Google Earth Engine for geo-big data applications: A meta-analysis and systematic review
Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) hi...
Saved in:
| Published in | ISPRS journal of photogrammetry and remote sensing Vol. 164; pp. 152 - 170 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-2716 1872-8235 |
| DOI | 10.1016/j.isprsjprs.2020.04.001 |
Cover
| Abstract | Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data. |
|---|---|
| AbstractList | Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data. Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data. |
| Author | Brisco, Brian Adeli, Sarina Quackenbush, Lindi Mahdianpari, Masoud Salehi, Bahram Tamiminia, Haifa |
| Author_xml | – sequence: 1 givenname: Haifa surname: Tamiminia fullname: Tamiminia, Haifa organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA – sequence: 2 givenname: Bahram surname: Salehi fullname: Salehi, Bahram organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA – sequence: 3 givenname: Masoud orcidid: 0000-0002-7234-959X surname: Mahdianpari fullname: Mahdianpari, Masoud email: m.mahdianpari@mun.ca organization: C-CORE and Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada – sequence: 4 givenname: Lindi surname: Quackenbush fullname: Quackenbush, Lindi organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA – sequence: 5 givenname: Sarina surname: Adeli fullname: Adeli, Sarina organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA – sequence: 6 givenname: Brian surname: Brisco fullname: Brisco, Brian organization: The Canada Centre for Mapping and Earth Observation, Ottawa K1S 5K2, Canada |
| BookMark | eNqNkDtLBDEURoMouD5-gyltZkwyb8FikfUBgo2CXbiT3KxZZpMxicr-e0dXLGy0uNzmnK84B2TXeYeEnHCWc8brs1Vu4xjiarpcMMFyVuaM8R0y420jslYU1S6ZsU6UmWh4vU8OYlyxiajqdkaerr1fDkgXENIzXbildUiND3SJPuvtkmpIQGEcB6sgWe_iOZ3TNSbIwMGwiTZScJrGTUy4nghFA75ZfD8iewaGiMff_5A8Xi0eLm-yu_vr28v5XQZl0aSsq7rKiNIUrWFNXXcKOdRNJaCpSkDVAtOV4aBNp1Wre96zXnQ9cN0wVHVvikNyut0dg395xZjk2kaFwwAO_WuUoix42wkuiglttqgKPsaARo7BriFsJGfys6VcyZ-W8rOlZKWcSk3mxS9T2fSVIwWwwz_8-dbHqcRUJ8ioLDqF2gZUSWpv_9z4AHm9mhQ |
| CitedBy_id | crossref_primary_10_1038_s41598_024_68991_7 crossref_primary_10_3390_urbansci9020023 crossref_primary_10_3390_rs16010060 crossref_primary_10_3389_feart_2023_1183834 crossref_primary_10_3390_s21051791 crossref_primary_10_1109_TGRS_2023_3348974 crossref_primary_10_3390_w15061053 crossref_primary_10_1016_j_jhydrol_2022_128080 crossref_primary_10_3390_atmos15091020 crossref_primary_10_1016_j_apr_2024_102226 crossref_primary_10_1080_10549811_2024_2448027 crossref_primary_10_3390_w13213115 crossref_primary_10_1088_1755_1315_1451_1_012040 crossref_primary_10_2989_20702620_2023_2251946 crossref_primary_10_3390_ijgi13070239 crossref_primary_10_1016_j_ocecoaman_2023_106601 crossref_primary_10_3390_rs12213663 crossref_primary_10_5194_essd_16_2877_2024 crossref_primary_10_1038_s41597_022_01337_y crossref_primary_10_3390_app14114554 crossref_primary_10_3390_ijerph192013555 crossref_primary_10_1016_j_jhydrol_2024_130979 crossref_primary_10_1016_j_habitatint_2024_103095 crossref_primary_10_1016_j_compag_2023_107928 crossref_primary_10_3389_esss_2024_10075 crossref_primary_10_1002_esp_70032 crossref_primary_10_3390_app13063440 crossref_primary_10_3390_rs15071816 crossref_primary_10_1016_j_ecolind_2022_109813 crossref_primary_10_1029_2022EF002927 crossref_primary_10_1007_s10661_023_12006_x crossref_primary_10_52547_jgit_10_3_121 crossref_primary_10_1080_15481603_2024_2302221 crossref_primary_10_3390_d16080448 crossref_primary_10_1007_s11869_023_01488_w crossref_primary_10_1186_s12302_024_00901_0 crossref_primary_10_1007_s11356_021_15361_9 crossref_primary_10_1109_TGRS_2023_3323319 crossref_primary_10_1080_22797254_2025_2473939 crossref_primary_10_3390_app122312147 crossref_primary_10_1071_MF22111 crossref_primary_10_3390_rs15102539 crossref_primary_10_1108_CI_05_2021_0090 crossref_primary_10_3897_oneeco_9_e134088 crossref_primary_10_1002_rse2_286 crossref_primary_10_1007_s40808_023_01860_w crossref_primary_10_1080_17538947_2025_2454411 crossref_primary_10_1088_1755_1315_1109_1_012039 crossref_primary_10_1016_j_ecolind_2022_108619 crossref_primary_10_1016_j_dib_2023_109986 crossref_primary_10_1109_TGRS_2021_3095153 crossref_primary_10_3390_land12020303 crossref_primary_10_1016_j_ecolind_2024_112759 crossref_primary_10_1016_j_watres_2025_123176 crossref_primary_10_1002_ldr_4360 crossref_primary_10_3390_rs14225734 crossref_primary_10_1080_20964471_2025_2454044 crossref_primary_10_3390_rs13183587 crossref_primary_10_3390_data10010008 crossref_primary_10_1007_s12517_023_11538_3 crossref_primary_10_1109_MGRS_2023_3293459 crossref_primary_10_1038_s41559_024_02372_1 crossref_primary_10_1007_s41101_023_00212_0 crossref_primary_10_1016_j_ecolind_2022_108625 crossref_primary_10_1364_OE_502709 crossref_primary_10_18006_2022_10_2__369_378 crossref_primary_10_1080_07038992_2020_1802584 crossref_primary_10_3390_ijgi9100564 crossref_primary_10_3390_rs16071227 crossref_primary_10_3390_rs14164023 crossref_primary_10_1088_1748_9326_acc2d2 crossref_primary_10_1002_aqc_4243 crossref_primary_10_1080_17538947_2023_2192004 crossref_primary_10_1029_2021EF002289 crossref_primary_10_1088_1755_1315_1230_1_012144 crossref_primary_10_1007_s12145_024_01686_9 crossref_primary_10_1038_s41598_025_91381_6 crossref_primary_10_3390_rs14092055 crossref_primary_10_1016_j_jenvman_2024_121851 crossref_primary_10_3390_rs17030488 crossref_primary_10_3390_rs14195052 crossref_primary_10_3390_rs15123131 crossref_primary_10_3390_rs16050831 crossref_primary_10_3390_app10207336 crossref_primary_10_3390_rs13204045 crossref_primary_10_1007_s10980_021_01381_w crossref_primary_10_3390_rs16214088 crossref_primary_10_51552_peyad_1346845 crossref_primary_10_3390_rs15030588 crossref_primary_10_1016_j_accre_2024_03_002 crossref_primary_10_1080_10106049_2022_2071475 crossref_primary_10_1016_j_rse_2023_113664 crossref_primary_10_3390_drones4030041 crossref_primary_10_1016_j_rsase_2023_101112 crossref_primary_10_1186_s13677_022_00360_z crossref_primary_10_3390_rs15204980 crossref_primary_10_1016_j_nhres_2024_01_004 crossref_primary_10_1007_s40808_024_02066_4 crossref_primary_10_1007_s40333_022_0075_z crossref_primary_10_1016_j_scitotenv_2024_175058 crossref_primary_10_1016_j_ecolind_2023_111193 crossref_primary_10_1016_j_isprsjprs_2024_12_018 crossref_primary_10_1016_j_jclepro_2024_142255 crossref_primary_10_1007_s12583_022_1670_9 crossref_primary_10_1080_10095020_2024_2440615 crossref_primary_10_3390_rs16142529 crossref_primary_10_1016_j_agwat_2025_109302 crossref_primary_10_3390_land10121388 crossref_primary_10_3390_rs16173168 crossref_primary_10_3390_rs14092038 crossref_primary_10_3390_rs14225647 crossref_primary_10_1016_j_ugj_2022_05_001 crossref_primary_10_3389_esss_2024_10124 crossref_primary_10_1016_j_ecolind_2024_112430 crossref_primary_10_1007_s12145_023_01161_x crossref_primary_10_3390_f13071132 crossref_primary_10_1029_2023WR034967 crossref_primary_10_3390_rs16214060 crossref_primary_10_1016_j_ejrh_2022_101111 crossref_primary_10_3390_en14154490 crossref_primary_10_1016_j_heliyon_2025_e42041 crossref_primary_10_3390_rs14225773 crossref_primary_10_1186_s40537_023_00730_7 crossref_primary_10_1186_s42408_024_00320_9 crossref_primary_10_3390_rs15204960 crossref_primary_10_1016_j_jer_2024_08_006 crossref_primary_10_1109_JSTARS_2024_3380580 crossref_primary_10_2139_ssrn_4054431 crossref_primary_10_1080_19475705_2022_2030808 crossref_primary_10_3390_rs14174382 crossref_primary_10_3390_geomatics3040026 crossref_primary_10_1007_s12665_024_12045_8 crossref_primary_10_1016_j_envsoft_2024_106022 crossref_primary_10_3390_rs12111882 crossref_primary_10_1007_s44163_024_00198_1 crossref_primary_10_1016_j_scitotenv_2024_173099 crossref_primary_10_1097_st9_0000000000000045 crossref_primary_10_1016_j_envsoft_2024_106268 crossref_primary_10_3390_agriculture13020388 crossref_primary_10_3390_rs13112047 crossref_primary_10_3390_rs13234819 crossref_primary_10_1016_j_jclepro_2024_142595 crossref_primary_10_1016_j_isprsjprs_2023_03_003 crossref_primary_10_1007_s11356_023_30110_w crossref_primary_10_3390_rs13173501 crossref_primary_10_2205_2022ES000812 crossref_primary_10_1016_j_jenvman_2022_116920 crossref_primary_10_1029_2021EF002123 crossref_primary_10_1051_e3sconf_202459109011 crossref_primary_10_3390_rs14205279 crossref_primary_10_1029_2021WR031399 crossref_primary_10_4995_raet_2024_20831 crossref_primary_10_5194_nhess_24_4385_2024 crossref_primary_10_1007_s40333_022_0085_x crossref_primary_10_3390_rs13183778 crossref_primary_10_1016_j_isprsjprs_2024_11_005 crossref_primary_10_1002_ldr_4790 crossref_primary_10_1016_j_jhydrol_2025_132905 crossref_primary_10_3390_land13020222 crossref_primary_10_3389_fenvs_2022_884440 crossref_primary_10_1080_07038992_2021_1901562 crossref_primary_10_3390_agronomy13123037 crossref_primary_10_3390_rs12203454 crossref_primary_10_1016_j_jag_2025_104456 crossref_primary_10_1016_j_ijdrr_2023_104056 crossref_primary_10_3390_land14020313 crossref_primary_10_3390_rs16244810 crossref_primary_10_3390_rs16071184 crossref_primary_10_3390_land13030386 crossref_primary_10_1016_j_jhydrol_2024_131771 crossref_primary_10_3390_rs15051368 crossref_primary_10_1016_j_isprsjprs_2023_05_025 crossref_primary_10_3390_rs14112510 crossref_primary_10_1007_s11676_024_01700_2 crossref_primary_10_1109_ACCESS_2024_3414996 crossref_primary_10_1109_JSTARS_2024_3382580 crossref_primary_10_1142_S0218126625501841 crossref_primary_10_3390_data7060074 crossref_primary_10_3390_rs14143253 crossref_primary_10_3389_esss_2024_10110 crossref_primary_10_1016_j_ecolind_2024_112027 crossref_primary_10_1007_s12145_022_00918_0 crossref_primary_10_3390_jmse12050800 crossref_primary_10_1016_j_heliyon_2025_e42619 crossref_primary_10_1016_j_xinn_2024_100691 crossref_primary_10_1038_s41598_020_74561_4 crossref_primary_10_3390_rs15143479 crossref_primary_10_1007_s10661_023_11650_7 crossref_primary_10_1080_10095020_2022_2162980 crossref_primary_10_1016_j_indic_2025_100611 crossref_primary_10_3390_rs13061098 crossref_primary_10_1016_j_ecolind_2023_110904 crossref_primary_10_1080_24749508_2024_2430047 crossref_primary_10_1007_s12145_023_01035_2 crossref_primary_10_1007_s10518_025_02108_x crossref_primary_10_1007_s10661_022_09888_8 crossref_primary_10_3390_rs15215160 crossref_primary_10_3390_su15086798 crossref_primary_10_3390_rs14215296 crossref_primary_10_3390_rs15112835 crossref_primary_10_3934_geosci_2024005 crossref_primary_10_3390_rs14051165 crossref_primary_10_4018_IJAEIS_367572 crossref_primary_10_2166_aqua_2024_233 crossref_primary_10_18343_jipi_30_1_108 crossref_primary_10_1080_15481603_2024_2380125 crossref_primary_10_3390_rs14215289 crossref_primary_10_1016_j_future_2024_107644 crossref_primary_10_1080_15481603_2023_2211881 crossref_primary_10_1038_s41597_022_01474_4 crossref_primary_10_1098_rspb_2024_1712 crossref_primary_10_1007_s11442_023_2160_4 crossref_primary_10_1016_j_earscirev_2024_104941 crossref_primary_10_1007_s11356_021_17257_0 crossref_primary_10_1080_09715010_2025_2479839 crossref_primary_10_1088_1755_1315_893_1_012057 crossref_primary_10_3390_rs15051263 crossref_primary_10_3390_rs14194978 crossref_primary_10_3390_s24030834 crossref_primary_10_3390_rs14164097 crossref_primary_10_1080_22797254_2022_2052188 crossref_primary_10_1109_JSTARS_2025_3540302 crossref_primary_10_1007_s12524_022_01588_7 crossref_primary_10_1061_NHREFO_NHENG_1801 crossref_primary_10_3389_fpls_2022_892625 crossref_primary_10_1007_s12524_024_01922_1 crossref_primary_10_1016_j_indic_2024_100541 crossref_primary_10_1016_j_jnc_2021_126081 crossref_primary_10_1007_s44327_025_00051_9 crossref_primary_10_1038_s41598_021_04754_y crossref_primary_10_3390_rs13214347 crossref_primary_10_1016_j_indic_2024_100427 crossref_primary_10_1088_2051_672X_ac9492 crossref_primary_10_3390_rs13061084 crossref_primary_10_3390_rs15112741 crossref_primary_10_3390_w12102822 crossref_primary_10_1038_s41598_022_17454_y crossref_primary_10_3390_s22051942 crossref_primary_10_1016_j_marpolbul_2024_116529 crossref_primary_10_1002_hyp_70062 crossref_primary_10_1016_j_jag_2021_102481 crossref_primary_10_1016_j_ecolind_2024_112246 crossref_primary_10_47134_jtp_v1i4_379 crossref_primary_10_1016_j_rsase_2022_100907 crossref_primary_10_5194_essd_13_4799_2021 crossref_primary_10_1016_j_jag_2021_102485 crossref_primary_10_1080_01431161_2024_2413025 crossref_primary_10_1016_j_jag_2022_102784 crossref_primary_10_1080_15481603_2020_1846948 crossref_primary_10_1007_s42979_024_03500_1 crossref_primary_10_1515_geo_2022_0625 crossref_primary_10_3390_rs14194723 crossref_primary_10_1016_j_isprsjprs_2024_06_007 crossref_primary_10_3390_s23062947 crossref_primary_10_1109_ACCESS_2024_3468384 crossref_primary_10_3390_s24051651 crossref_primary_10_1016_j_isprsjprs_2021_01_012 crossref_primary_10_1002_joc_8130 crossref_primary_10_1016_j_ecoinf_2023_102075 crossref_primary_10_1016_j_gecco_2022_e02126 crossref_primary_10_1016_j_catena_2024_108354 crossref_primary_10_3389_ffgc_2024_1345047 crossref_primary_10_1007_s11069_024_06907_4 crossref_primary_10_1080_2150704X_2022_2027543 crossref_primary_10_11922_11_6035_csd_2022_0058_zh crossref_primary_10_3390_rs13214480 crossref_primary_10_3389_feart_2023_1188093 crossref_primary_10_1109_JSTARS_2022_3231890 crossref_primary_10_1007_s12145_024_01372_w crossref_primary_10_1016_j_ecolind_2022_109842 crossref_primary_10_1016_j_isprsjprs_2022_10_012 crossref_primary_10_1088_1755_1315_1240_1_012017 crossref_primary_10_1108_DLP_06_2024_0090 crossref_primary_10_1109_TGRS_2023_3299956 crossref_primary_10_3390_f15111919 crossref_primary_10_1016_j_geoderma_2020_114890 crossref_primary_10_1155_2021_1140611 crossref_primary_10_3390_ijgi12040141 crossref_primary_10_1007_s10661_024_12677_0 crossref_primary_10_1038_s41597_023_02285_x crossref_primary_10_1080_17538947_2023_2270459 crossref_primary_10_1080_17538947_2023_2179675 crossref_primary_10_1016_j_rsase_2023_101078 crossref_primary_10_3390_rs16224161 crossref_primary_10_1007_s11769_021_1226_4 crossref_primary_10_1080_15481603_2023_2222627 crossref_primary_10_1371_journal_pone_0288694 crossref_primary_10_3390_rs14215498 crossref_primary_10_1007_s13201_022_01862_6 crossref_primary_10_3389_feart_2023_1252597 crossref_primary_10_1016_j_ophoto_2023_100049 crossref_primary_10_1016_j_scib_2023_07_035 crossref_primary_10_1109_TGRS_2023_3323641 crossref_primary_10_1007_s42489_022_00121_7 crossref_primary_10_1016_j_ecoleng_2025_107525 crossref_primary_10_1016_j_jnc_2023_126464 crossref_primary_10_2166_wcc_2024_574 crossref_primary_10_1007_s12145_024_01549_3 crossref_primary_10_1016_j_adhoc_2024_103460 crossref_primary_10_1016_j_jag_2024_104027 crossref_primary_10_1016_j_pce_2024_103569 crossref_primary_10_3390_rs15061592 crossref_primary_10_3390_ijgi10080511 crossref_primary_10_3389_fenvs_2023_1107393 crossref_primary_10_1029_2022JG007101 crossref_primary_10_1016_j_buildenv_2023_111112 crossref_primary_10_3390_rs14051123 crossref_primary_10_3390_rs14194906 crossref_primary_10_1007_s40808_021_01157_w crossref_primary_10_1016_j_rse_2024_114404 crossref_primary_10_3390_rs13214378 crossref_primary_10_3390_atmos16010022 crossref_primary_10_3390_rs17040680 crossref_primary_10_5814_j_issn_1674_764x_2025_01_001 crossref_primary_10_1109_JSTARS_2025_3528429 crossref_primary_10_3390_heritage8010030 crossref_primary_10_36680_j_itcon_2021_044 crossref_primary_10_47134_jbkd_v1i3_2593 crossref_primary_10_1016_j_resconrec_2024_107751 crossref_primary_10_1016_j_envc_2024_101026 crossref_primary_10_1016_j_simpa_2023_100607 crossref_primary_10_1007_s41742_025_00752_4 crossref_primary_10_3390_cli12030045 crossref_primary_10_1016_j_cageo_2022_105034 crossref_primary_10_1088_1755_1315_1345_1_012005 crossref_primary_10_1016_j_ecolind_2024_112150 crossref_primary_10_1016_j_heliyon_2024_e26913 crossref_primary_10_1016_j_isprsjprs_2023_06_010 crossref_primary_10_3390_f15010165 crossref_primary_10_1016_j_jag_2021_102453 crossref_primary_10_3390_agronomy12071518 crossref_primary_10_3390_su14074104 crossref_primary_10_3390_rs15051461 crossref_primary_10_1016_j_rsase_2023_101095 crossref_primary_10_3390_rs15030763 crossref_primary_10_1016_j_envpol_2021_118397 crossref_primary_10_3390_rs12142190 crossref_primary_10_1155_2022_8103242 crossref_primary_10_1016_j_ecoinf_2023_102147 crossref_primary_10_1016_j_rsase_2024_101171 crossref_primary_10_3390_agronomy13092302 crossref_primary_10_1007_s00704_024_04874_1 crossref_primary_10_3390_rs13040586 crossref_primary_10_1016_j_rse_2022_113082 crossref_primary_10_3390_rs14215361 crossref_primary_10_3390_land11112039 crossref_primary_10_3390_rs15133447 crossref_primary_10_3390_s22134729 crossref_primary_10_3390_rs16224275 crossref_primary_10_1016_j_iswcr_2023_03_002 crossref_primary_10_1016_j_scitotenv_2024_176521 crossref_primary_10_1080_17538947_2024_2365386 crossref_primary_10_3390_rs15143495 crossref_primary_10_1007_s00500_023_08142_8 crossref_primary_10_3390_geomatics3010012 crossref_primary_10_3390_rs15030655 crossref_primary_10_3390_su151411413 crossref_primary_10_1016_j_jag_2024_104040 crossref_primary_10_1109_JSTARS_2022_3190027 crossref_primary_10_3390_rs14112663 crossref_primary_10_3390_rs15164055 crossref_primary_10_1007_s12145_023_01010_x crossref_primary_10_1080_17538947_2024_2436494 crossref_primary_10_1080_10106049_2022_2087759 crossref_primary_10_1016_j_scitotenv_2022_153335 crossref_primary_10_3390_s23125734 crossref_primary_10_3390_su162411130 crossref_primary_10_1016_j_pce_2025_103893 crossref_primary_10_3390_rs15040984 crossref_primary_10_1016_j_jenvman_2024_123677 crossref_primary_10_1016_j_ecolind_2022_109365 crossref_primary_10_3390_fire7110413 crossref_primary_10_1016_j_isprsjprs_2021_03_018 crossref_primary_10_3389_fenvs_2023_1137835 crossref_primary_10_1002_ldr_4824 crossref_primary_10_1016_j_isprsjprs_2024_01_014 crossref_primary_10_1080_15481603_2020_1835080 crossref_primary_10_51800_ecd_1296895 crossref_primary_10_3390_rs14133041 crossref_primary_10_3390_rs16122210 crossref_primary_10_3390_su142214868 crossref_primary_10_3390_rs15143504 crossref_primary_10_3390_hydrology9080135 crossref_primary_10_1016_j_rsase_2024_101275 crossref_primary_10_31548_zemleustriy2023_01_12 crossref_primary_10_1016_j_scitotenv_2023_165964 crossref_primary_10_3390_rs16132389 crossref_primary_10_1088_1755_1315_1127_1_012021 crossref_primary_10_3390_land11030372 crossref_primary_10_3390_atmos15030318 crossref_primary_10_1088_2515_7620_ad2bb5 crossref_primary_10_1007_s11852_023_01020_3 crossref_primary_10_1016_j_isprsjprs_2021_11_017 crossref_primary_10_1016_j_rsase_2024_101279 crossref_primary_10_1109_ACCESS_2023_3285246 crossref_primary_10_3390_rs13030403 crossref_primary_10_1007_s10661_022_10437_6 crossref_primary_10_1007_s11600_023_01177_3 crossref_primary_10_1111_ddi_13491 crossref_primary_10_61186_NMCE_2401_1045 crossref_primary_10_1016_j_rsase_2022_100842 crossref_primary_10_1080_13675567_2022_2130211 crossref_primary_10_3390_rs12162531 crossref_primary_10_1007_s11356_023_25685_3 crossref_primary_10_1111_1752_1688_13160 crossref_primary_10_3390_agriculture12091435 crossref_primary_10_1016_j_jag_2023_103638 crossref_primary_10_1080_10406026_2025_2460097 crossref_primary_10_3390_rs16030583 crossref_primary_10_3389_fenvs_2021_805174 crossref_primary_10_1071_CP23340 crossref_primary_10_1016_j_isprsjprs_2024_08_010 crossref_primary_10_1016_j_cliser_2023_100444 crossref_primary_10_24850_j_tyca_2024_04_04 crossref_primary_10_3390_ijgi11080423 crossref_primary_10_1016_j_isprsjprs_2024_08_019 crossref_primary_10_1088_1755_1315_1127_1_012033 crossref_primary_10_1109_JSTARS_2022_3194324 crossref_primary_10_1002_esp_5791 crossref_primary_10_1016_j_agwat_2023_108493 crossref_primary_10_3390_su151813305 crossref_primary_10_1016_j_atmosenv_2022_119219 crossref_primary_10_3390_su15032535 crossref_primary_10_1007_s12517_022_10494_8 crossref_primary_10_1007_s12145_021_00739_7 crossref_primary_10_1080_22797254_2021_1948356 crossref_primary_10_1016_j_jag_2024_103822 crossref_primary_10_1016_j_isprsjprs_2022_05_007 crossref_primary_10_1016_j_rse_2022_112913 crossref_primary_10_1016_j_isprsjprs_2023_07_015 crossref_primary_10_3390_s20247315 crossref_primary_10_1016_j_ocecoaman_2021_105842 crossref_primary_10_1016_j_apgeog_2023_103081 crossref_primary_10_1016_j_coldregions_2022_103682 crossref_primary_10_1016_j_enggeo_2025_107948 crossref_primary_10_3390_ijgi10060384 crossref_primary_10_47818_DRArch_2022_v3i2055 crossref_primary_10_3390_rs15215095 crossref_primary_10_3390_su14095687 crossref_primary_10_1016_j_foreco_2022_120764 crossref_primary_10_1080_07038992_2022_2054405 crossref_primary_10_1002_ird_2931 crossref_primary_10_1016_j_jenvman_2024_120192 crossref_primary_10_1007_s00477_023_02555_5 crossref_primary_10_1080_17538947_2022_2115567 crossref_primary_10_1080_17538947_2023_2197263 crossref_primary_10_1080_17538947_2024_2365981 crossref_primary_10_3390_rs14163967 crossref_primary_10_1016_j_still_2024_106270 crossref_primary_10_14358_PERS_24_00026R2 crossref_primary_10_3390_rs14020273 crossref_primary_10_3390_rs16122122 crossref_primary_10_3390_rs13132510 crossref_primary_10_54033_cadpedv21n7_213 crossref_primary_10_1016_j_ecoinf_2024_102529 crossref_primary_10_3390_rs17050933 crossref_primary_10_3390_land13030335 crossref_primary_10_1016_j_clwat_2025_100070 crossref_primary_10_1016_j_jag_2023_103409 crossref_primary_10_1016_j_jenvman_2022_116568 crossref_primary_10_3390_earth5020012 crossref_primary_10_1051_bioconf_20249905006 crossref_primary_10_3390_rs14010230 crossref_primary_10_3389_fmars_2024_1488577 crossref_primary_10_3390_rs16061052 crossref_primary_10_1007_s11356_021_15782_6 crossref_primary_10_1007_s13762_022_04704_9 crossref_primary_10_1016_j_tfp_2021_100119 crossref_primary_10_1016_j_marpol_2024_106128 crossref_primary_10_1080_24749508_2024_2431354 crossref_primary_10_3390_app131910692 crossref_primary_10_5334_jcaa_177 crossref_primary_10_1016_j_jenvman_2025_124969 crossref_primary_10_3390_rs13071381 crossref_primary_10_1088_1755_1315_1438_1_012088 crossref_primary_10_3390_land10050516 crossref_primary_10_3390_rs13142792 crossref_primary_10_1080_13658816_2024_2427870 crossref_primary_10_61186_jsaeh_10_1_71 crossref_primary_10_3390_rs12193139 crossref_primary_10_1007_s12518_024_00569_4 crossref_primary_10_3390_rs13122301 crossref_primary_10_1080_1331677X_2023_2166555 crossref_primary_10_3390_agriengineering3010008 crossref_primary_10_1111_gcb_17548 crossref_primary_10_1007_s41101_021_00105_0 crossref_primary_10_3389_feart_2021_613395 crossref_primary_10_3390_rs15143675 crossref_primary_10_1016_j_asr_2024_08_046 crossref_primary_10_1007_s10668_024_05113_3 crossref_primary_10_1080_17538947_2021_2012533 crossref_primary_10_1016_j_pt_2021_03_003 crossref_primary_10_1016_j_isprsjprs_2021_04_018 crossref_primary_10_1016_j_ufug_2023_128095 crossref_primary_10_1016_j_scitotenv_2023_167810 crossref_primary_10_3390_su132413758 crossref_primary_10_1080_15481603_2024_2421574 crossref_primary_10_3390_ijgi12020081 crossref_primary_10_37394_23209_2021_18_22 crossref_primary_10_1007_s12517_025_12226_0 crossref_primary_10_1007_s41685_023_00286_7 crossref_primary_10_1038_s41597_024_03976_9 crossref_primary_10_3390_rs15092381 crossref_primary_10_1186_s13021_022_00212_y crossref_primary_10_1016_j_ejrs_2024_03_003 crossref_primary_10_1088_1755_1315_648_1_012212 crossref_primary_10_1016_j_jum_2024_11_009 crossref_primary_10_1109_JSTARS_2023_3310363 crossref_primary_10_1016_j_rse_2022_112958 crossref_primary_10_3390_rs16203762 crossref_primary_10_1097_EE9_0000000000000301 crossref_primary_10_1080_10106049_2022_2120551 crossref_primary_10_1088_1755_1315_1064_1_012011 crossref_primary_10_1109_JSTARS_2020_3021052 crossref_primary_10_1080_10106049_2022_2120550 crossref_primary_10_3390_rs15174140 crossref_primary_10_1051_bioconf_20249700111 crossref_primary_10_1080_15481603_2021_1947623 crossref_primary_10_1109_TGRS_2024_3400999 crossref_primary_10_1029_2021GL093789 crossref_primary_10_1038_s41598_023_34774_9 crossref_primary_10_3390_rs17050741 crossref_primary_10_3389_feart_2022_981606 crossref_primary_10_3390_rs15205018 crossref_primary_10_1371_journal_pone_0289969 crossref_primary_10_3390_fire8030095 crossref_primary_10_1016_j_agwat_2023_108662 crossref_primary_10_1016_j_isprsjprs_2021_09_021 crossref_primary_10_1016_j_rse_2024_114498 crossref_primary_10_1016_j_rsase_2021_100489 crossref_primary_10_3389_fenvs_2023_1179328 crossref_primary_10_3390_rs16122167 crossref_primary_10_1016_j_asr_2023_07_061 crossref_primary_10_3390_ijgi9060400 crossref_primary_10_1080_17538947_2023_2202421 crossref_primary_10_3390_f12050574 crossref_primary_10_1088_2631_8695_acfa64 crossref_primary_10_1109_JSTARS_2022_3181155 crossref_primary_10_1016_j_eiar_2023_107136 crossref_primary_10_1016_j_renene_2024_121042 crossref_primary_10_1016_j_scs_2022_104060 crossref_primary_10_3390_rs14194896 crossref_primary_10_1088_1755_1315_1350_1_012035 crossref_primary_10_1186_s42269_023_01127_5 crossref_primary_10_1016_j_ecoinf_2023_102433 crossref_primary_10_3390_rs13101958 crossref_primary_10_33411_IJIST_2020020408 crossref_primary_10_1007_s10661_023_11224_7 crossref_primary_10_1016_j_rsase_2024_101445 crossref_primary_10_1016_j_rsase_2024_101325 crossref_primary_10_3390_agronomy12092143 crossref_primary_10_1016_j_catena_2021_105500 crossref_primary_10_1016_j_rse_2020_112002 crossref_primary_10_1029_2021JD035987 crossref_primary_10_1016_j_ecolind_2024_111962 crossref_primary_10_1080_22797254_2022_2093278 crossref_primary_10_1080_10095020_2022_2094288 crossref_primary_10_3390_rs16050917 crossref_primary_10_3390_su152115316 crossref_primary_10_1016_j_agrformet_2021_108609 crossref_primary_10_3390_biology11020169 crossref_primary_10_3390_rs15010136 crossref_primary_10_3390_rs15102596 crossref_primary_10_1002_ece3_10560 crossref_primary_10_1016_j_scitotenv_2023_161757 crossref_primary_10_1016_j_wse_2024_02_001 crossref_primary_10_1016_j_ecoinf_2023_102404 crossref_primary_10_1016_j_rse_2024_114151 crossref_primary_10_1007_s13762_023_05072_8 crossref_primary_10_1134_S106422932460221X crossref_primary_10_3390_rs13091744 crossref_primary_10_3389_fmars_2022_871470 crossref_primary_10_1186_s42269_024_01286_z crossref_primary_10_3390_app13116359 crossref_primary_10_3389_frsen_2024_1374862 crossref_primary_10_1080_17538947_2024_2402418 crossref_primary_10_3390_rs13050896 crossref_primary_10_1016_j_jnc_2024_126804 crossref_primary_10_3390_app122311922 crossref_primary_10_1016_j_jag_2024_103659 crossref_primary_10_5194_nhess_22_2829_2022 crossref_primary_10_1016_j_rsase_2023_100987 crossref_primary_10_3390_land12061250 crossref_primary_10_1088_1755_1315_1190_1_012012 crossref_primary_10_3390_rs14235920 crossref_primary_10_3390_land11030419 crossref_primary_10_1007_s12145_020_00562_6 crossref_primary_10_3390_environments10100170 crossref_primary_10_3390_su141710645 crossref_primary_10_1016_j_tfp_2023_100388 crossref_primary_10_3389_fevo_2023_1157981 crossref_primary_10_3390_agronomy14040784 crossref_primary_10_1007_s41651_024_00175_3 crossref_primary_10_1016_j_rse_2024_114281 crossref_primary_10_1007_s41324_022_00465_2 crossref_primary_10_1016_j_jag_2022_103092 crossref_primary_10_1016_j_jclepro_2022_134286 crossref_primary_10_1155_2022_7122846 crossref_primary_10_3390_f14030652 crossref_primary_10_1007_s42797_022_00056_2 crossref_primary_10_1109_JSTARS_2024_3519425 crossref_primary_10_3390_ijgi9110663 crossref_primary_10_1109_JSTARS_2022_3201380 crossref_primary_10_1088_1755_1315_739_1_012087 crossref_primary_10_3390_land13010080 crossref_primary_10_1016_j_catena_2024_107829 crossref_primary_10_1016_j_geosus_2024_06_002 crossref_primary_10_3390_rs15010234 crossref_primary_10_3390_rs16091566 crossref_primary_10_1016_j_isprsjprs_2021_12_003 crossref_primary_10_1016_j_wasec_2023_100161 crossref_primary_10_1109_JSTARS_2021_3116258 crossref_primary_10_3390_rs15184597 crossref_primary_10_3390_rs14071648 crossref_primary_10_1007_s10708_025_11305_9 crossref_primary_10_1016_j_asr_2024_09_039 crossref_primary_10_3390_rs16193587 crossref_primary_10_3390_su16146144 crossref_primary_10_1109_JSTARS_2024_3403146 crossref_primary_10_1016_j_envc_2024_100882 crossref_primary_10_3390_ijgi10100670 crossref_primary_10_1002_gj_4365 crossref_primary_10_3390_rs16203833 crossref_primary_10_1093_forestry_cpad039 crossref_primary_10_1016_j_cj_2023_11_011 crossref_primary_10_1016_j_envsoft_2024_106227 crossref_primary_10_3390_rs13234745 crossref_primary_10_1016_j_scitotenv_2023_161852 crossref_primary_10_1080_14498596_2024_2378362 crossref_primary_10_1016_j_isprsjprs_2021_08_015 crossref_primary_10_1016_j_ejrs_2024_07_001 crossref_primary_10_4108_eetsis_5496 crossref_primary_10_3390_atmos15050598 crossref_primary_10_1088_1755_1315_783_1_012148 crossref_primary_10_3390_ijgi10070464 crossref_primary_10_1016_j_envc_2024_100873 crossref_primary_10_1016_j_envdev_2024_101005 crossref_primary_10_1016_j_ecolind_2022_109283 crossref_primary_10_1007_s12524_022_01633_5 crossref_primary_10_3390_rs15194697 crossref_primary_10_3390_rs14153778 crossref_primary_10_1007_s11356_022_19392_8 crossref_primary_10_3390_rs13152869 crossref_primary_10_1016_j_scs_2025_106158 crossref_primary_10_1007_s10661_024_13315_5 crossref_primary_10_1007_s10462_021_10071_7 crossref_primary_10_3390_atmos15121489 crossref_primary_10_1016_j_catena_2023_107336 crossref_primary_10_1016_j_clpl_2024_100088 crossref_primary_10_3390_su15043072 crossref_primary_10_1007_s41651_025_00218_3 crossref_primary_10_1016_j_scitotenv_2021_150139 crossref_primary_10_3390_rs17020281 crossref_primary_10_1016_j_ecolind_2023_111249 crossref_primary_10_3390_rs13050973 crossref_primary_10_3390_rs15235515 crossref_primary_10_1016_j_isprsjprs_2024_02_003 crossref_primary_10_1016_j_jenvman_2022_116675 crossref_primary_10_1109_JSTARS_2020_3022210 crossref_primary_10_1016_j_scitotenv_2023_163849 crossref_primary_10_1080_17538947_2024_2409351 crossref_primary_10_3390_rs16010158 crossref_primary_10_3390_fire7060205 crossref_primary_10_3390_s21092971 crossref_primary_10_1016_j_ecoinf_2024_102903 crossref_primary_10_3390_rs17050912 crossref_primary_10_3390_f13101549 crossref_primary_10_3390_rs12152411 crossref_primary_10_1038_s41597_023_02584_3 crossref_primary_10_1117_1_JRS_17_014506 crossref_primary_10_1016_j_isprsjprs_2022_09_011 crossref_primary_10_3390_rs14102291 crossref_primary_10_3390_ijerph19106095 crossref_primary_10_1016_j_jhydrol_2022_128465 crossref_primary_10_1016_j_jhydrol_2024_130901 crossref_primary_10_3390_rs13081528 crossref_primary_10_1016_j_jag_2023_103589 crossref_primary_10_1109_JSTARS_2024_3435372 crossref_primary_10_1109_TGRS_2025_3531890 crossref_primary_10_3390_land11050674 crossref_primary_10_1016_j_jag_2024_103749 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_1016_j_rser_2023_114186 crossref_primary_10_11922_11_6035_noda_2021_0015_zh crossref_primary_10_3390_rs16010127 crossref_primary_10_1016_j_jag_2023_103340 crossref_primary_10_17211_tcd_1296893 crossref_primary_10_1016_j_scitotenv_2023_162505 crossref_primary_10_1016_j_ejrs_2023_11_010 crossref_primary_10_3390_rs16020293 crossref_primary_10_1088_1755_1315_950_1_012083 crossref_primary_10_1109_JSTARS_2024_3523707 crossref_primary_10_1016_j_ejrh_2022_101072 crossref_primary_10_3390_rs15081988 crossref_primary_10_3389_fenvs_2024_1494098 crossref_primary_10_1016_j_gecco_2025_e03408 crossref_primary_10_1109_TGRS_2024_3456118 crossref_primary_10_3390_ijgi13080276 crossref_primary_10_1016_j_isprsjprs_2020_05_017 crossref_primary_10_1007_s10489_024_05469_z crossref_primary_10_1016_j_ocecoaman_2021_105813 crossref_primary_10_1016_j_asr_2025_02_004 crossref_primary_10_3390_rs13081535 crossref_primary_10_1007_s12145_024_01441_0 crossref_primary_10_1016_j_jag_2023_103570 crossref_primary_10_55529_jeimp_35_39_55 crossref_primary_10_1016_j_catena_2022_106054 crossref_primary_10_3390_rs12152438 crossref_primary_10_1007_s40899_025_01199_3 crossref_primary_10_1080_17538947_2022_2159553 crossref_primary_10_3390_rs16183460 crossref_primary_10_34133_remotesensing_0143 crossref_primary_10_3390_ijgi11110535 crossref_primary_10_3390_ijgi11110534 crossref_primary_10_3390_f13122122 |
| Cites_doi | 10.3390/rs11050516 10.1016/j.rse.2018.02.055 10.1016/j.isprsjprs.2016.01.011 10.1016/j.jag.2018.07.008 10.3390/rs10081178 10.1016/j.dib.2019.103803 10.1016/j.rse.2019.111412 10.1016/j.isprsjprs.2019.07.005 10.1016/j.isprsjprs.2017.05.010 10.1016/j.agsy.2018.07.002 10.1029/2018GL080158 10.1007/s00704-018-2663-6 10.1016/j.coastaleng.2017.12.011 10.3390/rs10101635 10.1175/2009JCLI2900.1 10.1109/JSTARS.2017.2705718 10.3390/rs12010002 10.3390/f10060518 10.1016/j.isprsjprs.2019.06.014 10.1016/j.jag.2018.06.005 10.3390/rs70201320 10.1109/LGRS.2018.2795531 10.1016/j.isprsjprs.2017.07.011 10.1016/j.isprsjprs.2017.01.019 10.5589/m03-068 10.1080/2150704X.2019.1633487 10.3390/rs11121467 10.1080/22797254.2018.1451782 10.3390/rs70608128 10.3389/fenvs.2015.00045 10.1109/36.142926 10.3390/rs10091488 10.1007/s10661-019-7355-x 10.3390/rs11010043 10.1080/07038992.2017.1381549 10.1016/j.rse.2011.11.026 10.1016/j.isprsjprs.2010.11.001 10.1109/LGRS.2006.888843 10.1016/j.rse.2017.06.031 10.1016/j.isprsjprs.2018.07.017 10.1109/JPROC.2016.2598228 10.1016/j.isprsjprs.2019.03.012 10.1016/j.scitotenv.2019.06.514 10.3390/rs9121315 10.7326/0003-4819-151-4-200908180-00135 10.3390/rs10071119 10.1371/journal.pntd.0007105 10.1016/j.isprsjprs.2018.05.009 10.3390/rs11070823 10.1371/journal.pone.0189058 10.1016/j.isprsjprs.2015.10.012 10.1016/j.isprsjprs.2008.07.006 10.1080/01431169208904102 10.1201/9781420089653.ch10 10.1002/ecs2.2347 10.3390/rs10091365 10.1016/j.jag.2018.09.011 10.1016/j.patcog.2016.07.001 10.3390/rs11131582 10.3390/rs10050691 10.1016/j.atmosenv.2004.01.039 10.1371/journal.pone.0170478 10.1109/36.964970 10.1016/j.isprsjprs.2018.12.011 10.1080/01431169308904316 10.1111/jfr3.12303 10.3390/rs11101184 10.3390/rs10101509 10.1117/12.2503653 10.1109/TGRS.2008.916090 10.1007/s12665-011-0934-y 10.1080/07038992.2017.1381550 10.1016/j.rse.2018.06.034 10.1016/j.envsoft.2019.05.004 10.1126/science.1244693 10.1016/j.isprsjprs.2018.10.008 10.1109/MGRS.2017.2762307 10.1109/TGRS.2016.2612821 10.1016/j.future.2014.10.029 10.1016/j.asr.2019.03.013 10.1016/j.isprsjprs.2008.07.005 10.1117/1.JRS.12.036015 10.1016/j.rse.2011.05.028 10.1016/j.isprsjprs.2019.03.015 10.1109/IGARSS.2003.1295258 10.3390/rs11141735 10.1109/JSTARS.2018.2846178 10.3390/rs11131581 10.1016/j.rse.2019.02.015 10.1016/j.isprsjprs.2019.11.021 |
| ContentType | Journal Article |
| Copyright | 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
| Copyright_xml | – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.isprsjprs.2020.04.001 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1872-8235 |
| EndPage | 170 |
| ExternalDocumentID | 10_1016_j_isprsjprs_2020_04_001 S0924271620300927 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a437t-9595f24f38f07669ce1a6752a754aec8a0d5f1adf9dc8db1b0b29ba1d70ec6bf3 |
| IEDL.DBID | .~1 |
| ISSN | 0924-2716 |
| IngestDate | Sun Sep 28 11:59:38 EDT 2025 Thu Oct 16 04:44:24 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Fri Feb 23 02:47:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Geo-big data Cloud-based platform Google Earth Engine Machine learning Geospatial Planetary-scale Environmental monitoring Remote sensing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a437t-9595f24f38f07669ce1a6752a754aec8a0d5f1adf9dc8db1b0b29ba1d70ec6bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7234-959X |
| PQID | 2431892123 |
| PQPubID | 24069 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2431892123 crossref_primary_10_1016_j_isprsjprs_2020_04_001 crossref_citationtrail_10_1016_j_isprsjprs_2020_04_001 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_04_001 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Forkuor, Hounkpatin, Welp, Thiel (b0095) 2017; 12 Hagenaars, de Vries, Luijendijk, de Boer, Reniers (b0105) 2018; 133 Koskinen, Leinonen, Vollrath, Ortmann, Lindquist, d’Annunzio, Pekkarinen, Käyhkö (b0150) 2019; 148 Moher, Liberati, Tetzlaff, Altman (b0315) 2009; 151 Quintero, Viedma, Urbieta, Moreno (b4049) 2019; 10 Stroppiana, Azar, Calò, Pepe, Imperatore, Boschetti, Silva, Brivio, Lanari (b0395) 2015; 7 Kumar, Mutanga (b0160) 2018; 10 Schulz, K., Hänsch, R., Sörgel, U., 2018. Machine learning methods for remote sensing applications: an overview. In: Earth Resources and Environmental Remote Sensing/GIS Applications IX. International Society for Optics and Photonics, pp. 1079002. Chen, B., Tai, P.C., Harrison, R., Pan, Y., 2005. Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis. In: 2005 IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05). IEEE, pp. 105–108. Hird, DeLancey, McDermid, Kariyeva (b9005) 2017; 9 Sidhu, Pebesma, Câmara (b0380) 2018; 51 Workie, Debella (b0455) 2018; 13 Momm, Easson (b0320) 2011 Amazon, E.C., 2015. Amazon web services. Available Httpaws Amaz. Comesec2November 2012. Wilder (b0445) 2012 Clement, Kilsby, Moore (b0065) 2018; 11 Rezaee, Mahdianpari, Zhang, Salehi (b0355) 2018; 11 Lobo, Souza-Filho, Novo, Carlos, Barbosa (b5041) 2018; 10 Mahdianpari, Salehi, Mohammadimanesh, Brisco, Homayouni, Gill, DeLancey, Bourgeau-Chavez (b0230) 2020 Mahdianpari, Salehi, Mohammadimanesh, Homayouni, Gill (b5036) 2019; 11 Mateo-García, Muñoz-Marí, Gómez-Chova (b0260) 2017 Laney (b0165) 2001; 6 Moed, H., 2012. The Evolution of Big Data as a Research and Scientific Topic: Overview of the Literature, 2012, ResearchTrends. Mohammadimanesh, Salehi, Mahdianpari, Brisco, Gill (b0285) 2019; 11 Mohammadimanesh, Salehi, Mahdianpari, Brisco, Motagh (b0295) 2018; 142 Choi, Jeong (b0060) 2019; 11 Wang, Jia, Chen, Wang (b0435) 2018; 10 Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (b0475) 2018; 216 Mohammadimanesh, Salehi, Mahdianpari, Motagh, Brisco (b0310) 2018; 73 Mahdianpari, Salehi, Mohammadimanesh, Brisco (b0225) 2017; 43 Voight, Hernandez-Aguilar, Garcia, Gutierrez (b0425) 2019; 11 Chen, Xiao, Li, Pan, Doughty, Ma, Dong, Qin, Zhao, Wu, Sun, Lan, Xie, Clinton, Giri (b0045) 2017; 131 Silva, Rudorff, Formaggio, Paradella, Mura (b0385) 2009; 64 McNairn, Hochheim, Rabe (b0270) 2004; 30 Jamei, Rajagopalan, Sun (b0130) 2019; 23 Ravanelli, Nascetti, Cirigliano, Di Rico, Leuzzi, Monti, Crespi (b0345) 2018; 10 Lee, Grunes, Pottier (b0170) 2001; 39 Chrysoulakis, Mitraka, Gorelick (b5037) 2019; 137 Maggiori, Tarabalka, Charpiat, Alliez (b2026) 2017; 55 Mahdianpari, Salehi, Mohammadimanesh, Homayouni, Gill (b0235) 2019; 11 Xie, Lark, Brown, Gibbs (b0465) 2019; 155 Chi, Plaza, Benediktsson, Sun, Shen, Zhu (b0055) 2016; 104 DeLancey, Simms, Mahdianpari, Brisco, Mahoney, Kariyeva (b0075) 2020; 12 Kong, Zhang, Gu, Wang (b0145) 2019; 155 Ma, Wu, Wang, Huang, Ranjan, Zomaya, Jie (b0205) 2015; 51 Benediktsson, Swain, Ersoy (b0015) 1993; 14 Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort (b0080) 2012; 120 Teluguntla, Thenkabail, Oliphant, Xiong, Gumma, Congalton, Yadav, Huete (b0405) 2018; 144 Tomer, Al Bitar, Sekhar, Zribi, Bandyopadhyay, Sreelash, Sharma, Corgne, Kerr (b0410) 2015; 7 Steinberg, Colla (b0390) 2009; 9 Sun, Wang (b0400) 2018; 15 Li, Cheng (b0185) 2009 Hu, Dong, Batunacun (b0120) 2018; 146 Lee, Pottier (b0175) 2009 Huang, Jensen (b0125) 1997; 63 Mohammadimanesh, Salehi, Mahdianpari, Brisco, Motagh (b0290) 2018; 1–16 Mountrakis, Im, Ogole (b0325) 2011; 66 Kim, Moon, Park, Kim, Lee (b0140) 2007; 4 McNairn, Shang (b0275) 2016 McNairn, Champagne, Shang, Holmstrom, Reichert (b0265) 2009; 64 Krishnan, Gonzalez (b0155) 2015 Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (b0250) 2018; 10 Xiong, Thenkabail, Gumma, Teluguntla, Poehnelt, Congalton, Yadav, Thau (b0470) 2017; 126 Chen, Jin, Brown (b0035) 2019; 151 Bischof, Schneider, Pinz (b0020) 1992; 30 Mahdianpari, Mohammadimanesh, McNairn, Davidson, Rezaee, Salehi, Homayouni (b0210) 2019; 11 Saah, Johnson, Ashmall, Tondapu, Tenneson, Patterson, Poortinga, Markert, Quyen, San Aung (b0360) 2019; 118 Scherler, Wulf, Gorelick (b0370) 2018; 45 Blanzieri, Melgani (b0030) 2008; 46 Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland (b0110) 2013; 342 Liu, Chen, Zhang, Wang, Du (b0195) 2020; 159 Marghany, Hashim, Cracknell (b0255) 2011; 64 Mahdianpari, Salehi, Mohammadimanesh, Larsen, Peddle (b0240) 2018; 12 Nogueira, Penatti, dos Santos (b0335) 2017; 61 Wong, Thomas, Halpin (b0450) 2019; 233 Lin, Fu, Zhu, Dasmalchi (b0190) 2009 Belgiu, Drăguţ (b0010) 2016; 114 Nguyen, Pham, Dang (b0330) 2019; 191 Weissmann, Kent, Michael, Shnerb (b0440) 2017; 12 Karnieli, Agam, Pinker, Anderson, Imhoff, Gutman, Panov, Goldberg (b0135) 2010; 23 Mahdianpari, Salehi, Mohammadimanesh (b0220) 2017; 43 Liu, Hu, Chen, Li, Xu, Li, Pei, Wang (b5072) 2018; 209 Bittencourt, H.R., Clarke, R.T., 2003. Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, pp. 3751–3753. de Oliveira, S.S.T., de Castro Cardoso, M., dos Santos, W.M., Costa, P.C., Vagner, J., Martins, W.S., 2016. A new platform for time-series analysis of remote sensing images in a distributed computing environment. In: GeoInfo, pp. 128–139. Parks, Holsinger, Koontz, Collins, Whitman, Parisien, Loehman, Barnes, Bourdon, Boucher (b2029) 2019; 11 Liu (b0200) 2015; 3 Chen, Zhang, Tian, Li (b0050) 2017; 10 Li, Dragicevic, Castro, Sester, Winter, Coltekin, Pettit, Jiang, Haworth, Stein (b0180) 2016; 115 Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen (b0460) 2019; 225 Callaghan, Major, Lyons, Martin, Kingsford (b4043) 2018; 9 Sader, Winne (b0365) 1992; 13 Walker, Venturini (b2021) 2019; 10 Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0480) 2017; 5 Waller, Villarreal, Poitras, Nauman, Duniway (b0430) 2018; 73 Carrasco-Escobar, Manrique, Ruiz-Cabrejos, Saavedra, Alava, Bickersmith, Prussing, Vinetz, Conn, Moreno (b5042) 2019; 13 Mahdianpari, Salehi, Mohammadimanesh, Motagh (b0245) 2017; 130 Plaza, Chang (b0340) 2007 Kennedy, Yang, Gorelick, Braaten, Cavalcante, Cohen, Healey (b9000) 2018; 10 Torres, Snoeij, Geudtner, Bibby, Davidson, Attema, Potin, Rommen, Floury, Brown (b0415) 2012; 120 Castelli, Oliveira, Abdelli, Dhaou, Bresci, Ouessar (b6062) 2019; 690 Rembold, Meroni, Urbano, Csak, Kerdiles, Perez-Hoyos, Lemoine, Leo, Negre (b0350) 2019; 168 Fang, Li, Wan, Zhu, Wang, Hong, Wang (b0090) 2019; 11 Uddin, Matin, Meyer (b0420) 2019; 11 Engel-Cox, Holloman, Coutant, Hoff (b0085) 2004; 38 Mohammadimanesh, Salehi, Mahdianpari, Gill, Molinier (b0305) 2019; 151 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0100) 2017; 202 Snapir, Momblanch, Jain, Waine, Holman (b2022) 2019; 74 Mahdianpari, Motagh, Akbari, Mohammadimanesh, Salehi (b0215) 2019; 64 Mohammadimanesh, Salehi, Mahdianpari, English, Chamberland, Alasset (b0300) 2018 Holloway, Mengersen (b0115) 2018; 10 Teluguntla (10.1016/j.isprsjprs.2020.04.001_b0405) 2018; 144 Chi (10.1016/j.isprsjprs.2020.04.001_b0055) 2016; 104 Moher (10.1016/j.isprsjprs.2020.04.001_b0315) 2009; 151 Wong (10.1016/j.isprsjprs.2020.04.001_b0450) 2019; 233 10.1016/j.isprsjprs.2020.04.001_b0005 Marghany (10.1016/j.isprsjprs.2020.04.001_b0255) 2011; 64 Rezaee (10.1016/j.isprsjprs.2020.04.001_b0355) 2018; 11 Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0290) 2018; 1–16 10.1016/j.isprsjprs.2020.04.001_b0375 Rembold (10.1016/j.isprsjprs.2020.04.001_b0350) 2019; 168 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0225) 2017; 43 Weissmann (10.1016/j.isprsjprs.2020.04.001_b0440) 2017; 12 Carrasco-Escobar (10.1016/j.isprsjprs.2020.04.001_b5042) 2019; 13 Silva (10.1016/j.isprsjprs.2020.04.001_b0385) 2009; 64 Hansen (10.1016/j.isprsjprs.2020.04.001_b0110) 2013; 342 Lin (10.1016/j.isprsjprs.2020.04.001_b0190) 2009 Xiong (10.1016/j.isprsjprs.2020.04.001_b0470) 2017; 126 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0240) 2018; 12 Ma (10.1016/j.isprsjprs.2020.04.001_b0205) 2015; 51 Scherler (10.1016/j.isprsjprs.2020.04.001_b0370) 2018; 45 Callaghan (10.1016/j.isprsjprs.2020.04.001_b4043) 2018; 9 Belgiu (10.1016/j.isprsjprs.2020.04.001_b0010) 2016; 114 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0250) 2018; 10 Xie (10.1016/j.isprsjprs.2020.04.001_b0465) 2019; 155 Engel-Cox (10.1016/j.isprsjprs.2020.04.001_b0085) 2004; 38 Mateo-García (10.1016/j.isprsjprs.2020.04.001_b0260) 2017 Zhu (10.1016/j.isprsjprs.2020.04.001_b0480) 2017; 5 Clement (10.1016/j.isprsjprs.2020.04.001_b0065) 2018; 11 Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0285) 2019; 11 Liu (10.1016/j.isprsjprs.2020.04.001_b0195) 2020; 159 McNairn (10.1016/j.isprsjprs.2020.04.001_b0265) 2009; 64 Krishnan (10.1016/j.isprsjprs.2020.04.001_b0155) 2015 Ravanelli (10.1016/j.isprsjprs.2020.04.001_b0345) 2018; 10 Saah (10.1016/j.isprsjprs.2020.04.001_b0360) 2019; 118 Blanzieri (10.1016/j.isprsjprs.2020.04.001_b0030) 2008; 46 Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0300) 2018 Voight (10.1016/j.isprsjprs.2020.04.001_b0425) 2019; 11 McNairn (10.1016/j.isprsjprs.2020.04.001_b0275) 2016 Workie (10.1016/j.isprsjprs.2020.04.001_b0455) 2018; 13 10.1016/j.isprsjprs.2020.04.001_b0070 Drusch (10.1016/j.isprsjprs.2020.04.001_b0080) 2012; 120 Lee (10.1016/j.isprsjprs.2020.04.001_b0170) 2001; 39 Koskinen (10.1016/j.isprsjprs.2020.04.001_b0150) 2019; 148 Momm (10.1016/j.isprsjprs.2020.04.001_b0320) 2011 Maggiori (10.1016/j.isprsjprs.2020.04.001_b2026) 2017; 55 Hu (10.1016/j.isprsjprs.2020.04.001_b0120) 2018; 146 Sader (10.1016/j.isprsjprs.2020.04.001_b0365) 1992; 13 Tomer (10.1016/j.isprsjprs.2020.04.001_b0410) 2015; 7 Castelli (10.1016/j.isprsjprs.2020.04.001_b6062) 2019; 690 Hagenaars (10.1016/j.isprsjprs.2020.04.001_b0105) 2018; 133 Nogueira (10.1016/j.isprsjprs.2020.04.001_b0335) 2017; 61 Lobo (10.1016/j.isprsjprs.2020.04.001_b5041) 2018; 10 Plaza (10.1016/j.isprsjprs.2020.04.001_b0340) 2007 Walker (10.1016/j.isprsjprs.2020.04.001_b2021) 2019; 10 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0230) 2020 Laney (10.1016/j.isprsjprs.2020.04.001_b0165) 2001; 6 Snapir (10.1016/j.isprsjprs.2020.04.001_b2022) 2019; 74 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0210) 2019; 11 Quintero (10.1016/j.isprsjprs.2020.04.001_b4049) 2019; 10 Kong (10.1016/j.isprsjprs.2020.04.001_b0145) 2019; 155 Li (10.1016/j.isprsjprs.2020.04.001_b0185) 2009 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0215) 2019; 64 Chen (10.1016/j.isprsjprs.2020.04.001_b0035) 2019; 151 Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0310) 2018; 73 Huang (10.1016/j.isprsjprs.2020.04.001_b0125) 1997; 63 Stroppiana (10.1016/j.isprsjprs.2020.04.001_b0395) 2015; 7 Lee (10.1016/j.isprsjprs.2020.04.001_b0175) 2009 McNairn (10.1016/j.isprsjprs.2020.04.001_b0270) 2004; 30 Jamei (10.1016/j.isprsjprs.2020.04.001_b0130) 2019; 23 Waller (10.1016/j.isprsjprs.2020.04.001_b0430) 2018; 73 Gorelick (10.1016/j.isprsjprs.2020.04.001_b0100) 2017; 202 Chen (10.1016/j.isprsjprs.2020.04.001_b0045) 2017; 131 Hird (10.1016/j.isprsjprs.2020.04.001_b9005) 2017; 9 Torres (10.1016/j.isprsjprs.2020.04.001_b0415) 2012; 120 Uddin (10.1016/j.isprsjprs.2020.04.001_b0420) 2019; 11 Forkuor (10.1016/j.isprsjprs.2020.04.001_b0095) 2017; 12 Parks (10.1016/j.isprsjprs.2020.04.001_b2029) 2019; 11 Sun (10.1016/j.isprsjprs.2020.04.001_b0400) 2018; 15 10.1016/j.isprsjprs.2020.04.001_b0040 Benediktsson (10.1016/j.isprsjprs.2020.04.001_b0015) 1993; 14 Wilder (10.1016/j.isprsjprs.2020.04.001_b0445) 2012 DeLancey (10.1016/j.isprsjprs.2020.04.001_b0075) 2020; 12 Zhang (10.1016/j.isprsjprs.2020.04.001_b0475) 2018; 216 Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0305) 2019; 151 Holloway (10.1016/j.isprsjprs.2020.04.001_b0115) 2018; 10 10.1016/j.isprsjprs.2020.04.001_b0280 Wulder (10.1016/j.isprsjprs.2020.04.001_b0460) 2019; 225 Choi (10.1016/j.isprsjprs.2020.04.001_b0060) 2019; 11 Liu (10.1016/j.isprsjprs.2020.04.001_b0200) 2015; 3 Fang (10.1016/j.isprsjprs.2020.04.001_b0090) 2019; 11 Nguyen (10.1016/j.isprsjprs.2020.04.001_b0330) 2019; 191 Bischof (10.1016/j.isprsjprs.2020.04.001_b0020) 1992; 30 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0235) 2019; 11 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0245) 2017; 130 Kumar (10.1016/j.isprsjprs.2020.04.001_b0160) 2018; 10 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0220) 2017; 43 Li (10.1016/j.isprsjprs.2020.04.001_b0180) 2016; 115 Chrysoulakis (10.1016/j.isprsjprs.2020.04.001_b5037) 2019; 137 Sidhu (10.1016/j.isprsjprs.2020.04.001_b0380) 2018; 51 Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0295) 2018; 142 Chen (10.1016/j.isprsjprs.2020.04.001_b0050) 2017; 10 Wang (10.1016/j.isprsjprs.2020.04.001_b0435) 2018; 10 10.1016/j.isprsjprs.2020.04.001_b0025 Kennedy (10.1016/j.isprsjprs.2020.04.001_b9000) 2018; 10 Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b5036) 2019; 11 Liu (10.1016/j.isprsjprs.2020.04.001_b5072) 2018; 209 Steinberg (10.1016/j.isprsjprs.2020.04.001_b0390) 2009; 9 Karnieli (10.1016/j.isprsjprs.2020.04.001_b0135) 2010; 23 Kim (10.1016/j.isprsjprs.2020.04.001_b0140) 2007; 4 Mountrakis (10.1016/j.isprsjprs.2020.04.001_b0325) 2011; 66 |
| References_xml | – volume: 10 start-page: 691 year: 2018 ident: b9000 article-title: Implementation of the LandTrendr algorithm on google earth engine publication-title: Remote Sens. – volume: 12 start-page: e0170478 year: 2017 ident: b0095 article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models publication-title: PloS One – volume: 11 start-page: 152 year: 2018 end-page: 168 ident: b0065 article-title: Multi-temporal synthetic aperture radar flood mapping using change detection publication-title: J. Flood Risk Manag. – volume: 12 year: 2017 ident: b0440 article-title: Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition publication-title: PloS One – volume: 51 start-page: 47 year: 2015 end-page: 60 ident: b0205 article-title: Remote sensing big data computing: Challenges and opportunities publication-title: Future Gener. Comput. Syst. – volume: 30 start-page: 482 year: 1992 end-page: 490 ident: b0020 article-title: Multispectral classification of Landsat-images using neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 130 start-page: 13 year: 2017 end-page: 31 ident: b0245 article-title: Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 23 year: 2019 ident: b0130 article-title: Time-series dataset on land surface temperature, vegetation, built up areas and other climatic factors in top 20 global cities (2000–2018) publication-title: Data Brief – volume: 66 start-page: 247 year: 2011 end-page: 259 ident: b0325 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: b0100 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 45 start-page: 11 year: 2018 end-page: 798 ident: b0370 article-title: Global Assessment of Supraglacial Debris-Cover Extents publication-title: Geophys. Res. Lett. – volume: 55 start-page: 645 year: 2017 end-page: 657 ident: b2026 article-title: Convolutional neural networks for large-scale remote-sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 2883 year: 1993 end-page: 2903 ident: b0015 article-title: Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data publication-title: Int. J. Remote Sens. – volume: 9 start-page: 179 year: 2009 ident: b0390 article-title: CART: classification and regression trees publication-title: Top Ten Algorith. Data Min. – volume: 10 start-page: 4002 year: 2017 end-page: 4009 ident: b0050 article-title: Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 690 start-page: 226 year: 2019 end-page: 236 ident: b6062 article-title: Effect of traditional check dams (jessour) on soil and olive trees water status in Tunisia publication-title: Sci. Total Environ. – volume: 51 start-page: 486 year: 2018 end-page: 500 ident: b0380 article-title: Using Google Earth Engine to detect land cover change: Singapore as a use case publication-title: Eur. J. Remote Sens. – volume: 10 start-page: 1635 year: 2018 ident: b0435 article-title: Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin publication-title: Remote Sens. – volume: 233 start-page: 111412 year: 2019 ident: b0450 article-title: Automating offshore infrastructure extractions using synthetic aperture radar & Google Earth Engine publication-title: Remote Sens. Environ. – volume: 151 start-page: 264 year: 2009 end-page: 269 ident: b0315 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann. Intern. Med. – volume: 13 start-page: e00366 year: 2018 ident: b0455 article-title: Climate change and its effects on vegetation phenology across ecoregions of Ethiopia publication-title: Glob. Ecol. Conserv. – volume: 38 start-page: 2495 year: 2004 end-page: 2509 ident: b0085 article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality publication-title: Atmos. Environ. – volume: 131 start-page: 104 year: 2017 end-page: 120 ident: b0045 article-title: A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 13 start-page: 3055 year: 1992 end-page: 3067 ident: b0365 article-title: RGB-NDVI colour composites for visualizing forest change dynamics publication-title: Int. J. Remote Sens. – year: 2007 ident: b0340 article-title: High performance computing in remote sensing – volume: 118 start-page: 166 year: 2019 end-page: 171 ident: b0360 article-title: Collect Earth: An online tool for systematic reference data collection in land cover and use applications publication-title: Environ. Model. Softw. – volume: 133 start-page: 113 year: 2018 end-page: 125 ident: b0105 article-title: On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment publication-title: Coast. Eng. – volume: 15 start-page: 474 year: 2018 end-page: 478 ident: b0400 article-title: Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 1942 year: 2017 end-page: 1945 ident: b0260 article-title: Cloud detection on the Google Earth engine platform publication-title: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 11 start-page: 1184 year: 2019 ident: b0060 article-title: Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform publication-title: Remote Sens. – volume: 10 start-page: 518 year: 2019 ident: b4049 article-title: Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain publication-title: Forests – volume: 64 start-page: 64 year: 2019 end-page: 78 ident: b0215 article-title: A Gaussian random field model for de-speckling of multi-polarized Synthetic Aperture Radar data publication-title: Adv. Space Res. – start-page: 1 year: 2020 end-page: 19 ident: b0230 article-title: Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform: Mégadonnées pour un grand pays: La première carte d’inventaire des zones humides du Canada à une résolution de 10 m à l’aide des données Sentinel-1 et Sentinel-2 sur la plate-forme informatique en nuage de Google Earth Engine publication-title: Can. J. Remote Sens. – volume: 11 start-page: 823 year: 2019 ident: b0425 article-title: Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize publication-title: Remote Sens. – volume: 43 start-page: 485 year: 2017 end-page: 503 ident: b0220 article-title: The effect of PolSAR image de-speckling on wetland classification: introducing a new adaptive method publication-title: Can. J. Remote Sens. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: b0010 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Amazon, E.C., 2015. Amazon web services. Available Httpaws Amaz. Comesec2November 2012. – volume: 146 start-page: 347 year: 2018 end-page: 359 ident: b0120 article-title: An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 74 start-page: 222 year: 2019 end-page: 230 ident: b2022 article-title: A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin publication-title: Int. J. Appl. Earth Obs. Geoinformation – volume: 216 start-page: 57 year: 2018 end-page: 70 ident: b0475 article-title: An object-based convolutional neural network (OCNN) for urban land use classification publication-title: Remote Sens. Environ. – volume: 64 start-page: 434 year: 2009 end-page: 449 ident: b0265 article-title: Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 1582 year: 2019 ident: b0210 article-title: Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM) publication-title: Remote Sens. – volume: 11 start-page: 1735 year: 2019 ident: b2029 article-title: Giving ecological meaning to satellite-derived fire severity metrics across North American forests publication-title: Remote Sens. – volume: 11 start-page: 516 year: 2019 ident: b0285 article-title: Full and simulated compact polarimetry sar responses to canadian wetlands: Separability analysis and classification publication-title: Remote Sens. – volume: 64 start-page: 1177 year: 2011 end-page: 1189 ident: b0255 article-title: Simulation of shoreline change using AIRSAR and POLSAR C-band data publication-title: Environ. Earth Sci. – reference: Schulz, K., Hänsch, R., Sörgel, U., 2018. Machine learning methods for remote sensing applications: an overview. In: Earth Resources and Environmental Remote Sensing/GIS Applications IX. International Society for Optics and Photonics, pp. 1079002. – volume: 1–16 year: 2018 ident: b0290 article-title: Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review publication-title: Can. J. Remote Sens. – volume: 137 start-page: 1171 year: 2019 end-page: 1179 ident: b5037 article-title: Exploiting satellite observations for global surface albedo trends monitoring publication-title: Theor. Appl. Climatol. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: b0480 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. – year: 2012 ident: b0445 article-title: Cloud architecture patterns: using microsoft azure – volume: 155 start-page: 13 year: 2019 end-page: 24 ident: b0145 article-title: A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 30 start-page: 517 year: 2004 end-page: 524 ident: b0270 article-title: Applying polarimetric radar imagery for mapping the productivity of wheat crops publication-title: Can. J. Remote Sens. – volume: 144 start-page: 325 year: 2018 end-page: 340 ident: b0405 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 342 start-page: 850 year: 2013 end-page: 853 ident: b0110 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science – volume: 7 start-page: 1320 year: 2015 end-page: 1345 ident: b0395 article-title: Integration of optical and SAR data for burned area mapping in Mediterranean regions publication-title: Remote Sens. – volume: 151 start-page: 176 year: 2019 end-page: 188 ident: b0035 article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 168 start-page: 247 year: 2019 end-page: 257 ident: b0350 article-title: ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis publication-title: Agric. Syst. – volume: 3 start-page: 45 year: 2015 ident: b0200 article-title: A survey of remote-sensing big data publication-title: Front. Environ. Sci. – volume: 12 start-page: 036015 year: 2018 ident: b0240 article-title: Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle imagery and electromagnetic induction survey data publication-title: J. Appl. Remote Sens. – year: 2015 ident: b0155 article-title: Building Your Next Big Thing with Google Cloud Platform: A Guide for Developers and Enterprise Architects – volume: 225 start-page: 127 year: 2019 end-page: 147 ident: b0460 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. – volume: 10 start-page: 1178 year: 2018 ident: b5041 article-title: Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery publication-title: Remote Sens. – volume: 11 start-page: 43 year: 2019 ident: b0235 article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform publication-title: Remote Sens. – volume: 10 start-page: 1509 year: 2018 ident: b0160 article-title: Google Earth Engine applications since inception: Usage, trends, and potential publication-title: Remote Sens. – year: 2009 ident: b0175 article-title: Polarimetric radar imaging: from basics to applications – volume: 73 start-page: 450 year: 2018 end-page: 462 ident: b0310 article-title: An efficient feature optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry data publication-title: Int. J. Appl. Earth Obs. Geoinformation – volume: 43 start-page: 468 year: 2017 end-page: 484 ident: b0225 article-title: An assessment of simulated compact polarimetric SAR data for wetland classification using random Forest algorithm publication-title: Can. J. Remote Sens. – volume: 23 start-page: 618 year: 2010 end-page: 633 ident: b0135 article-title: Use of NDVI and land surface temperature for drought assessment: Merits and limitations publication-title: J. Clim. – volume: 10 start-page: 929 year: 2019 end-page: 938 ident: b2021 article-title: Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine publication-title: Remote Sens. Lett. – volume: 64 start-page: 458 year: 2009 end-page: 463 ident: b0385 article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 1467 year: 2019 ident: b0090 article-title: Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades publication-title: Remote Sens. – volume: 73 start-page: 407 year: 2018 end-page: 419 ident: b0430 article-title: Landsat time series analysis of fractional plant cover changes on abandoned energy development sites publication-title: Int. J. Appl. Earth Obs. Geoinformation – reference: de Oliveira, S.S.T., de Castro Cardoso, M., dos Santos, W.M., Costa, P.C., Vagner, J., Martins, W.S., 2016. A new platform for time-series analysis of remote sensing images in a distributed computing environment. In: GeoInfo, pp. 128–139. – reference: Moed, H., 2012. The Evolution of Big Data as a Research and Scientific Topic: Overview of the Literature, 2012, ResearchTrends. – volume: 63 start-page: 1185 year: 1997 end-page: 1193 ident: b0125 article-title: A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data publication-title: Photogramm. Eng. Remote Sens. – volume: 10 start-page: 1365 year: 2018 ident: b0115 article-title: Statistical machine learning methods and remote sensing for sustainable development goals: A review publication-title: Remote Sens. – volume: 126 start-page: 225 year: 2017 end-page: 244 ident: b0470 article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 120 start-page: 9 year: 2012 end-page: 24 ident: b0415 article-title: GMES Sentinel-1 mission publication-title: Remote Sens. Environ. – volume: 155 start-page: 136 year: 2019 end-page: 149 ident: b0465 article-title: Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 start-page: 2 year: 2020 ident: b0075 article-title: Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada publication-title: Remote Sens. – volume: 11 start-page: 43 year: 2019 ident: b5036 article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform publication-title: Remote Sens. – volume: 9 year: 2018 ident: b4043 article-title: The effects of local and landscape habitat attributes on bird diversity in urban greenspaces publication-title: Ecosphere – volume: 104 start-page: 2207 year: 2016 end-page: 2219 ident: b0055 article-title: Big data for remote sensing: Challenges and opportunities publication-title: Proc. IEEE – start-page: 1 year: 2018 end-page: 26 ident: b0300 article-title: Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: a case study from Mayo, Yukon Territory, Canada publication-title: GIScience Remote Sens. – reference: Bittencourt, H.R., Clarke, R.T., 2003. Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, pp. 3751–3753. – volume: 115 start-page: 119 year: 2016 end-page: 133 ident: b0180 article-title: Geospatial big data handling theory and methods: A review and research challenges publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 209 start-page: 227 year: 2018 end-page: 239 ident: b5072 article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform publication-title: Remote Sens. Environ. – volume: 148 start-page: 63 year: 2019 end-page: 74 ident: b0150 article-title: Participatory mapping of forest plantations with Open Foris and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 191 start-page: 235 year: 2019 ident: b0330 article-title: An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand publication-title: Environ. Monit. Assess. – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: b0080 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. – volume: 159 start-page: 337 year: 2020 end-page: 351 ident: b0195 article-title: Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 start-page: 1488 year: 2018 ident: b0345 article-title: Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems publication-title: Remote Sens. – volume: 11 start-page: 1581 year: 2019 ident: b0420 article-title: Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh publication-title: Remote Sens. – volume: 46 start-page: 1804 year: 2008 end-page: 1811 ident: b0030 article-title: Nearest neighbor classification of remote sensing images with the maximal margin principle publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Chen, B., Tai, P.C., Harrison, R., Pan, Y., 2005. Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis. In: 2005 IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05). IEEE, pp. 105–108. – volume: 13 year: 2019 ident: b5042 article-title: High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery publication-title: PLoS Negl. Trop. Dis. – volume: 4 start-page: 269 year: 2007 end-page: 273 ident: b0140 article-title: Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 39 start-page: 2343 year: 2001 end-page: 2351 ident: b0170 article-title: Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 1315 year: 2017 ident: b9005 article-title: Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping publication-title: Remote Sens. – start-page: 1 year: 2009 end-page: 4 ident: b0185 article-title: An improved k-nearest neighbor algorithm and its application to high resolution remote sensing image classification publication-title: 2009 17th International Conference on Geoinformatics – year: 2011 ident: b0320 article-title: Feature extraction from high-resolution remotely sensed imagery using evolutionary computation – volume: 11 start-page: 3030 year: 2018 end-page: 3039 ident: b0355 article-title: Deep convolutional neural network for complex wetland classification using optical remote sensing imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 61 start-page: 539 year: 2017 end-page: 556 ident: b0335 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. – volume: 6 start-page: 1 year: 2001 ident: b0165 article-title: 3D data management: Controlling data volume, velocity and variety publication-title: META Group Res. Note – start-page: 10 year: 2009 end-page: 13 ident: b0190 article-title: Cloud computing: IT as a service publication-title: IT Prof. – volume: 142 start-page: 78 year: 2018 end-page: 93 ident: b0295 article-title: Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 317 year: 2016 end-page: 340 ident: b0275 article-title: A review of multitemporal synthetic aperture radar (SAR) for crop monitoring publication-title: Multitemporal Remote Sensing – volume: 7 start-page: 8128 year: 2015 end-page: 8153 ident: b0410 article-title: Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a semi-arid tropical region publication-title: Remote Sens. – volume: 10 start-page: 1119 year: 2018 ident: b0250 article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery publication-title: Remote Sens. – volume: 151 start-page: 223 year: 2019 end-page: 236 ident: b0305 article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1 year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0185 article-title: An improved k-nearest neighbor algorithm and its application to high resolution remote sensing image classification – volume: 11 start-page: 516 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0285 article-title: Full and simulated compact polarimetry sar responses to canadian wetlands: Separability analysis and classification publication-title: Remote Sens. doi: 10.3390/rs11050516 – volume: 209 start-page: 227 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b5072 article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.055 – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.isprsjprs.2020.04.001_b0010 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 73 start-page: 407 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0430 article-title: Landsat time series analysis of fractional plant cover changes on abandoned energy development sites publication-title: Int. J. Appl. Earth Obs. Geoinformation doi: 10.1016/j.jag.2018.07.008 – volume: 6 start-page: 1 year: 2001 ident: 10.1016/j.isprsjprs.2020.04.001_b0165 article-title: 3D data management: Controlling data volume, velocity and variety publication-title: META Group Res. Note – year: 2007 ident: 10.1016/j.isprsjprs.2020.04.001_b0340 – volume: 13 start-page: e00366 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0455 article-title: Climate change and its effects on vegetation phenology across ecoregions of Ethiopia publication-title: Glob. Ecol. Conserv. – year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0175 – volume: 10 start-page: 1178 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b5041 article-title: Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery publication-title: Remote Sens. doi: 10.3390/rs10081178 – volume: 23 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0130 article-title: Time-series dataset on land surface temperature, vegetation, built up areas and other climatic factors in top 20 global cities (2000–2018) publication-title: Data Brief doi: 10.1016/j.dib.2019.103803 – ident: 10.1016/j.isprsjprs.2020.04.001_b0070 – volume: 233 start-page: 111412 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0450 article-title: Automating offshore infrastructure extractions using synthetic aperture radar & Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111412 – volume: 155 start-page: 136 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0465 article-title: Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.07.005 – volume: 130 start-page: 13 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0245 article-title: Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.010 – volume: 168 start-page: 247 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0350 article-title: ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis publication-title: Agric. Syst. doi: 10.1016/j.agsy.2018.07.002 – start-page: 1 year: 2020 ident: 10.1016/j.isprsjprs.2020.04.001_b0230 publication-title: Can. J. Remote Sens. – volume: 45 start-page: 11 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0370 article-title: Global Assessment of Supraglacial Debris-Cover Extents publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080158 – volume: 137 start-page: 1171 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b5037 article-title: Exploiting satellite observations for global surface albedo trends monitoring publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-018-2663-6 – volume: 133 start-page: 113 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0105 article-title: On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.12.011 – volume: 10 start-page: 1635 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0435 article-title: Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin publication-title: Remote Sens. doi: 10.3390/rs10101635 – volume: 23 start-page: 618 year: 2010 ident: 10.1016/j.isprsjprs.2020.04.001_b0135 article-title: Use of NDVI and land surface temperature for drought assessment: Merits and limitations publication-title: J. Clim. doi: 10.1175/2009JCLI2900.1 – volume: 10 start-page: 4002 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0050 article-title: Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2705718 – volume: 12 start-page: 2 year: 2020 ident: 10.1016/j.isprsjprs.2020.04.001_b0075 article-title: Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada publication-title: Remote Sens. doi: 10.3390/rs12010002 – volume: 10 start-page: 518 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b4049 article-title: Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain publication-title: Forests doi: 10.3390/f10060518 – volume: 155 start-page: 13 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0145 article-title: A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.06.014 – volume: 1–16 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0290 article-title: Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review publication-title: Can. J. Remote Sens. – volume: 73 start-page: 450 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0310 article-title: An efficient feature optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry data publication-title: Int. J. Appl. Earth Obs. Geoinformation doi: 10.1016/j.jag.2018.06.005 – volume: 7 start-page: 1320 year: 2015 ident: 10.1016/j.isprsjprs.2020.04.001_b0395 article-title: Integration of optical and SAR data for burned area mapping in Mediterranean regions publication-title: Remote Sens. doi: 10.3390/rs70201320 – volume: 15 start-page: 474 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0400 article-title: Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2795531 – volume: 131 start-page: 104 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0045 article-title: A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.011 – volume: 126 start-page: 225 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0470 article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.019 – volume: 30 start-page: 517 year: 2004 ident: 10.1016/j.isprsjprs.2020.04.001_b0270 article-title: Applying polarimetric radar imagery for mapping the productivity of wheat crops publication-title: Can. J. Remote Sens. doi: 10.5589/m03-068 – volume: 10 start-page: 929 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b2021 article-title: Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1633487 – volume: 11 start-page: 1467 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0090 article-title: Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades publication-title: Remote Sens. doi: 10.3390/rs11121467 – volume: 51 start-page: 486 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0380 article-title: Using Google Earth Engine to detect land cover change: Singapore as a use case publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1451782 – volume: 7 start-page: 8128 year: 2015 ident: 10.1016/j.isprsjprs.2020.04.001_b0410 article-title: Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a semi-arid tropical region publication-title: Remote Sens. doi: 10.3390/rs70608128 – volume: 3 start-page: 45 year: 2015 ident: 10.1016/j.isprsjprs.2020.04.001_b0200 article-title: A survey of remote-sensing big data publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2015.00045 – volume: 30 start-page: 482 year: 1992 ident: 10.1016/j.isprsjprs.2020.04.001_b0020 article-title: Multispectral classification of Landsat-images using neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.142926 – volume: 10 start-page: 1488 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0345 article-title: Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems publication-title: Remote Sens. doi: 10.3390/rs10091488 – volume: 191 start-page: 235 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0330 article-title: An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7355-x – year: 2012 ident: 10.1016/j.isprsjprs.2020.04.001_b0445 – volume: 11 start-page: 43 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b5036 article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform publication-title: Remote Sens. doi: 10.3390/rs11010043 – volume: 43 start-page: 485 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0220 article-title: The effect of PolSAR image de-speckling on wetland classification: introducing a new adaptive method publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2017.1381549 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.isprsjprs.2020.04.001_b0080 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 66 start-page: 247 year: 2011 ident: 10.1016/j.isprsjprs.2020.04.001_b0325 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – ident: 10.1016/j.isprsjprs.2020.04.001_b0280 – volume: 4 start-page: 269 year: 2007 ident: 10.1016/j.isprsjprs.2020.04.001_b0140 article-title: Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2006.888843 – start-page: 1942 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0260 article-title: Cloud detection on the Google Earth engine platform – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0100 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 144 start-page: 325 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0405 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.017 – volume: 104 start-page: 2207 year: 2016 ident: 10.1016/j.isprsjprs.2020.04.001_b0055 article-title: Big data for remote sensing: Challenges and opportunities publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2598228 – volume: 151 start-page: 176 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0035 article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.012 – volume: 690 start-page: 226 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b6062 article-title: Effect of traditional check dams (jessour) on soil and olive trees water status in Tunisia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.514 – ident: 10.1016/j.isprsjprs.2020.04.001_b0040 – volume: 9 start-page: 1315 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b9005 article-title: Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping publication-title: Remote Sens. doi: 10.3390/rs9121315 – volume: 151 start-page: 264 year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0315 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-151-4-200908180-00135 – volume: 10 start-page: 1119 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0250 article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs10071119 – volume: 13 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b5042 article-title: High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0007105 – volume: 142 start-page: 78 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0295 article-title: Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.009 – volume: 11 start-page: 823 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0425 article-title: Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize publication-title: Remote Sens. doi: 10.3390/rs11070823 – volume: 12 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0440 article-title: Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition publication-title: PloS One doi: 10.1371/journal.pone.0189058 – start-page: 10 year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0190 article-title: Cloud computing: IT as a service publication-title: IT Prof. – year: 2015 ident: 10.1016/j.isprsjprs.2020.04.001_b0155 – volume: 115 start-page: 119 year: 2016 ident: 10.1016/j.isprsjprs.2020.04.001_b0180 article-title: Geospatial big data handling theory and methods: A review and research challenges publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.10.012 – volume: 64 start-page: 434 year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0265 article-title: Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2008.07.006 – volume: 11 start-page: 43 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0235 article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform publication-title: Remote Sens. doi: 10.3390/rs11010043 – volume: 13 start-page: 3055 year: 1992 ident: 10.1016/j.isprsjprs.2020.04.001_b0365 article-title: RGB-NDVI colour composites for visualizing forest change dynamics publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904102 – volume: 9 start-page: 179 year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0390 article-title: CART: classification and regression trees publication-title: Top Ten Algorith. Data Min. doi: 10.1201/9781420089653.ch10 – volume: 9 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b4043 article-title: The effects of local and landscape habitat attributes on bird diversity in urban greenspaces publication-title: Ecosphere doi: 10.1002/ecs2.2347 – volume: 10 start-page: 1365 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0115 article-title: Statistical machine learning methods and remote sensing for sustainable development goals: A review publication-title: Remote Sens. doi: 10.3390/rs10091365 – ident: 10.1016/j.isprsjprs.2020.04.001_b0005 – volume: 74 start-page: 222 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b2022 article-title: A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin publication-title: Int. J. Appl. Earth Obs. Geoinformation doi: 10.1016/j.jag.2018.09.011 – volume: 61 start-page: 539 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0335 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.001 – volume: 11 start-page: 1582 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0210 article-title: Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM) publication-title: Remote Sens. doi: 10.3390/rs11131582 – volume: 10 start-page: 691 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b9000 article-title: Implementation of the LandTrendr algorithm on google earth engine publication-title: Remote Sens. doi: 10.3390/rs10050691 – volume: 38 start-page: 2495 year: 2004 ident: 10.1016/j.isprsjprs.2020.04.001_b0085 article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.01.039 – volume: 12 start-page: e0170478 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0095 article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models publication-title: PloS One doi: 10.1371/journal.pone.0170478 – volume: 39 start-page: 2343 year: 2001 ident: 10.1016/j.isprsjprs.2020.04.001_b0170 article-title: Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.964970 – volume: 148 start-page: 63 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0150 article-title: Participatory mapping of forest plantations with Open Foris and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.12.011 – volume: 14 start-page: 2883 year: 1993 ident: 10.1016/j.isprsjprs.2020.04.001_b0015 article-title: Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data publication-title: Int. J. Remote Sens. doi: 10.1080/01431169308904316 – volume: 11 start-page: 152 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0065 article-title: Multi-temporal synthetic aperture radar flood mapping using change detection publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12303 – volume: 11 start-page: 1184 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0060 article-title: Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform publication-title: Remote Sens. doi: 10.3390/rs11101184 – volume: 63 start-page: 1185 year: 1997 ident: 10.1016/j.isprsjprs.2020.04.001_b0125 article-title: A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data publication-title: Photogramm. Eng. Remote Sens. – volume: 10 start-page: 1509 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0160 article-title: Google Earth Engine applications since inception: Usage, trends, and potential publication-title: Remote Sens. doi: 10.3390/rs10101509 – ident: 10.1016/j.isprsjprs.2020.04.001_b0375 doi: 10.1117/12.2503653 – volume: 46 start-page: 1804 year: 2008 ident: 10.1016/j.isprsjprs.2020.04.001_b0030 article-title: Nearest neighbor classification of remote sensing images with the maximal margin principle publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916090 – volume: 64 start-page: 1177 year: 2011 ident: 10.1016/j.isprsjprs.2020.04.001_b0255 article-title: Simulation of shoreline change using AIRSAR and POLSAR C-band data publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-0934-y – volume: 43 start-page: 468 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0225 article-title: An assessment of simulated compact polarimetric SAR data for wetland classification using random Forest algorithm publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2017.1381550 – volume: 216 start-page: 57 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0475 article-title: An object-based convolutional neural network (OCNN) for urban land use classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.034 – volume: 118 start-page: 166 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0360 article-title: Collect Earth: An online tool for systematic reference data collection in land cover and use applications publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.05.004 – volume: 342 start-page: 850 year: 2013 ident: 10.1016/j.isprsjprs.2020.04.001_b0110 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – volume: 146 start-page: 347 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0120 article-title: An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.10.008 – start-page: 1 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0300 article-title: Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: a case study from Mayo, Yukon Territory, Canada publication-title: GIScience Remote Sens. – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b0480 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 55 start-page: 645 year: 2017 ident: 10.1016/j.isprsjprs.2020.04.001_b2026 article-title: Convolutional neural networks for large-scale remote-sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2612821 – volume: 51 start-page: 47 year: 2015 ident: 10.1016/j.isprsjprs.2020.04.001_b0205 article-title: Remote sensing big data computing: Challenges and opportunities publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2014.10.029 – start-page: 317 year: 2016 ident: 10.1016/j.isprsjprs.2020.04.001_b0275 article-title: A review of multitemporal synthetic aperture radar (SAR) for crop monitoring – year: 2011 ident: 10.1016/j.isprsjprs.2020.04.001_b0320 – volume: 64 start-page: 64 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0215 article-title: A Gaussian random field model for de-speckling of multi-polarized Synthetic Aperture Radar data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.03.013 – volume: 64 start-page: 458 year: 2009 ident: 10.1016/j.isprsjprs.2020.04.001_b0385 article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2008.07.005 – volume: 12 start-page: 036015 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0240 article-title: Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle imagery and electromagnetic induction survey data publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.12.036015 – volume: 120 start-page: 9 year: 2012 ident: 10.1016/j.isprsjprs.2020.04.001_b0415 article-title: GMES Sentinel-1 mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.028 – volume: 151 start-page: 223 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0305 article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.015 – ident: 10.1016/j.isprsjprs.2020.04.001_b0025 doi: 10.1109/IGARSS.2003.1295258 – volume: 11 start-page: 1735 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b2029 article-title: Giving ecological meaning to satellite-derived fire severity metrics across North American forests publication-title: Remote Sens. doi: 10.3390/rs11141735 – volume: 11 start-page: 3030 year: 2018 ident: 10.1016/j.isprsjprs.2020.04.001_b0355 article-title: Deep convolutional neural network for complex wetland classification using optical remote sensing imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2846178 – volume: 11 start-page: 1581 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0420 article-title: Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh publication-title: Remote Sens. doi: 10.3390/rs11131581 – volume: 225 start-page: 127 year: 2019 ident: 10.1016/j.isprsjprs.2020.04.001_b0460 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 159 start-page: 337 year: 2020 ident: 10.1016/j.isprsjprs.2020.04.001_b0195 article-title: Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.021 |
| SSID | ssj0001568 |
| Score | 2.7140155 |
| Snippet | Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 152 |
| SubjectTerms | algorithms analytical methods application programming interface artificial intelligence Cloud-based platform computer software computers data collection drought Environmental monitoring Geo-big data geographical distribution Geospatial Google Earth Engine infrastructure Internet land cover Landsat languages Machine learning meta-analysis normalized difference vegetation index Planetary-scale regression analysis Remote sensing spatial data systematic review vegetation |
| Title | Google Earth Engine for geo-big data applications: A meta-analysis and systematic review |
| URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.04.001 https://www.proquest.com/docview/2431892123 |
| Volume | 164 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIABQQFRXjISq6mTOg-zVailgGABpG6RHdulVUmqEgYWfjvnxKEFITEwREqis5LcXe4h332H0Bk4oSiWPCCgwJyw2HhEciVIqNOQKYvxVXbI3d2Hgyd2MwyGDXRZ98LYskpn-yubXlprd6ftuNmejcftBwqpg28BkEBP4dx2lDMW2SkG5x-LMg-vaoezxMRSf6vxGr_O5q8TOCBR9GmJeeqmw_zioX7Y6tIB9bfQposccbd6uW3U0FkTbSzhCTbRmhtp_vy-g4ZXeT6aatyDr3nGFRmGCBWPdA7p8Ajb2lC8vH99gbv4RReCCAdUgkWm8ALqGVdtLrvoqd97vBwQN0aBCNaJCsIDHhifmU5saBSGPNWegDTBF1HAhE5jQVVgPKEMV2mspCep9LkUnoooCEyazh5ayfJM7yNMYyMhpPHTThgwE8pYslSaSCvNlJGStVBYsy5JHca4HXUxTepisknyxfPE8jyhzJbVtRD9WjirYDb-XnJRyyb5pjEJOIO_F5_W0kzgf7KbJCLT-RsQQUQVc-vQD_7zgEO0bq-qorIjtFLM3_QxhC-FPCn18wStdq9vB_efRWPyOw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB4BVwAFAg7E8zASrVkn6zxMhxDc3vFoAGk7y47tZREkq92loOG3M04cHickiisiRclYSWYm85BnvgE4QCeU5VokFBVYUJ67iGphFE1tkXLjMb7qDrnLq7R3y__2k_4MnLS9ML6sMtj-xqbX1jpc6QRudkbDYeeaYeoQewAk1FM8z2bhB0_izGdghy_vdR5R0w_nqakn_1TkNZyMxpN7PDBTjFkNehrGw3zhov4x1rUHOluGpRA6kuPm7VZgxparsPgBUHAV5sNM87vnn9D_XVWDB0tO8XPuSENGMEQlA1thPjwgvjiUfNzAPiLH5NFOFVUBqYSo0pB3rGfS9Lmswe3Z6c1Jj4Y5ClTxbjalIhGJi7nr5o5laSoKGynME2KVJVzZIlfMJC5SxglT5EZHmulYaBWZjKHEtOuuw1xZlXYDCMudxpgmLrppwl2qc80L7TJrLDdOa74Jacs6WQSQcT_r4kG21WT38o3n0vNcMu7r6jaBvS0cNTgb3y85amUjP6mMRG_w_eL9VpoSfyi_S6JKWz0hEYZUufAefet_HrAH872bywt58efqfBsW_J2mwmwH5qbjJ7uLscxU_6p19RXhWfPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Google+Earth+Engine+for+geo-big+data+applications%3A+A+meta-analysis+and+systematic+review&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Tamiminia%2C+Haifa&rft.au=Salehi%2C+Bahram&rft.au=Mahdianpari%2C+Masoud&rft.au=Quackenbush%2C+Lindi&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=164&rft.spage=152&rft.epage=170&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.04.001&rft.externalDocID=S0924271620300927 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |