDEHyIoeS8ajDHVKSAaZaoqkkrlpaCM1HWDQcGleA8r1HlBRYUeMpVxqq6KagqWXIaJfu-o-lh-xXaVvZOd-C2klG5i0DeRyAPEQTq7Z7qx6rDWqEZHNyTFrT8u2L0Rq7tjWSMs7xMROjw-tDB2S8j-kF22itsWzBoRy8TmqVlnmfpzuzVQ7M7lz_pBgHfC1R4b--w-b8rFP9ASg-w-xthYN0-jk72aKjJazs6ExJ6DPgFjIHlyw
CitedBy_id crossref_primary_10_1021_acsami_4c19603
crossref_primary_10_3390_bios14070356
crossref_primary_10_1002_bit_28956
Cites_doi 10.1126/science.275.5303.1102
10.1016/j.snb.2022.131604
10.1016/j.watres.2021.117243
10.1073/pnas.2118836119
10.1021/acsabm.2c00573
10.1103/PhysRevB.78.075436
10.1016/j.bios.2022.114379
10.1007/s40820-021-00620-8
10.1016/j.bios.2022.114721
10.1039/D4SD00014E
10.1021/jp1001644
10.1039/D2NR01277D
10.3390/s21134617
10.1056/NEJMc2016359
10.1021/jp075288u
10.1021/jp902142y
10.1038/s41598-021-97658-w
10.1007/s00134-020-05985-9
10.1016/j.aca.2022.340651
10.1021/la203772u
10.1021/acssensors.1c01344
10.1023/A:1010933404324
10.1016/j.bios.2022.114200
10.1038/nature14539
10.3389/fcimb.2020.587269
10.1021/acssensors.2c02194
10.1128/jvi.02059-16
10.1016/j.jcv.2021.104906
10.1109/ICEngTechnol.2017.8308186
10.1016/S1473-3099(20)30113-4
10.1016/j.bios.2021.113004
10.1016/j.snb.2022.131974
10.1128/jvi.73.9.7099-7107.1999
10.1038/s41579-022-00841-7
10.1103/PhysRevLett.78.1667
10.1039/D3CS00540B
10.1016/j.talanta.2022.123813
10.1021/acs.nanolett.1c04722
10.1016/j.bios.2021.113421
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acssensors.4c00488
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-3694
EndPage 3169
ExternalDocumentID 10.1021/acssensors.4c00488
PMC11217934
38843447
10_1021_acssensors_4c00488
e77830638
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID 53G
ABFRP
ABJNI
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-a442t-a922bfe7e545ae563cbf5b15942149df2a1ab4227dec78e80a252c61bdf80c913
IEDL.DBID UNPAY
ISSN 2379-3694
IngestDate Sun Oct 26 04:11:37 EDT 2025
Tue Sep 30 17:08:20 EDT 2025
Fri Jul 11 15:10:58 EDT 2025
Mon Jul 21 05:50:19 EDT 2025
Tue Jul 01 04:07:33 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Mon Jul 01 06:34:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords angiotensin-converting enzyme 2 (ACE2)
deep learning
surface-enhanced Raman scattering (SERS)
SARS-CoV-2 detection
silver nanorod array
convolutional neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-a922bfe7e545ae563cbf5b15942149df2a1ab4227dec78e80a252c61bdf80c913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3710-4159
0000-0002-1822-7364
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acssensors.4c00488
PMID 38843447
PQID 3065977658
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1021_acssensors_4c00488
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217934
proquest_miscellaneous_3065977658
pubmed_primary_38843447
crossref_primary_10_1021_acssensors_4c00488
crossref_citationtrail_10_1021_acssensors_4c00488
acs_journals_10_1021_acssensors_4c00488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-28
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sensors
PublicationTitleAlternate ACS Sens
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref100/cit100
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
Armbruster D. A. (ref36/cit36) 2008; 29
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
Pedregosa F. (ref31/cit31) 2011; 12
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1126/science.275.5303.1102
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref31/cit31
  publication-title: J. Mach. Learn. Res.
– ident: ref32/cit32
  doi: 10.1016/j.snb.2022.131604
– ident: ref17/cit17
  doi: 10.1016/j.watres.2021.117243
– ident: ref6/cit6
  doi: 10.1073/pnas.2118836119
– ident: ref19/cit19
  doi: 10.1021/acsabm.2c00573
– ident: ref24/cit24
  doi: 10.1103/PhysRevB.78.075436
– ident: ref11/cit11
  doi: 10.1016/j.bios.2022.114379
– ident: ref9/cit9
  doi: 10.1007/s40820-021-00620-8
– ident: ref4/cit4
  doi: 10.1016/j.bios.2022.114721
– ident: ref37/cit37
  doi: 10.1039/D4SD00014E
– ident: ref22/cit22
  doi: 10.1021/jp1001644
– ident: ref30/cit30
  doi: 10.1039/D2NR01277D
– ident: ref20/cit20
  doi: 10.3390/s21134617
– ident: ref39/cit39
  doi: 10.1056/NEJMc2016359
– ident: ref23/cit23
  doi: 10.1021/jp075288u
– ident: ref25/cit25
  doi: 10.1021/jp902142y
– ident: ref28/cit28
  doi: 10.1038/s41598-021-97658-w
– ident: ref14/cit14
  doi: 10.1007/s00134-020-05985-9
– ident: ref21/cit21
  doi: 10.1016/j.aca.2022.340651
– ident: ref26/cit26
  doi: 10.1021/la203772u
– ident: ref16/cit16
  doi: 10.1021/acssensors.1c01344
– ident: ref35/cit35
  doi: 10.1023/A:1010933404324
– ident: ref7/cit7
  doi: 10.1016/j.bios.2022.114200
– ident: ref34/cit34
  doi: 10.1038/nature14539
– ident: ref38/cit38
  doi: 10.3389/fcimb.2020.587269
– volume: 29
  start-page: S49
  issue: 1
  year: 2008
  ident: ref36/cit36
  publication-title: Clin. Biochem. Rev.
– ident: ref8/cit8
  doi: 10.1021/acssensors.2c02194
– ident: ref27/cit27
  doi: 10.1128/jvi.02059-16
– ident: ref13/cit13
  doi: 10.1016/j.jcv.2021.104906
– ident: ref33/cit33
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref40/cit40
  doi: 10.1016/S1473-3099(20)30113-4
– ident: ref1/cit1
  doi: 10.1016/j.bios.2021.113004
– ident: ref18/cit18
  doi: 10.1016/j.snb.2022.131974
– ident: ref29/cit29
  doi: 10.1128/jvi.73.9.7099-7107.1999
– ident: ref12/cit12
  doi: 10.1038/s41579-022-00841-7
– ident: ref2/cit2
  doi: 10.1103/PhysRevLett.78.1667
– ident: ref100/cit100
  doi: 10.1039/D3CS00540B
– ident: ref15/cit15
  doi: 10.1016/j.talanta.2022.123813
– ident: ref5/cit5
  doi: 10.1021/acs.nanolett.1c04722
– ident: ref10/cit10
  doi: 10.1016/j.bios.2021.113421
SSID ssj0001562580
Score 2.3374429
Snippet An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and...
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3158
SubjectTerms Algorithms
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - metabolism
Biosensing Techniques - methods
COVID-19 - diagnosis
COVID-19 - virology
Deep Learning
Humans
Limit of Detection
Metal Nanoparticles - chemistry
SARS-CoV-2 - isolation & purification
Silicon Dioxide - chemistry
Silver - chemistry
Spectrum Analysis, Raman - methods
SummonAdditionalLinks – databaseName: American Chemical Society Journals
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLbGuAAu-P8pfzISEhcsXWK7iXMZSqcJaVw0bNpdZDvOWtE6UZMKdVe8Am_CM_EkHLtpt6ow9To-tmMfx59zPn8Hofc09CmVsfZUTHKPhUp7MeW-J7nwhZI5i51Y9cnX8PiUfTnvne-hg_9E8ElwKFRdw4munNVdppzD3UK3SRhFlsCX9NOrPyoWy7tUaYRGsUfDmLW3ZP5djd2PVL25H22BzG2u5J25qcTih5hMrm1ERw_Qyeo6z5J_8r07b2RXXW6rO-70jg_R_RaR4mTpQo_QnjaP0b1rOoVP0O-hqMY5_qwbR9wyuCxwmgxTr1-e_fn5i-AzOHFbQg12DAQsDE7AvnTseAOljMv6DE8G5nIx1ZiA1SfYP3OczmeFgKkbmJHjIuChmIJ5WrnsPPbOzAKnrtN4XUQuMDQMTUKPdIVbidgLnEwuytm4GU3rp-j0aPCtf-y1qR48wRhpPBETIgsdaQB0QvdCqmTRkwC1GIEjXF4QEQjJCIlyrSKuuS9Ij6gwkHnBfRUH9BnaN6XRLxDOtaZhT9mQeg6HR85zxgBzhaJQkaSUdNAHGO6sXap15qLwJMiu5iBr56CDgpVrZKpVTLeJOyY32nxc21RLvZAbS79beVwGy9rGaoTR5bzOqI13RxHgww56vvTAdX2Uc2aFGjuIb_jmuoCVDN98YsYjJx0O6Np-kVkHHazdeId-vtx5zF6huwRgnyXTEf4a7TezuX4DsK2Rb91q_QvCw0Xi
  priority: 102
  providerName: American Chemical Society
Title Rapid Detection of SARS-CoV‑2 Variants Using an Angiotensin-Converting Enzyme 2‑Based Surface-Enhanced Raman Spectroscopy Sensor Enhanced by CoVari Deep Learning Algorithms
URI http://dx.doi.org/10.1021/acssensors.4c00488
https://www.ncbi.nlm.nih.gov/pubmed/38843447
https://www.proquest.com/docview/3065977658
https://pubmed.ncbi.nlm.nih.gov/PMC11217934
https://doi.org/10.1021/acssensors.4c00488
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2379-3694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001562580
  issn: 2379-3694
  databaseCode: ACS
  dateStart: 20180223
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-P4oH5ORkHgAl8R2EuexlE4TEhNq6DSeIttx1orWqZpUqPub-CM5u1lZGZrGs-9ixznnfqc7_w6hNywOGFOpITqlBeGxNiRlIiBKyEBqVfDUk1V_OYoPx_zzSXTS0uS4uzA7-XsafpC6riGeq5Z1j2tvbjfRXhwB7u6gvfHR1_533z0uSQmLU97eivm3ovM_ut71P5dA5eXayFsru5Drn3I2u-B4Du5tOhjVnq_Q1Zv86K0a1dNnf7E5Xu-d7qO7Lf7E_Y3BPEA3jH2I7lxgJXyEfo3kYlrgT6bxZVoWVyXO-qOMDKpjQvExRNeueAb7agMsLe6DduUr4S3IWN_hGUaG9mw9N5iSj-ApC5ytlqWEjzS0E191gEdyDsrZwvfhcbdj1jjzC8ZbEbXGMClMCKsxC9ySwZ7i_uy0Wk6bybx-jMYHw2-DQ9I2dSCSc9oQmVKqSpMYgG7SRDHTqowUgCpOIVgrSipDqTilSWF0IowIJI2ojkNVlCLQacieoI6trHmGcGEMiyPtkucFhIlCFJwDuoplqRPFGO2it7DVeXso69zn22mY_9n_vN3_LgrPjSLXLTe6a9Exu1Ln3VZnsWEGuVL69bmt5XCAXVZGWlOt6py5zHaSABLsoqcb29s-jwnBHSVjF4kdq9wKOHLw3RE7nXiScMDR7t_Lu-j91oCvsc7n_yf-At2mgPJc7RwVL1GnWa7MK0BpjdqHKGWQ7beH9DeozkJr
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwENZAORQOvB_hKWaY4QAOsSTb8jGEdAK0PcRtpzePJMtNhkTOxM4w6Ym_wD_hN_FLWCmu01CmU66WVtZjZX3rXX2L0BsadiiVsfZUTDKPhUp7MeUdT3LREUpmLHZk1Xv74eCQfTkOjut73PYuDHSihJZK58Rfswv4H-BZCYZdMS_bTDm9u45uBCHzrcXV7SXrHysW0ruMaYRGsUfDmNWXZf7djD2WVLl5LF3AmhdDJrcXZiaW38Vkcu482rmDDpqRuDCUb-1FJdvq9C-Sx_8c6l10u8anuLtSqHvomjb30a1zrIUP0K-hmI0z_ElXLozL4CLHSXeYeL3i6PePnwQfgf1tw2uwi0fAwuAuyBcuVt5ALeNyQENJ35wupxoTkPoIp2mGk8U8F7CQfTNykQl4KKYgnsxcrh57g2aJE9dp3FSRSwwvhldCj_QM14SxJ7g7OSnm42o0LR-iw53-QW_g1YkfPMEYqTwREyJzHWmAd0IHIVUyDyQAL0bAoMtyInwhGSFRplXENe8IEhAV-jLLeUfFPn2Etkxh9BOEM61pGCjrYM_AlOQ8YwwQWChyFUlKSQu9helO641bps4nT_x0vQZpvQYt5J9pSKpq_nSbxmNyqcy7Rma2Yg-5tPbrM8VLYZNbz40wuliUKbXe7ygCtNhCj1eK2LRHOWeWtrGF-IaKNhUsgfhmiRmPHJE4YG37fWYt9L7R5iv08-mV5-wV2h4c7O2mu5_3vz5DNwkAQhtmR_hztFXNF_oFALpKvnQb-A_oZk5E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXaFOhy6L6oKwsU6KGRa5HUdnQdG-kWFFYT-CaQFBUbtSnBklE4p_5C_6Tf1C_pkFaUuCmCoFeRQ1LijPjIGb5B6BUNupSKWLkyJpnLAqncmEZdV0S8y6XIWGzJqj_vBbv77MPYHzdHF-YuDAyigpYq68Q3Vl1mecMw4L2F5xVs7opF1WHS6t5ldMUPwNYNJuonJ4crBtbbrGmEhrFLg5g1F2b-3YxZmmS1uTSdwZtnwyavLXXJV9_5bHZqTRreQuP2bWwoyrfOshYdefQX0eN_vO5tdLPBqbi3Vqw76JLSd9GNU-yF99CvES-nGd5RtQ3n0rjIcdIbJW6_OPj94yfBB7APN2E22MYlYK5xD-QLGzOvoZa2uaChZKCPVnOFCUi9g1U1w8lykXOY0IGe2AgFPOJzEE9Km7PH3KRZ4cQOGrdVxApDx9AljEiVuCGOPcS92WGxmNaTeXUf7Q8HX_u7bpMAwuWMkdrlMSEiV6ECmMeVH1Apcl8AAGMENnZZTrjHBSMkzJQMIxV1OfGJDDyR5VFXxh59gLZ0odUjhDOlaOBL42jPYEsZRRljgMQCnstQUEoc9Bo-d9oYcJVa3zzx0pM5SJs5cJB3rCWpbHjUTTqP2bkyb1qZcs0icm7tl8fKl4KxGw8O16pYVik1XvAwBNTooIdrZWzbo1HEDH2jg6INNW0rGCLxzRI9nVhCccDc5j_NHLTdavQFxvn4wt_sBbr6ZWeYfnq_9_EJuk4AF5poOxI9RVv1YqmeAa6rxXNrw38APeVQxw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAexjcLXzISEg_grrGdxHkso9OExIRaOo2nyHactaJ1qiYR6v4m_kjOblZWhqbx7LvYcc653-nOv0PoLYt7jKnUEJ3SnPBYG5Iy0SNKyJ7UKuepJ6v-chwfjfnn0-i0pclxd2G28vc03Je6qiCeK5dVl2tvbrfRThwB7u6gnfHx1_533z0uSQmLU97eivm3ovM_utr2P1dA5dXayDuNXcjVTzmbXXI8h_fXHYwqz1fo6k1-dJtadfX5X2yON3unB2i3xZ-4vzaYh-iWsY_QvUushI_Rr6FcTHP8ydS-TMvissCj_nBEDsoTQvEJRNeueAb7agMsLe6Ddukr4S3IWN_hGUYG9nw1N5iSj-ApczxqloWEjzSwE191gIdyDsqjhe_D427HrPDILxhvRNQKw6QwIazGLHBLBnuG-7OzcjmtJ_PqCRofDr4dHJG2qQORnNOayJRSVZjEAHSTJoqZVkWkAFRxCsFaXlAZSsUpTXKjE2FET9KI6jhUeSF6Og3ZU9SxpTV7COfGsDjSLnmeQ5goRM45oKtYFjpRjNEAvYOtztpDWWU-307D7M_-Z-3-Byi8MIpMt9zorkXH7Fqd9xudxZoZ5FrpNxe2lsEBdlkZaU3ZVBlzme0kASQYoGdr29s8jwnBHSVjgMSWVW4EHDn49oidTjxJOOBo9-_lAfqwMeAbrPP5_4m_QHcpoDxXO0fFS9Spl415BSitVq_b4_kbIBFBcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Detection+of+SARS-CoV-2+Variants+Using+an+Angiotensin-Converting+Enzyme+2-Based+Surface-Enhanced+Raman+Spectroscopy+Sensor+Enhanced+by+CoVari+Deep+Learning+Algorithms&rft.jtitle=ACS+sensors&rft.au=Yang%2C+Yanjun&rft.au=Cui%2C+Jiaheng&rft.au=Luo%2C+Dan&rft.au=Murray%2C+Jackelyn&rft.date=2024-06-28&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=9&rft.issue=6&rft.spage=3158&rft.epage=3169&rft_id=info:doi/10.1021%2Facssensors.4c00488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssensors_4c00488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon