Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy
Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physica...
Saved in:
Published in | The journal of physical chemistry. B Vol. 120; no. 9; pp. 2132 - 2137 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/acs.jpcb.5b11550 |
Cover
Abstract | Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject ( J. Phys. Chem. A 2015, 119, 5241−5249 ). The result is important because it confirms that the protonated site of glyphosate in pH range 7–8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. |
---|---|
AbstractList | Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015,, 119, 5241−5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7–8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015, 119, 5241-5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action.Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015, 119, 5241-5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015, 119, 5241-5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject ( J. Phys. Chem. A 2015, 119, 5241−5249 ). The result is important because it confirms that the protonated site of glyphosate in pH range 7–8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. |
Author | Li, Xingliang Liu, Bijun Dong, Lan Yu, Qianhong Wu, Fengchang Tan, Zhaoyi Luo, Shunzhong |
AuthorAffiliation | Institute of Nuclear Physics and Chemistry Chinese Research Academy of Environmental Sciences China Academy of Engineering Physics State Key Laboratory of Environmental Criteria and Risk Assessment |
AuthorAffiliation_xml | – name: Institute of Nuclear Physics and Chemistry – name: State Key Laboratory of Environmental Criteria and Risk Assessment – name: China Academy of Engineering Physics – name: Chinese Research Academy of Environmental Sciences |
Author_xml | – sequence: 1 givenname: Bijun surname: Liu fullname: Liu, Bijun – sequence: 2 givenname: Lan surname: Dong fullname: Dong, Lan – sequence: 3 givenname: Qianhong surname: Yu fullname: Yu, Qianhong – sequence: 4 givenname: Xingliang surname: Li fullname: Li, Xingliang email: xingliang@caep.cn – sequence: 5 givenname: Fengchang surname: Wu fullname: Wu, Fengchang email: wufengchang@vip.skleg.cn – sequence: 6 givenname: Zhaoyi surname: Tan fullname: Tan, Zhaoyi – sequence: 7 givenname: Shunzhong surname: Luo fullname: Luo, Shunzhong email: luoshzh@caep.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26862689$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS3Uin7AnRPykUN38dj5cLhVK1qQSqnacrYcZ6JNldjBdg4584_X2d1ekKCHkWfk3xvZ752RI-ssEvIB2BoYh8_ahPXTaOp1XgPkOXtDTiHnbJWqPDr0BbDihJyF8MQYz7ks3pITXsgiVXVK_jxu0Q-uma0eOkMf4tTM1Fkat0jvvIvO6til-R61WZpAXUuv-3ncuqAj0s7Sy98TuinQB9dPC_KF3rmINrUDRj9f0I3une92A9W2obc_7mkY0UTvgnHj_I4ct7oP-P5wnpNfV18fN99WNz-vv28ub1Y6E1VcFbnQdQEtVBx4i9jUTCJW3JRliTKrDKDArK5aYFq0mLW8BQGCGdA1B4HinHza7x29S28OUQ1dMNj32i4fUJwxlkkhhXgVBckkQMZZ9TpallyKEmSZ0I8HdKoHbNSYXNF-Vi9xJKDYAyZZEzy2ynRxF0D0uusVMLXkrlLuasldHXJPQvaX8GX3fyQXe8nuxk3eJu__jT8DRuHCrw |
CitedBy_id | crossref_primary_10_1016_j_bcab_2019_101434 crossref_primary_10_1039_C8EM00119G crossref_primary_10_1021_acs_inorgchem_2c01991 crossref_primary_10_1007_s42860_023_00257_1 crossref_primary_10_1039_D2DT00738J crossref_primary_10_1016_j_cjche_2020_06_031 crossref_primary_10_1007_s10953_020_00950_y crossref_primary_10_1016_j_matpr_2019_05_066 crossref_primary_10_1007_s10953_017_0620_0 crossref_primary_10_1021_acs_jced_2c00156 crossref_primary_10_1007_s10953_018_0751_y crossref_primary_10_1007_s11356_022_21703_y crossref_primary_10_3390_w11020331 crossref_primary_10_1007_s10953_022_01164_0 crossref_primary_10_1039_D1CP03161A crossref_primary_10_1002_jctb_6221 crossref_primary_10_1007_s10953_017_0696_6 crossref_primary_10_1038_s41598_022_16825_9 crossref_primary_10_1016_j_jcis_2025_137271 crossref_primary_10_1063_5_0134003 crossref_primary_10_1007_s13201_019_1036_3 crossref_primary_10_1039_D3AY01950K crossref_primary_10_1039_D4RA04300F crossref_primary_10_1007_s11356_018_2073_4 crossref_primary_10_1002_elan_201800759 crossref_primary_10_1016_j_scitotenv_2017_02_007 crossref_primary_10_1016_j_snb_2018_12_124 crossref_primary_10_1021_acs_chemrev_8b00294 crossref_primary_10_1071_EN19107 crossref_primary_10_1016_j_microc_2018_07_018 crossref_primary_10_3390_ijerph17165664 crossref_primary_10_1016_j_jece_2021_105189 crossref_primary_10_1021_acsami_4c05733 crossref_primary_10_1016_j_comptc_2023_114209 crossref_primary_10_1016_j_chphi_2022_100140 crossref_primary_10_3390_nano11020509 crossref_primary_10_1007_s11051_024_05928_1 crossref_primary_10_1039_D1EM00100K crossref_primary_10_1021_acs_est_7b05643 crossref_primary_10_1080_08927022_2018_1536294 crossref_primary_10_1021_acs_inorgchem_0c03480 crossref_primary_10_1109_JSEN_2021_3099471 crossref_primary_10_1021_acs_inorgchem_9b02706 crossref_primary_10_1016_j_scitotenv_2016_03_239 crossref_primary_10_1016_j_apsusc_2021_150753 crossref_primary_10_1007_s41101_020_00085_7 crossref_primary_10_1039_C7CP06245A crossref_primary_10_3390_chemosensors10030099 crossref_primary_10_1021_acs_jced_7b00569 crossref_primary_10_1039_D4CP04019H |
Cites_doi | 10.1080/09542299.1996.11083270 10.1016/S0021-9673(01)01603-X 10.1021/bi00435a035 10.1080/00958978508073900 10.1002/etc.5620131104 10.1021/es970341l 10.1021/jf010988w 10.1021/acs.jpca.5b07071 10.3891/acta.chem.scand.33b-0623 10.1021/es305120x 10.1021/es052363a 10.1021/ic00226a005 10.1017/S0043174500052929 10.1016/j.poly.2009.05.084 10.1002/ps.1911 10.1614/WS-05-043R.1 10.1021/es400874s 10.1039/c2dt30978e 10.1021/ic000849g 10.1021/j100830a521 10.1071/CH99160 10.1021/es9800380 10.1007/s007060050001 10.1080/03601239309372835 10.1002/ps.1512 10.1021/es300265a 10.1016/S0021-9797(03)00207-8 10.1016/j.jct.2014.12.026 10.1021/ic00089a017 10.1021/jf00126a010 10.1016/j.enzmictec.2007.02.004 10.1021/jf00084a050 10.1021/jp5099552 10.1021/jf60206a010 10.1016/j.ica.2003.10.029 10.1021/es010295w 10.1039/an9527700661 10.1016/j.apsoil.2009.12.003 10.1016/j.jinorgbio.2009.06.011 10.1016/j.forsciint.2004.03.025 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1021/acs.jpcb.5b11550 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 2137 |
ExternalDocumentID | 26862689 10_1021_acs_jpcb_5b11550 a674813628 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-a439t-653ab61f19212feedb08ee92c777e849c1e3e4b9f10a3fe4f2f13130c1ab213e3 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri Jul 11 02:44:36 EDT 2025 Wed Oct 01 17:00:41 EDT 2025 Fri Jul 11 02:34:32 EDT 2025 Thu Apr 03 07:07:08 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Tue Jul 01 01:00:06 EDT 2025 Thu Aug 27 13:42:40 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a439t-653ab61f19212feedb08ee92c777e849c1e3e4b9f10a3fe4f2f13130c1ab213e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26862689 |
PQID | 1772837187 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000483833 proquest_miscellaneous_1808114209 proquest_miscellaneous_1772837187 pubmed_primary_26862689 crossref_citationtrail_10_1021_acs_jpcb_5b11550 crossref_primary_10_1021_acs_jpcb_5b11550 acs_journals_10_1021_acs_jpcb_5b11550 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-10 |
PublicationDateYYYYMMDD | 2016-03-10 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref6/cit6 ref36/cit36 ref3/cit3 Sandberg C. l. (ref9/cit9) 1975; 23 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1080/09542299.1996.11083270 – ident: ref40/cit40 doi: 10.1016/S0021-9673(01)01603-X – ident: ref21/cit21 doi: 10.1021/bi00435a035 – ident: ref18/cit18 doi: 10.1080/00958978508073900 – ident: ref26/cit26 doi: 10.1002/etc.5620131104 – ident: ref22/cit22 doi: 10.1021/es970341l – ident: ref25/cit25 doi: 10.1021/jf010988w – ident: ref12/cit12 doi: 10.1021/acs.jpca.5b07071 – ident: ref33/cit33 doi: 10.3891/acta.chem.scand.33b-0623 – ident: ref17/cit17 doi: 10.1021/es305120x – ident: ref24/cit24 doi: 10.1021/es052363a – ident: ref19/cit19 doi: 10.1021/ic00226a005 – volume: 23 start-page: 229 year: 1975 ident: ref9/cit9 publication-title: Weed Sci. doi: 10.1017/S0043174500052929 – ident: ref10/cit10 doi: 10.1016/j.poly.2009.05.084 – ident: ref38/cit38 doi: 10.1002/ps.1911 – ident: ref7/cit7 doi: 10.1614/WS-05-043R.1 – ident: ref35/cit35 doi: 10.1021/es400874s – ident: ref34/cit34 doi: 10.1039/c2dt30978e – ident: ref15/cit15 doi: 10.1021/ic000849g – ident: ref29/cit29 doi: 10.1021/j100830a521 – ident: ref3/cit3 doi: 10.1071/CH99160 – ident: ref16/cit16 doi: 10.1021/es9800380 – ident: ref32/cit32 doi: 10.1007/s007060050001 – ident: ref20/cit20 doi: 10.1080/03601239309372835 – ident: ref8/cit8 doi: 10.1002/ps.1512 – ident: ref23/cit23 doi: 10.1021/es300265a – ident: ref30/cit30 doi: 10.1016/S0021-9797(03)00207-8 – ident: ref28/cit28 doi: 10.1016/j.jct.2014.12.026 – ident: ref4/cit4 doi: 10.1021/ic00089a017 – ident: ref39/cit39 – ident: ref5/cit5 doi: 10.1021/jf00126a010 – ident: ref37/cit37 doi: 10.1016/j.enzmictec.2007.02.004 – ident: ref6/cit6 doi: 10.1021/jf00084a050 – ident: ref14/cit14 doi: 10.1021/jp5099552 – ident: ref31/cit31 doi: 10.1021/jf60206a010 – ident: ref1/cit1 doi: 10.1016/j.ica.2003.10.029 – ident: ref41/cit41 doi: 10.1021/es010295w – ident: ref27/cit27 doi: 10.1039/an9527700661 – ident: ref11/cit11 doi: 10.1016/j.apsoil.2009.12.003 – ident: ref2/cit2 doi: 10.1016/j.jinorgbio.2009.06.011 – ident: ref36/cit36 doi: 10.1016/j.forsciint.2004.03.025 |
SSID | ssj0025286 |
Score | 2.4233997 |
Snippet | Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information... Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2132 |
SubjectTerms | amino nitrogen aqueous solutions Calorimetry Calorimetry - methods Electrical measurements Glycine - analogs & derivatives Glycine - chemistry Glyphosate Herbicides - chemistry Magnetic Resonance Spectroscopy - methods NMR spectroscopy nuclear magnetic resonance spectroscopy Oxygen Phosphonates physical chemistry physical properties Potentiometry - methods Protonation Protons Solutions - chemistry Thermodynamics Water - chemistry |
Title | Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy |
URI | http://dx.doi.org/10.1021/acs.jpcb.5b11550 https://www.ncbi.nlm.nih.gov/pubmed/26862689 https://www.proquest.com/docview/1772837187 https://www.proquest.com/docview/1808114209 https://www.proquest.com/docview/2000483833 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025286 issn: 1520-6106 databaseCode: ACS dateStart: 19970101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODC-7G8ZCQ4IJHtju04DrfVilIhtaoKlXqLbK-tAm282mQPy5U_zthJFvHoqsdEdhKPJ5pvPDPfEPIaGFifW5nlWrlMeCEywwuTARSycEXkL4mFwgeHcv9EfDrNT3_T5PwdwWewq20z_rawZpwbiHj6OrnBpILoaE1nnzfOVc5SV0c0R9Edmgwhyf89IRoi2_xpiC5Bl8nK7N3p2hU1iZwwJpd8H69aM7Y__qVuvMIC7pLbPdik00477pFrrr5Pbs6GHm8PyE_UkuVFmHdt6WlMKlzTUFNEhfRoGdrQnRXSY9fVPzQ0ePrxfL04Cw2CVPq1plNcUFg1dDhfe0-PQptyKC8cvuMdnemY5JcuqK7n9PDgmKb6zsijGRbrh-Rk78OX2X7Wt2XINKKXNpM510aCj0xqzKONNRPlXMlsURROidKC406Y0sNEc--EZx44mkoL2rB46PqI7NShdk8IRWeLoXUUYg5cKOlLNS-lLnPnjQKelyPyBqVX9b9VU6WIOYMq3USRVr1IR2R32MvK9tzmscXG-ZYZbzczFh2vx5axrwb1qHB_YkRF11G0FaBvgh4-qGLLmNjbBASblJePYam2nyvOR-Rxp3-br2Kxhkeq8ukVZfGM3EJQJ7OUc_ic7LTLlXuBwKk1L9Mf8wsFFBQu |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfGOIwL45syBkaCAxLp6o84DrepYhRYq6ls0m6R7driY4urJj2UK_84z05SNMQqOMayHfv5We_3_L4QekkoMS41IkmVtAl3nCeaZTohJBOZzUL-khAoPJ6I0Rn_eJ6ebyHSxcLAIiqYqYpG_N_ZBchBaPs2N7qfahJg9Q10MyZCCWho-HmtY6U0FncEqRS0okFnmfzbDEEemeqqPLoGZEZhc7SLputlRh-T7_1lrfvmxx8ZHP9rH3fQ7RZ64sOGV-6iLVveQzvDruLbffQTeGZx6WdNkXocXAxX2JcYMCI-WfjaNy-HeGqbaIgKe4ffX6zmX3wFkBV_LfEh7MsvK9y9tr3FJ76OHpWXFv7xBg9VcPmLH1iVMzwZT3GM9gxZNf189QCdHb07HY6StkhDogDL1IlImdKCuJBXjTqQuHogrc2pybLMSp4bYpnlOndkoJiz3FFHGAhOQ5Sm4Qn2IdoufWkfIwyqFwVZyfmMMC6Fy-UsFypPrdOSsDTvoVdAvaK9ZFUR7eeUFLERSFq0JO2hg-5IC9NmOg8FNy42jHi9HjFvsnxs6Pui45ICzifYV1QZSFsQ0FRA3ycy29AnVDohnA7y6_vQGOnPJGM99Khhw_WqaIjoETJ_8o-0eI52Rqfj4-L4w-TTHroFcE8k0RvxKdquF0u7D5Cq1s_iJfoFRRscmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZKkYALO3Qoi5HggESm4y0Lt2pgKEtHo0Kr3qI4sUW3OJpkDtMrf5z3nGQkEB3BMZbt2M_Pet_z2wh5xTjLrcrDQGWxCaSVMtAi0gFjURiZCPOXYKDw_jTcO5Sfj9XxBlF9LAwsooaZam_Ex1tdFbbLMMB2sP20yvVQaYbQ-hq5rjADHCKi8beVnqW4L_AIkgk1o1FvnfzbDCiT8vp3mXQF0PQCZ3KHHK2W6v1MzoaLRg_zyz-yOP73Xu6S2x0Epbstz9wjG6a8T26O-8pvD8hP4J35hSvaYvUUXQ2X1JUUsCKdzV3j2hdEemDaqIiaOks_ni-rH64G6EpPSroLe3OLmvavbu_ozDXes_LCwD_e0nGGrn_-g2ZlQaf7B9RHfWJ2TVctH5LDyYfv472gK9YQZIBpmiBUItMhs5hfjVuQvHoUG5PwPIoiE8skZ0YYqRPLRpmwRlpumQABmrNMc3yKfUQ2S1eaLUJBBeMgM6UsmJBxaJO4SMIsUcbqmAmVDMhroF7aXbY69XZ0zlLfCCRNO5IOyE5_rGneZTzHwhvna0a8WY2o2mwfa_q-7DklhfNBO0tWImlTBhoL6P0sjtb0wYonTPJRcnUf7iP-RSzEgDxuWXG1Ko6RPWGcPPlHWrwgN2bvJ-nXT9Mv2-QWoL4w8E6JT8lmM1-YZ4CsGv3c36NfQOwfEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+Study+on+the+Protonation+Reactions+of+Glyphosate+in+Aqueous+Solution%3A+Potentiometry%2C+Calorimetry+and+NMR+spectroscopy&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Liu%2C+Bijun&rft.au=Dong%2C+Lan&rft.au=Yu%2C+Qianhong&rft.au=Li%2C+Xingliang&rft.date=2016-03-10&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=120&rft.issue=9&rft.spage=2132&rft_id=info:doi/10.1021%2Facs.jpcb.5b11550&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |