Fluorescent Magnetic Nanoparticles for Magnetically Enhanced Cancer Imaging and Targeting in Living Subjects
Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic microm...
Saved in:
Published in | ACS nano Vol. 6; no. 8; pp. 6862 - 6869 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/nn301670a |
Cover
Abstract | Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic micromesh and biocompatible fluorescent magnetic nanoparticles (FMN) to magnetically enhance cancer targeting in living subjects. This approach enables magnetic targeting of systemically administered individual FMN, containing a single 8 nm superparamagnetic iron oxide core. Using a human glioblastoma mouse model, we show that nanoparticles can be magnetically retained in both the tumor neovasculature and surrounding tumor tissues. Magnetic accumulation of nanoparticles within the neovasculature was observable by fluorescence intravital microscopy in real time. Finally, we demonstrate that such magnetically enhanced cancer targeting augments the biological functions of molecules linked to the nanoparticle surface. |
---|---|
AbstractList | Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic micromesh and biocompatible fluorescent magnetic nanoparticles (FMN) to magnetically enhance cancer targeting in living subjects. This approach enables magnetic targeting of systemically administered individual FMN, containing a single 8 nm superparamagnetic iron oxide core. Using a human glioblastoma mouse model, we show that nanoparticles can be magnetically retained in both the tumor neovasculature and surrounding tumor tissues. Magnetic accumulation of nanoparticles within the neovasculature was observable by fluorescence intravital microscopy in real time. Finally, we demonstrate that such magnetically enhanced cancer targeting augments the biological functions of molecules linked to the nanoparticle surface. Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic micromesh and biocompatible fluorescent magnetic nanoparticles (FMN) to magnetically enhance cancer targeting in living subjects. This approach enables magnetic targeting of systemically administered individual FMN, containing a single 8 nm superparamagnetic iron oxide (SPIO) core. Using a human glioblastoma mouse model, we show that nanoparticles can be magnetically retained in both the tumor neovasculature and surrounding tumor tissues. Magnetic accumulation of nanoparticles within the neovasculature was observable by fluorescence intravital microscopy in real time. Finally, we demonstrate that such magnetically enhanced cancer targeting augments the biological functions of molecules linked to the nanoparticle surface. Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic micromesh and biocompatible fluorescent magnetic nanoparticles (FMN) to magnetically enhance cancer targeting in living subjects. This approach enables magnetic targeting of systemically administered individual FMN, containing a single 8 nm superparamagnetic iron oxide core. Using a human glioblastoma mouse model, we show that nanoparticles can be magnetically retained in both the tumor neovasculature and surrounding tumor tissues. Magnetic accumulation of nanoparticles within the neovasculature was observable by fluorescence intravital microscopy in real time. Finally, we demonstrate that such magnetically enhanced cancer targeting augments the biological functions of molecules linked to the nanoparticle surface.Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic micromesh and biocompatible fluorescent magnetic nanoparticles (FMN) to magnetically enhance cancer targeting in living subjects. This approach enables magnetic targeting of systemically administered individual FMN, containing a single 8 nm superparamagnetic iron oxide core. Using a human glioblastoma mouse model, we show that nanoparticles can be magnetically retained in both the tumor neovasculature and surrounding tumor tissues. Magnetic accumulation of nanoparticles within the neovasculature was observable by fluorescence intravital microscopy in real time. Finally, we demonstrate that such magnetically enhanced cancer targeting augments the biological functions of molecules linked to the nanoparticle surface. |
Author | Guccione, Samira Wilson, Robert J Mullenix, Joyce Akin, Demir Wang, Shan X Earhart, Chris Smith, Bryan R Fu, Aihua Gambhir, Sanjiv S |
AuthorAffiliation | Department of Bioengineering, Bio-X Program Stanford University NVIGEN Inc Department of Materials Science and Engineering Department of Radiology Molecular Imaging Program at Stanford |
AuthorAffiliation_xml | – name: Department of Radiology – name: NVIGEN Inc – name: Molecular Imaging Program at Stanford – name: Department of Bioengineering, Bio-X Program – name: Stanford University – name: Department of Materials Science and Engineering – name: 1 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 USA – name: 4 Department of Bioengineering, Bio-X Program, Stanford University, Stanford, California 94305 USA – name: 5 NVIGEN Inc, 265 Sobrante Way, Suite H, Sunnyvale, CA 94086 – name: 2 Department of Radiology, Stanford University, Stanford, California 94305 USA – name: 3 Molecular Imaging Program, Stanford University, Stanford, California 94305 USA |
Author_xml | – sequence: 1 givenname: Aihua surname: Fu fullname: Fu, Aihua email: sgambhir@stanford.edu, sxwang@stanford.edu, aihuafu@nvigen.com – sequence: 2 givenname: Robert J surname: Wilson fullname: Wilson, Robert J – sequence: 3 givenname: Bryan R surname: Smith fullname: Smith, Bryan R – sequence: 4 givenname: Joyce surname: Mullenix fullname: Mullenix, Joyce – sequence: 5 givenname: Chris surname: Earhart fullname: Earhart, Chris – sequence: 6 givenname: Demir surname: Akin fullname: Akin, Demir – sequence: 7 givenname: Samira surname: Guccione fullname: Guccione, Samira – sequence: 8 givenname: Shan X surname: Wang fullname: Wang, Shan X email: sgambhir@stanford.edu, sxwang@stanford.edu, aihuafu@nvigen.com – sequence: 9 givenname: Sanjiv S surname: Gambhir fullname: Gambhir, Sanjiv S email: sgambhir@stanford.edu, sxwang@stanford.edu, aihuafu@nvigen.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22857784$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq2Kqnz1wB9AvlSihy124sTOBQmtoEXalgMg9WaNHSd45bUXO0Hi3-NoYVUQUn2Zsebx65l599GOD94gdETJD0oKeup9SWjNCXxCe7Qp6xkR9d-dbV7RXbSf0pKQigtef0G7RSEqzgXbQ-7SjSGapI0f8G_ovRmsxn_AhzXEnDqTcBfitgTOPeELfw9emxbPpxDx1Qp663sMvsW3EPsM5pv1eGEfp-xmVEujh3SIPnfgkvn6Eg_Q3eXF7fzXbHH982p-vpgBK8Uwa1UjaD6s1YLlAUWhVVUJ3jWN6moNTBhlOs5ZKypjGGu51oqYRnFVkU6p8gCdbXTXo1qZdpotgpPraFcQn2QAK99WvL2XfXiUZU3yfzwLnLwIxPAwmjTIlc0rcg68CWOSlNcFqWje-v9RUtaCNyVhGT3-t61tP69uZOB0A-gYUoqmk9oOMNgwdWld1pKT33Lrd37x_d2LV9GP2G8bFnSSyzBGnz34gHsGx5q43Q |
CitedBy_id | crossref_primary_10_1039_C3BM60297D crossref_primary_10_1371_journal_pone_0289279 crossref_primary_10_1021_acs_analchem_4c02695 crossref_primary_10_1016_j_ijpharm_2016_10_013 crossref_primary_10_1016_j_biotechadv_2021_107711 crossref_primary_10_1039_C3CC47324D crossref_primary_10_1016_j_ccr_2025_216590 crossref_primary_10_4155_tde_13_75 crossref_primary_10_3174_ajnr_A5896 crossref_primary_10_1021_mp400429h crossref_primary_10_1016_j_biomaterials_2015_06_036 crossref_primary_10_1039_c3ra23127e crossref_primary_10_3390_pharmaceutics15020686 crossref_primary_10_1002_biot_201300038 crossref_primary_10_1016_j_biomaterials_2013_08_049 crossref_primary_10_1039_C6NR07660B crossref_primary_10_1039_C3TB20955E crossref_primary_10_1016_j_crgsc_2020_100042 crossref_primary_10_1039_C6NR02448C crossref_primary_10_1021_acsanm_9b00636 crossref_primary_10_1039_c3nr00774j crossref_primary_10_1016_j_jtice_2019_02_013 crossref_primary_10_1021_ac500820p crossref_primary_10_3390_gels10120808 crossref_primary_10_1039_C7AN01979C crossref_primary_10_1021_acs_chemrev_5b00321 crossref_primary_10_1080_10584587_2018_1454803 crossref_primary_10_1002_adfm_201400653 crossref_primary_10_1021_acs_chemrev_6b00073 crossref_primary_10_1039_C4TC00787E crossref_primary_10_3390_ijms18051036 crossref_primary_10_1515_ntrev_2016_0101 crossref_primary_10_1016_j_jdmv_2017_11_002 crossref_primary_10_1002_med_21932 crossref_primary_10_1002_adhm_201600919 crossref_primary_10_1002_tqem_21800 crossref_primary_10_1007_s12274_015_0944_2 crossref_primary_10_3390_ma15020503 crossref_primary_10_1016_j_carbpol_2017_12_079 crossref_primary_10_1016_j_coco_2022_101118 crossref_primary_10_1038_s41551_018_0257_3 crossref_primary_10_1016_j_msec_2020_111338 crossref_primary_10_1016_j_jconrel_2019_03_031 crossref_primary_10_1038_s43856_025_00794_x crossref_primary_10_1186_s12872_017_0643_x crossref_primary_10_1002_smll_202005474 crossref_primary_10_1039_c2nr33417h crossref_primary_10_1007_s12668_016_0363_1 crossref_primary_10_3390_app11125544 crossref_primary_10_1002_cplu_201402369 crossref_primary_10_1021_acsanm_2c04561 crossref_primary_10_1016_j_ccr_2021_214082 crossref_primary_10_1109_TMI_2024_3419427 crossref_primary_10_1007_s10934_017_0536_5 crossref_primary_10_1021_acsanm_9b00537 crossref_primary_10_1021_acsami_6b13161 crossref_primary_10_1021_acsanm_0c01193 crossref_primary_10_1021_la402007d crossref_primary_10_1186_1477_3155_11_28 crossref_primary_10_1002_adhm_202001044 crossref_primary_10_1002_aisy_202400007 crossref_primary_10_1039_C9NH00514E crossref_primary_10_1021_acsabm_9b00210 crossref_primary_10_1039_D0AN02374D |
Cites_doi | 10.1038/nnano.2008.39 10.1161/CIRCRESAHA.109.212589 10.1038/nature04165 10.1016/j.jmmm.2005.01.083 10.1002/smll.201001022 10.1016/S0022-3476(56)80031-0 10.1038/nm1581 10.1088/0022-3727/42/22/224001 10.1038/nnano.2007.418 10.1016/0092-8674(94)90007-8 10.1038/nature08956 10.1038/nnano.2006.170 10.1021/nl080141f 10.1038/nnano.2009.202 10.1038/nnano.2009.333 10.1038/nrc2106 10.1038/nnano.2008.114 10.1073/pnas.0707461104 10.2310/7290.2009.00031 10.1093/jnci/djp440 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/nn301670a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 6869 |
ExternalDocumentID | PMC3601027 22857784 10_1021_nn301670a c628916704 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: K99 EB008558 – fundername: NIBIB NIH HHS grantid: 1K99EB008558-01 – fundername: NCI NIH HHS grantid: U54 CA119367 – fundername: NCI NIH HHS grantid: 1U54 CA119367-01 – fundername: National Cancer Institute : NCI grantid: U54 CA119367 || CA |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a438t-db9811114dc8410282cb5587f99bf6ca48ebef774d85ee44d7ccb0e9b7b50fbb3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 14:30:47 EDT 2025 Fri Jul 11 06:57:49 EDT 2025 Fri Jul 11 05:23:56 EDT 2025 Thu Apr 03 06:56:59 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Tue Jul 01 01:33:26 EDT 2025 Thu Aug 27 13:42:50 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | cancer targeting magnetic nanoparticle magnetic targeting fluorescent nanoparticle nanoparticle theranostic agent fluorescent magnetic nanoparticle molecular imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a438t-db9811114dc8410282cb5587f99bf6ca48ebef774d85ee44d7ccb0e9b7b50fbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3601027 |
PMID | 22857784 |
PQID | 1036879304 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3601027 proquest_miscellaneous_1762051301 proquest_miscellaneous_1036879304 pubmed_primary_22857784 crossref_citationtrail_10_1021_nn301670a crossref_primary_10_1021_nn301670a acs_journals_10_1021_nn301670a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-28 |
PublicationDateYYYYMMDD | 2012-08-28 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Litt B. (ref22/cit22) 2010; 9 Namiki Y. (ref10/cit10) 2009; 4 Force T. (ref4/cit4) 2007; 7 Cheng K. (ref9/cit9) 2010; 106 Bartlett D. W. (ref20/cit20) 2007; 104 Sanhai W. R. (ref1/cit1) 2008; 3 Janssen M. L. (ref14/cit14) 2002; 62 Albini A. (ref3/cit3) 2010; 102 Brooks P. C. (ref13/cit13) 1994; 79 Smith B. R. (ref21/cit21) 2010; 6 Smith B. R. (ref19/cit19) 2008; 8 Meyers P. H. (ref6/cit6) 1963; 90 Wallerstein R. O. (ref16/cit16) 1956; 49 Galanzha E. I. (ref11/cit11) 2009; 4 Yellen B. B. (ref18/cit18) 2005; 293 Dobson J. (ref8/cit8) 2008; 3 Mannix R. J. (ref12/cit12) 2008; 3 Alford R. (ref17/cit17) 2009; 8 Davis M. E. (ref23/cit23) 2010; 464 ref24/cit24 Barnett B. P. (ref5/cit5) 2007; 13 Liu Z. (ref2/cit2) 2007; 2 Pankhurst Q. A. (ref7/cit7) 2009; 42 Yin Y. (ref15/cit15) 2005; 437 18654207 - Nat Nanotechnol. 2007 Jan;2(1):47-52 20305636 - Nature. 2010 Apr 15;464(7291):1067-70 20378859 - Circ Res. 2010 May 28;106(10):1570-81 18386933 - Nano Lett. 2008 Sep;8(9):2599-606 18654511 - Nat Nanotechnol. 2008 May;3(5):242-4 19734934 - Nat Nanotechnol. 2009 Sep;4(9):598-606 16193041 - Nature. 2005 Sep 29;437(7059):664-70 23379006 - Nanomedicine (Lond). 2012 Dec;7(12):1800 7528107 - Cell. 1994 Dec 30;79(7):1157-64 19915570 - Nat Nanotechnol. 2009 Dec;4(12):855-60 14090339 - Am J Roentgenol Radium Ther Nucl Med. 1963 Nov;90:1068-77 12414640 - Cancer Res. 2002 Nov 1;62(21):6146-51 17457301 - Nat Rev Cancer. 2007 May;7(5):332-44 13332543 - J Pediatr. 1956 Aug;49(2):173-6 18654448 - Nat Nanotechnol. 2008 Jan;3(1):36-40 18654485 - Nat Nanotechnol. 2008 Mar;3(3):139-43 17875985 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15549-54 20862677 - Small. 2010 Oct 18;6(20):2222-9 20007921 - J Natl Cancer Inst. 2010 Jan 6;102(1):14-25 20003892 - Mol Imaging. 2009 Dec;8(6):341-54 17660829 - Nat Med. 2007 Aug;13(8):986-91 20400953 - Nat Mater. 2010 Jun;9(6):511-7 |
References_xml | – volume: 3 start-page: 139 year: 2008 ident: ref8/cit8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.39 – volume: 106 start-page: 1570 year: 2010 ident: ref9/cit9 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.212589 – volume: 437 start-page: 664 year: 2005 ident: ref15/cit15 publication-title: Nature doi: 10.1038/nature04165 – volume: 293 start-page: 647 year: 2005 ident: ref18/cit18 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2005.01.083 – volume: 6 start-page: 2222 year: 2010 ident: ref21/cit21 publication-title: Small doi: 10.1002/smll.201001022 – volume: 49 start-page: 173 year: 1956 ident: ref16/cit16 publication-title: J. Pediatr. doi: 10.1016/S0022-3476(56)80031-0 – volume: 13 start-page: 986 year: 2007 ident: ref5/cit5 publication-title: Nat. Med. doi: 10.1038/nm1581 – volume: 42 start-page: 224001 year: 2009 ident: ref7/cit7 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/22/224001 – volume: 3 start-page: 36 year: 2008 ident: ref12/cit12 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.418 – volume: 79 start-page: 1157 year: 1994 ident: ref13/cit13 publication-title: Cell doi: 10.1016/0092-8674(94)90007-8 – volume: 62 start-page: 6146 year: 2002 ident: ref14/cit14 publication-title: Cancer Res. – volume: 464 start-page: 1067 year: 2010 ident: ref23/cit23 publication-title: Nature doi: 10.1038/nature08956 – volume: 2 start-page: 47 year: 2007 ident: ref2/cit2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.170 – volume: 9 start-page: 2745 year: 2010 ident: ref22/cit22 publication-title: Nat. Mater. – volume: 8 start-page: 2599 year: 2008 ident: ref19/cit19 publication-title: Nano Lett. doi: 10.1021/nl080141f – volume: 4 start-page: 598 year: 2009 ident: ref10/cit10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.202 – ident: ref24/cit24 – volume: 90 start-page: 1068 year: 1963 ident: ref6/cit6 publication-title: Am. J. Roentgenol. Radium Ther. Nucl. Med. – volume: 4 start-page: 855 year: 2009 ident: ref11/cit11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.333 – volume: 7 start-page: 332 year: 2007 ident: ref4/cit4 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2106 – volume: 3 start-page: 242 year: 2008 ident: ref1/cit1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.114 – volume: 104 start-page: 15549 year: 2007 ident: ref20/cit20 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0707461104 – volume: 8 start-page: 341 year: 2009 ident: ref17/cit17 publication-title: Mol. Imaging doi: 10.2310/7290.2009.00031 – volume: 102 start-page: 14 year: 2010 ident: ref3/cit3 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djp440 – reference: 20400953 - Nat Mater. 2010 Jun;9(6):511-7 – reference: 18654511 - Nat Nanotechnol. 2008 May;3(5):242-4 – reference: 18654207 - Nat Nanotechnol. 2007 Jan;2(1):47-52 – reference: 17875985 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15549-54 – reference: 7528107 - Cell. 1994 Dec 30;79(7):1157-64 – reference: 19734934 - Nat Nanotechnol. 2009 Sep;4(9):598-606 – reference: 23379006 - Nanomedicine (Lond). 2012 Dec;7(12):1800 – reference: 17660829 - Nat Med. 2007 Aug;13(8):986-91 – reference: 20003892 - Mol Imaging. 2009 Dec;8(6):341-54 – reference: 14090339 - Am J Roentgenol Radium Ther Nucl Med. 1963 Nov;90:1068-77 – reference: 16193041 - Nature. 2005 Sep 29;437(7059):664-70 – reference: 18654485 - Nat Nanotechnol. 2008 Mar;3(3):139-43 – reference: 20007921 - J Natl Cancer Inst. 2010 Jan 6;102(1):14-25 – reference: 18654448 - Nat Nanotechnol. 2008 Jan;3(1):36-40 – reference: 20862677 - Small. 2010 Oct 18;6(20):2222-9 – reference: 17457301 - Nat Rev Cancer. 2007 May;7(5):332-44 – reference: 20305636 - Nature. 2010 Apr 15;464(7291):1067-70 – reference: 20378859 - Circ Res. 2010 May 28;106(10):1570-81 – reference: 13332543 - J Pediatr. 1956 Aug;49(2):173-6 – reference: 18386933 - Nano Lett. 2008 Sep;8(9):2599-606 – reference: 19915570 - Nat Nanotechnol. 2009 Dec;4(12):855-60 – reference: 12414640 - Cancer Res. 2002 Nov 1;62(21):6146-51 |
SSID | ssj0057876 |
Score | 2.3750708 |
Snippet | Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6862 |
SubjectTerms | Animals Cancer Cell Line, Tumor Fluorescence Fluorescent Dyes - chemistry Glioblastoma - pathology Human Humans Imaging Iron oxides Magnetic Fields Magnetite Nanoparticles Materials Testing Mice Mice, SCID Microscopy Microscopy, Fluorescence - methods Nanocapsules - chemistry Nanocapsules - ultrastructure Nanoparticles Nanostructure Particle Size Tumors |
Title | Fluorescent Magnetic Nanoparticles for Magnetically Enhanced Cancer Imaging and Targeting in Living Subjects |
URI | http://dx.doi.org/10.1021/nn301670a https://www.ncbi.nlm.nih.gov/pubmed/22857784 https://www.proquest.com/docview/1036879304 https://www.proquest.com/docview/1762051301 https://pubmed.ncbi.nlm.nih.gov/PMC3601027 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYQXMqBV1u6tEWm9MAlNPEjdo5oYUVR6YVdaW9RnDiwavCifRzg13cmL-3CAqco8jhW7PHMN_b4MyE_AaIajqk6XCjfEzlnngnxfpNUZzYIImMzDBSv_4aXA3E1lMM1cvzKDj4LfjnHMVXeBxC0wUIdYIR11r1pzC1qXFhtHUNoDPihoQ9arIquJ50uu54XePJ5WuSCn-ltk_PmtE6VXvLvdD4zp-nTS_LGt35hh2zVOJOeVYqxS9as2yObC-yDH0nRK-bjSUXnRK-TW4fnGSmYW4ij63Q5CpC2LUqK4pFeuLsyZ4B28TGhv-_La45o4jLaL7PK8W3k6J8RLlVQMEy40jP9RAa9i3730qsvX_ASwfXMy0yk0ZyKLNUCUQhLjZRa5VFk8hC50GH4cwCPmZbWCpGpNDW-jYwy0s-N4Z_Juhs7-4VQbRKu_dwyX1ohVQYhVq4SnUhpjYKIq0MOYXTievJM43JfnAVx220dctIMXJzW1OV4g0axSvRHK_pQ8XWsEjpqRj-G2YRbJImz4zk2zUMNJssXb8iA_wBTBt_qkP1KY9qmGNNSKQ211ZIutQLI5r1c4kZ3Jas3x9CYqYP3OuMr-QCgjeG6NtPfyPpsMrffARjNzGE5Mf4DJEEJXA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9swENZ06KFwoC2Pkj5AZThwMXX0sORjJ0MmQMKlYYabx7JlyGCUTpwc2l_fXdlxE8q0PXk8Wlu2vFp9q11_S8gJQFTDMVWHCxUGouAsMBHWN8l0brvd2NgcHcXRdTS4EZe38rahycF_YeAhKrhT5YP4v9kFul-c45gxHwIWeukZUBAG9b4trS4qXlRHkMFDBhixZBFavRRXoKxaX4H-gJVPsyNXlpv-67pukX9Qn2XycLaYm7Ps5xMOx_97kzdku0Gd9GutJm_JC-t2yNYKF-EuKfvlYjqryZ3oKL1z-HcjBeMLXnWTPEcB4LZNaVn-oOfu3mcQ0B4eZvTi0Rc9oqnL6djnmOPZxNHhBDcuKJgp3Pep9shN_3zcGwRNKYYgFVzPg9zEGo2ryDMtEJOwzEipVRHHpoiQGR2UoQAomWtprRC5yjIT2tgoI8PCGL5PNtzU2QNCtUm5DgvLQmmFVDk4XIVKdSqlNQr8rw45hFFLmqlUJT5KzrpJO2wdcrr8fknWEJljPY3yOdHjVvR7zd7xnNDnpRIkMLcwYJI6O11g1zzSYMBC8RcZWE3AsMG9OuRdrThtV4xpqZSGq9WaSrUCyO293uIm957jm6OjzNT7fw3GEXk1GI-GyfDi-uoD2QQ4x3DHm-mPZGM-W9hPAJnm5tDPlV8uBhHH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcmJqHtwGAf0ME6b-KwSyD1R-wcUWkFG7BJA4lbFMcOVGQuatoD_PW8l6RRyxDbKYr8_BHn-fn37OefCdkFiGo4hupwocJA5JwFJsL7TTJtXa8XG2fRUTw9i44uxPdLedk4ingWBhpRQklltYmPo_rW5g3DQG_fe45R8yHgoZcSqd8QCvV_zy0vKl9U7yKDlwxQYs4ktJgVZ6GsXJ6F_oKWjyMkF6ac4Rvys21sFWlyszebmr3s_hGP4_9_zTpZa9AnPajVZYO8cP4teb3ASfiOFMNiNp7UJE_0NL3yeMqRghEG77oJoqMAdNuktCju6MBfV5EEtI-PCT3-U11-RFNv6XkVa45vI09PRriAQcFc4fpP-Z5cDAfn_aOguZIhSAXX08CaWKORFTbTArEJy4yUWuVxbPIIGdJBKXKAlFZL54SwKstM6GKjjAxzY_gHsuLH3m0Rqk3KdZg7FkonpLLgeOUq1amUzijwwzqkCz2XNEOqTKrdctZL2m7rkG_zf5hkDaE53qtRPCX6tRW9rVk8nhL6MleEBMYYbpyk3o1nWDWPNBiyUDwjA7MKGDgoq0M2a-Vpq2JMS6U05FZLatUKIMf3coofXVdc3xwdZqY-_qszPpPVX4fD5OT47Mc2eQWojuHCN9M7ZGU6mblPgJymplsNlwfX1hRB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescent+Magnetic+Nanoparticles+for+Magnetically+Enhanced+Cancer+Imaging+and+Targeting+in+Living+Subjects&rft.jtitle=ACS+nano&rft.au=Fu%2C+Aihua&rft.au=Wilson%2C+Robert+J.&rft.au=Smith%2C+Bryan+R.&rft.au=Mullenix%2C+Joyce&rft.date=2012-08-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=6&rft.issue=8&rft.spage=6862&rft.epage=6869&rft_id=info:doi/10.1021%2Fnn301670a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn301670a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |