Diffusion Influenced Adsorption Kinetics

When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir–Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the La...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 119; no. 34; pp. 10954 - 10961
Main Authors Miura, Toshiaki, Seki, Kazuhiko
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.08.2015
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/acs.jpcb.5b00580

Cover

Abstract When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir–Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir–Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald–Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
AbstractList When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Gruenwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir–Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir–Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald–Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Author Seki, Kazuhiko
Miura, Toshiaki
AuthorAffiliation National Institute of Advanced Industrial Science and Technology (AIST)
AuthorAffiliation_xml – name: National Institute of Advanced Industrial Science and Technology (AIST)
Author_xml – sequence: 1
  givenname: Toshiaki
  surname: Miura
  fullname: Miura, Toshiaki
– sequence: 2
  givenname: Kazuhiko
  surname: Seki
  fullname: Seki, Kazuhiko
  email: k-seki@aist.go.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25969862$$D View this record in MEDLINE/PubMed
BookMark eNqNkbtPwzAQxi1URB-wM6GOHUg524kfY1WeohILzFbi2JKr1Cl2MvDfk9DAgMRjON3p7vfd8H1TNPK1NwidY1hiIPgq13G53etimRUAmYAjNMEZgaQrPhpmhoGN0TTGLQDJiGAnaEwyyaRgZIIW187aNrrazx-8rVrjtSnnqzLWYd_020fnTeN0PEXHNq-iORv6DL3c3jyv75PN093DerVJ8pTKJpElYYZjU4qCgigxM1haIgpMCmoop7TUjDJKqRXSEG6BFlJj1p215VwyOkOLw999qF9bExu1c1Gbqsq9qduoCACkktNM_olizoGmFKfkHygIzKhgokMvBrQtdqZU--B2eXhTn551ABwAHeoYg7FfCAbVx6K6WFQfixpi6STsm0S7Ju_9bULuqt-Elwfhx6Vug--8_xl_B9h1n3A
CitedBy_id crossref_primary_10_1016_j_colsurfa_2022_129317
crossref_primary_10_1021_acsphotonics_8b01105
crossref_primary_10_1063_5_0121359
crossref_primary_10_1016_j_jelechem_2020_114275
crossref_primary_10_1038_s41598_018_35343_1
crossref_primary_10_1103_PhysRevE_104_015314
crossref_primary_10_1021_acs_jpcb_4c05607
crossref_primary_10_1021_jacs_3c02705
crossref_primary_10_1039_C6FD00249H
crossref_primary_10_1016_j_jcis_2018_04_087
crossref_primary_10_3390_polym13071030
crossref_primary_10_1063_5_0196981
crossref_primary_10_1021_acs_jpcb_8b10556
crossref_primary_10_1021_acs_jpcb_2c02769
crossref_primary_10_1039_D4AN00973H
crossref_primary_10_1016_j_colsurfa_2022_129186
crossref_primary_10_1038_nmat4969
crossref_primary_10_1016_j_physa_2015_09_043
crossref_primary_10_1038_s41598_019_45847_z
crossref_primary_10_1021_acsnano_0c03263
crossref_primary_10_1021_acscatal_7b01701
crossref_primary_10_1103_PhysRevResearch_5_043196
crossref_primary_10_1039_D3SM01213A
crossref_primary_10_1021_acs_langmuir_0c03441
crossref_primary_10_1021_acs_langmuir_6b02019
crossref_primary_10_1002_asia_202401254
crossref_primary_10_1063_5_0146512
crossref_primary_10_1515_nanoph_2023_0053
crossref_primary_10_1021_acs_jpcb_6b05084
crossref_primary_10_1021_acs_jpcb_6b10848
Cites_doi 10.1007/BF01474958
10.1016/0022-3697(57)90054-9
10.1021/jp001649t
10.1021/jp983433l
10.1021/la970923g
10.1021/ja01290a091
10.1021/ja042898o
10.1016/0927-7757(94)03061-4
10.1016/0166-6622(92)80230-Y
10.1016/S0021-9797(03)00530-7
10.1016/j.compchemeng.2009.08.004
10.1016/0095-8522(61)90043-5
10.1021/jp960377k
10.1021/la015567n
10.1016/0009-2509(83)85021-0
10.1126/science.262.5142.2010
10.1021/la00002a049
10.1137/030602666
10.1063/1.1605946
10.1016/S0167-7322(99)00124-5
10.1143/JJAP.40.6945
10.1063/1.1587126
10.1016/j.bpj.2009.05.022
10.1021/j100159a065
10.1103/PhysRevE.91.052604
10.1016/j.cis.2014.01.006
10.1103/PhysRevE.75.031804
10.1063/1.1724167
10.1021/jp0749017
10.1080/00018737800101474
10.1063/1.1287335
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1021/acs.jpcb.5b00580
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 10961
ExternalDocumentID 25969862
10_1021_acs_jpcb_5b00580
a146924452
Genre Journal Article
GroupedDBID -
.K2
02
123
186
29L
4.4
53G
55A
5VS
6XO
7~N
85S
8RP
9M8
AABXI
ABDEX
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
G8K
GNL
IH9
IHE
JG
JG~
K2
LG6
MVM
NHB
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VH1
VOH
VQA
VQP
W1F
WH7
X
XFK
YZZ
ZCG
ZGI
ZHY
ZY4
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-a439t-9d26e71ed8b308d16e19f28b12b3e3733dc636333f89e27f03b9c1612bcf77963
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 09:16:48 EDT 2025
Thu Jul 10 22:08:48 EDT 2025
Wed Oct 01 13:38:14 EDT 2025
Thu Jan 02 23:00:11 EST 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 00:22:11 EDT 2025
Thu Aug 27 13:42:38 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a439t-9d26e71ed8b308d16e19f28b12b3e3733dc636333f89e27f03b9c1612bcf77963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25969862
PQID 1708163868
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000497359
proquest_miscellaneous_1770343142
proquest_miscellaneous_1708163868
pubmed_primary_25969862
crossref_primary_10_1021_acs_jpcb_5b00580
crossref_citationtrail_10_1021_acs_jpcb_5b00580
acs_journals_10_1021_acs_jpcb_5b00580
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-27
PublicationDateYYYYMMDD 2015-08-27
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Roach P. (ref30/cit30) 2005; 127
Yuste S. B. (ref19/cit19) 2005; 42
Chang C.-H. (ref12/cit12) 1992; 69
Li X. (ref11/cit11) 2010; 34
Miura T. (ref2/cit2) 2007; 75
Kitahara K. (ref22/cit22) 2000; 86
Kisliuk P. (ref37/cit37) 1957; 3
Borwankar R. P. (ref10/cit10) 1983; 38
Diamant H. (ref3/cit3) 1996; 100
Chang C.-H. (ref5/cit5) 1995; 100
Kitahara K. (ref21/cit21) 1996
Matsuura T. (ref27/cit27) 2001; 40
Abramowitz M. (ref24/cit24) 1972
Langevin D. (ref4/cit4) 2014; 206
Kang H. C. (ref38/cit38) 1990; 92
Ward A. F. H. (ref8/cit8) 1946; 14
Podlubny I. (ref18/cit18) 1999
Berg J. C. (ref7/cit7) 2010
Seki K. (ref33/cit33) 2003; 119
Seki K. (ref32/cit32) 2003; 119
Jung L. S. (ref16/cit16) 2000; 104
Douglas J. (ref13/cit13) 1993; 262
Arumainayagam C. R. (ref39/cit39) 1991; 95
Sutherland K. L. (ref25/cit25) 1952; 5
Zaid I. M. (ref36/cit36) 2009; 97
Kumar N. (ref29/cit29) 2003; 267
Miller R. (ref9/cit9) 1980; 258
Eaves J. D. (ref34/cit34) 2008; 112
Chang H.-C. (ref28/cit28) 1998; 14
Pfister G. (ref35/cit35) 1978; 27
Dannenberger O. (ref26/cit26) 1999; 103
Seki K. (ref23/cit23) 2000; 113
Rahn J. R. (ref15/cit15) 1995; 11
Adamson A. W. (ref1/cit1) 1990
Hibbert D. B. (ref17/cit17) 2002; 18
Langmuir I. (ref14/cit14) 1937; 59
Dukhin S. S. (ref6/cit6) 1995
Miura T. (ref31/cit31) 2015; 91
Hansen R. S. (ref20/cit20) 1961; 16
30570260 - J Phys Chem B. 2019 Jan 10;123(1):324
References_xml – volume: 258
  start-page: 85
  year: 1980
  ident: ref9/cit9
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF01474958
– volume: 3
  start-page: 95
  year: 1957
  ident: ref37/cit37
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(57)90054-9
– volume-title: An Introduction to Interfaces and Colloids
  year: 2010
  ident: ref7/cit7
– volume: 104
  start-page: 11168
  year: 2000
  ident: ref16/cit16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001649t
– volume: 103
  start-page: 2202
  year: 1999
  ident: ref26/cit26
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp983433l
– volume: 14
  start-page: 2476
  year: 1998
  ident: ref28/cit28
  publication-title: Langmuir
  doi: 10.1021/la970923g
– volume: 59
  start-page: 2400
  year: 1937
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01290a091
– volume: 5
  start-page: 683
  year: 1952
  ident: ref25/cit25
  publication-title: Aust. J. Sci. Res.
– volume: 127
  start-page: 8168
  year: 2005
  ident: ref30/cit30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042898o
– volume: 100
  start-page: 1
  year: 1995
  ident: ref5/cit5
  publication-title: Colloids Surf., A
  doi: 10.1016/0927-7757(94)03061-4
– volume: 69
  start-page: 189
  year: 1992
  ident: ref12/cit12
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(92)80230-Y
– volume: 267
  start-page: 272
  year: 2003
  ident: ref29/cit29
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00530-7
– volume-title: Dynamics of Adsorption at Liquid Interfaces
  year: 1995
  ident: ref6/cit6
– volume: 34
  start-page: 146
  year: 2010
  ident: ref11/cit11
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.08.004
– volume-title: Handbook of Mathematical Functions
  year: 1972
  ident: ref24/cit24
– volume: 16
  start-page: 549
  year: 1961
  ident: ref20/cit20
  publication-title: J. Colloid. Sci.
  doi: 10.1016/0095-8522(61)90043-5
– volume-title: Fractional Differential Equations
  year: 1999
  ident: ref18/cit18
– volume: 92
  start-page: 1397
  year: 1990
  ident: ref38/cit38
  publication-title: Chem. Phys.
– volume: 100
  start-page: 13732
  year: 1996
  ident: ref3/cit3
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960377k
– volume: 18
  start-page: 1770
  year: 2002
  ident: ref17/cit17
  publication-title: Langmuir
  doi: 10.1021/la015567n
– volume: 38
  start-page: 1637
  year: 1983
  ident: ref10/cit10
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(83)85021-0
– volume: 262
  start-page: 2010
  year: 1993
  ident: ref13/cit13
  publication-title: Science
  doi: 10.1126/science.262.5142.2010
– volume: 11
  start-page: 650
  year: 1995
  ident: ref15/cit15
  publication-title: Langmuir
  doi: 10.1021/la00002a049
– volume: 42
  start-page: 1862
  year: 2005
  ident: ref19/cit19
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/030602666
– volume: 119
  start-page: 7525
  year: 2003
  ident: ref33/cit33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1605946
– volume-title: Physical Chemistry of Surfaces
  year: 1990
  ident: ref1/cit1
– volume: 86
  start-page: 53
  year: 2000
  ident: ref22/cit22
  publication-title: Mol. Liq.
  doi: 10.1016/S0167-7322(99)00124-5
– volume: 40
  start-page: 6945
  year: 2001
  ident: ref27/cit27
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.40.6945
– volume: 119
  start-page: 2165
  year: 2003
  ident: ref32/cit32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1587126
– volume: 97
  start-page: 710
  year: 2009
  ident: ref36/cit36
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.05.022
– volume: 95
  start-page: 2461
  year: 1991
  ident: ref39/cit39
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100159a065
– volume: 91
  start-page: 052604
  year: 2015
  ident: ref31/cit31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.052604
– volume: 206
  start-page: 141
  year: 2014
  ident: ref4/cit4
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2014.01.006
– volume: 75
  start-page: 031804-1
  year: 2007
  ident: ref2/cit2
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.75.031804
– volume: 14
  start-page: 453
  year: 1946
  ident: ref8/cit8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1724167
– volume: 112
  start-page: 4283
  year: 2008
  ident: ref34/cit34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0749017
– volume: 27
  start-page: 747
  year: 1978
  ident: ref35/cit35
  publication-title: Adv. Phys.
  doi: 10.1080/00018737800101474
– volume: 113
  start-page: 3441
  year: 2000
  ident: ref23/cit23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1287335
– volume-title: Molecular Magnetism
  year: 1996
  ident: ref21/cit21
– reference: 30570260 - J Phys Chem B. 2019 Jan 10;123(1):324
SSID ssj0025286
Score 2.348434
Snippet When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10954
SubjectTerms Adsorption
chemical elements
Diffusion
equations
Exact solutions
Lower bounds
Mathematical analysis
Mathematical models
Nonlinearity
solutes
Surface chemistry
Title Diffusion Influenced Adsorption Kinetics
URI http://dx.doi.org/10.1021/acs.jpcb.5b00580
https://www.ncbi.nlm.nih.gov/pubmed/25969862
https://www.proquest.com/docview/1708163868
https://www.proquest.com/docview/1770343142
https://www.proquest.com/docview/2000497359
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025286
  issn: 1520-6106
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOcCFfSmbggQSHNImdmI7x6pQFRBcoFJvkVeJRW3VpBe-nnGaFLG06jWyLY898rznceYhdBEJroUE59UyjP2IhtaHbRa-VYZTK0giYvfv8OMT7fai-37c_y6T8zuDj8OmUFnjbaRkI3Yew4Ger2LKmHu-12o_z8hVjAtVRwhHjg4FVUryvxFcIFLZz0A0B10WUaazOZUryorihO5xyXtjksuG-vxbunEJA7bQRgk2vdbUO7bRihnsoLV2pfG2i65uXq2duAsz765SK9FeS2fDcXGUeA8AQl0h5z3U69y-tLt-qZ3gC4AYuZ9oTA0LjeaSBFyH1ISJxVyGWBJDGCFaUUIJIZYnBjMbEJkoQH9YKssYbNc-qg2GA3OIvFgRbCi3hlIZwWhCYhFYTLUJKPBLVUeXYGJa-n6WFmltHKbFR7A7Le2uo2a14KkqC5A7HYyPBT2uZz1G0-IbC9qeV3uYwiK6tIcYmOEE5sOcuAjhlC9qAycfYKkIz2-DCzrFSJzU0cHUSWazAhJJEyCHR0uuxTFaB-QVu8tpzE5QLR9PzCmgm1yeFW79BbgA8tE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hONBLgdLH8mqQWokessR27DjH1VK0PA8FJG6Rn1IB7SKye-HXM_Ymi0BlRa-Wbc3YE8_3eeIZgB-5klZpNF6rCU9zQXyK26xSb5wUXrFS8fB2-OxcDK7y42t-vQCkfQuDQtQ4Ux2D-M_ZBch-aLu5N7rLg-FIZOlLXOQk8K1e_2LGsTiNxR3RKwVWlLWRyX_NEPyRqV_6ozdAZnQ2hyvwZyZm_MfktjsZ6655fJXB8b_0WIWPDfRMelNbWYMFN_wEy_224ts67B389X4Srs-So7Z2iU16th49xIMlOUFIGtI6f4arw9-X_UHaVFJIFQKOcVpaKlxBnJWaZdIS4UjpqdSEauZYwZg1ggnGmJelo4XPmC4NYkGqjS8K3LwvsDgcDd03SLhh1AnpnRA6x9mUpirzVFiXCWSbpgM_UcWq-RLqKga5KaliI-pdNXp3YL9d98o06chDVYy7OSN-zUbcT1NxzOm7225lhYsYgiBq6EYTlKcIpUaYFHJeHzwHEVnl9O0-NJKrgvGyA1-ntjKTCimlKJEqbrxzLb7D8uDy7LQ6PTo_2YQPiMl4uLamxRYsjh8mbhtxz1jvREt_AmWJ-zM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KBl1funVb2-yjdaGD9cGJLVmy_BjShXZpy2DL6JvRJ3QbSaidl_31Oym2YWMN3auQxZ100v1-OusO4DSTwkiFxmtUyuKMpy7GZZax01ZwJ2khmX87fH3DL2bZp1t2uwWsfQuDQlQ4UhWC-H5XL41rMgykQ9_-fanVgHnjEcjUnzCOO90jovGXjmcxEgo8omfyzChpo5P_GsH7JF396ZMeAJrB4UyewbdO1PCfyY_BqlYD_euvLI7_rctz2G0gaDRa28webNn5C3g6biu_vYQP53fOrfw1WnTZ1jAx0chUi_twwERThKY-vfMrmE0-fh1fxE1FhVgi8KjjwhBu89QaoWgiTMptWjgiVEoUtTSn1GhOOaXUicKS3CVUFRoxIVHa5Tku4j705ou5PYSIaUosF85yrjIcTSoiE0e4sQlH1qn78B5VLJsdUZUh2E3SMjSi3mWjdx-G7dyXuklL7qtj_NzwxVn3xXKdkmND35N2OUucRB8MkXO7WKE8uS85QgUXm_rgeYgIKyMP9yGBZOWUFX04WNtLJxVSS14gZXz9yLk4hu3P55Py6vJm-gZ2EJoxf3tN8rfQq-9X9h3Cn1odBWP_DaKo_bY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+Influenced+Adsorption+Kinetics&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Miura%2C+Toshiaki&rft.au=Seki%2C+Kazuhiko&rft.date=2015-08-27&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=119&rft.issue=34&rft.spage=10954&rft.epage=10961&rft_id=info:doi/10.1021%2Facs.jpcb.5b00580&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon