Google Earth Engine for geo-big data applications: A meta-analysis and systematic review

Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) hi...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 164; pp. 152 - 170
Main Authors Tamiminia, Haifa, Salehi, Bahram, Mahdianpari, Masoud, Quackenbush, Lindi, Adeli, Sarina, Brisco, Brian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2020.04.001

Cover

Abstract Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data.
AbstractList Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data.
Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data.
Author Brisco, Brian
Adeli, Sarina
Quackenbush, Lindi
Mahdianpari, Masoud
Salehi, Bahram
Tamiminia, Haifa
Author_xml – sequence: 1
  givenname: Haifa
  surname: Tamiminia
  fullname: Tamiminia, Haifa
  organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA
– sequence: 2
  givenname: Bahram
  surname: Salehi
  fullname: Salehi, Bahram
  organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA
– sequence: 3
  givenname: Masoud
  orcidid: 0000-0002-7234-959X
  surname: Mahdianpari
  fullname: Mahdianpari, Masoud
  email: m.mahdianpari@mun.ca
  organization: C-CORE and Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
– sequence: 4
  givenname: Lindi
  surname: Quackenbush
  fullname: Quackenbush, Lindi
  organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA
– sequence: 5
  givenname: Sarina
  surname: Adeli
  fullname: Adeli, Sarina
  organization: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry (ESF), NY 13210, USA
– sequence: 6
  givenname: Brian
  surname: Brisco
  fullname: Brisco, Brian
  organization: The Canada Centre for Mapping and Earth Observation, Ottawa K1S 5K2, Canada
BookMark eNqNkDtLBDEURoMouD5-gyltZkwyb8FikfUBgo2CXbiT3KxZZpMxicr-e0dXLGy0uNzmnK84B2TXeYeEnHCWc8brs1Vu4xjiarpcMMFyVuaM8R0y420jslYU1S6ZsU6UmWh4vU8OYlyxiajqdkaerr1fDkgXENIzXbildUiND3SJPuvtkmpIQGEcB6sgWe_iOZ3TNSbIwMGwiTZScJrGTUy4nghFA75ZfD8iewaGiMff_5A8Xi0eLm-yu_vr28v5XQZl0aSsq7rKiNIUrWFNXXcKOdRNJaCpSkDVAtOV4aBNp1Wre96zXnQ9cN0wVHVvikNyut0dg395xZjk2kaFwwAO_WuUoix42wkuiglttqgKPsaARo7BriFsJGfys6VcyZ-W8rOlZKWcSk3mxS9T2fSVIwWwwz_8-dbHqcRUJ8ioLDqF2gZUSWpv_9z4AHm9mhQ
CitedBy_id crossref_primary_10_1038_s41598_024_68991_7
crossref_primary_10_3390_urbansci9020023
crossref_primary_10_3390_rs16010060
crossref_primary_10_3389_feart_2023_1183834
crossref_primary_10_3390_s21051791
crossref_primary_10_1109_TGRS_2023_3348974
crossref_primary_10_3390_w15061053
crossref_primary_10_1016_j_jhydrol_2022_128080
crossref_primary_10_3390_atmos15091020
crossref_primary_10_1016_j_apr_2024_102226
crossref_primary_10_1080_10549811_2024_2448027
crossref_primary_10_3390_w13213115
crossref_primary_10_1088_1755_1315_1451_1_012040
crossref_primary_10_2989_20702620_2023_2251946
crossref_primary_10_3390_ijgi13070239
crossref_primary_10_1016_j_ocecoaman_2023_106601
crossref_primary_10_3390_rs12213663
crossref_primary_10_5194_essd_16_2877_2024
crossref_primary_10_1038_s41597_022_01337_y
crossref_primary_10_3390_app14114554
crossref_primary_10_3390_ijerph192013555
crossref_primary_10_1016_j_jhydrol_2024_130979
crossref_primary_10_1016_j_habitatint_2024_103095
crossref_primary_10_1016_j_compag_2023_107928
crossref_primary_10_3389_esss_2024_10075
crossref_primary_10_1002_esp_70032
crossref_primary_10_3390_app13063440
crossref_primary_10_3390_rs15071816
crossref_primary_10_1016_j_ecolind_2022_109813
crossref_primary_10_1029_2022EF002927
crossref_primary_10_1007_s10661_023_12006_x
crossref_primary_10_52547_jgit_10_3_121
crossref_primary_10_1080_15481603_2024_2302221
crossref_primary_10_3390_d16080448
crossref_primary_10_1007_s11869_023_01488_w
crossref_primary_10_1186_s12302_024_00901_0
crossref_primary_10_1007_s11356_021_15361_9
crossref_primary_10_1109_TGRS_2023_3323319
crossref_primary_10_1080_22797254_2025_2473939
crossref_primary_10_3390_app122312147
crossref_primary_10_1071_MF22111
crossref_primary_10_3390_rs15102539
crossref_primary_10_1108_CI_05_2021_0090
crossref_primary_10_3897_oneeco_9_e134088
crossref_primary_10_1002_rse2_286
crossref_primary_10_1007_s40808_023_01860_w
crossref_primary_10_1080_17538947_2025_2454411
crossref_primary_10_1088_1755_1315_1109_1_012039
crossref_primary_10_1016_j_ecolind_2022_108619
crossref_primary_10_1016_j_dib_2023_109986
crossref_primary_10_1109_TGRS_2021_3095153
crossref_primary_10_3390_land12020303
crossref_primary_10_1016_j_ecolind_2024_112759
crossref_primary_10_1016_j_watres_2025_123176
crossref_primary_10_1002_ldr_4360
crossref_primary_10_3390_rs14225734
crossref_primary_10_1080_20964471_2025_2454044
crossref_primary_10_3390_rs13183587
crossref_primary_10_3390_data10010008
crossref_primary_10_1007_s12517_023_11538_3
crossref_primary_10_1109_MGRS_2023_3293459
crossref_primary_10_1038_s41559_024_02372_1
crossref_primary_10_1007_s41101_023_00212_0
crossref_primary_10_1016_j_ecolind_2022_108625
crossref_primary_10_1364_OE_502709
crossref_primary_10_18006_2022_10_2__369_378
crossref_primary_10_1080_07038992_2020_1802584
crossref_primary_10_3390_ijgi9100564
crossref_primary_10_3390_rs16071227
crossref_primary_10_3390_rs14164023
crossref_primary_10_1088_1748_9326_acc2d2
crossref_primary_10_1002_aqc_4243
crossref_primary_10_1080_17538947_2023_2192004
crossref_primary_10_1029_2021EF002289
crossref_primary_10_1088_1755_1315_1230_1_012144
crossref_primary_10_1007_s12145_024_01686_9
crossref_primary_10_1038_s41598_025_91381_6
crossref_primary_10_3390_rs14092055
crossref_primary_10_1016_j_jenvman_2024_121851
crossref_primary_10_3390_rs17030488
crossref_primary_10_3390_rs14195052
crossref_primary_10_3390_rs15123131
crossref_primary_10_3390_rs16050831
crossref_primary_10_3390_app10207336
crossref_primary_10_3390_rs13204045
crossref_primary_10_1007_s10980_021_01381_w
crossref_primary_10_3390_rs16214088
crossref_primary_10_51552_peyad_1346845
crossref_primary_10_3390_rs15030588
crossref_primary_10_1016_j_accre_2024_03_002
crossref_primary_10_1080_10106049_2022_2071475
crossref_primary_10_1016_j_rse_2023_113664
crossref_primary_10_3390_drones4030041
crossref_primary_10_1016_j_rsase_2023_101112
crossref_primary_10_1186_s13677_022_00360_z
crossref_primary_10_3390_rs15204980
crossref_primary_10_1016_j_nhres_2024_01_004
crossref_primary_10_1007_s40808_024_02066_4
crossref_primary_10_1007_s40333_022_0075_z
crossref_primary_10_1016_j_scitotenv_2024_175058
crossref_primary_10_1016_j_ecolind_2023_111193
crossref_primary_10_1016_j_isprsjprs_2024_12_018
crossref_primary_10_1016_j_jclepro_2024_142255
crossref_primary_10_1007_s12583_022_1670_9
crossref_primary_10_1080_10095020_2024_2440615
crossref_primary_10_3390_rs16142529
crossref_primary_10_1016_j_agwat_2025_109302
crossref_primary_10_3390_land10121388
crossref_primary_10_3390_rs16173168
crossref_primary_10_3390_rs14092038
crossref_primary_10_3390_rs14225647
crossref_primary_10_1016_j_ugj_2022_05_001
crossref_primary_10_3389_esss_2024_10124
crossref_primary_10_1016_j_ecolind_2024_112430
crossref_primary_10_1007_s12145_023_01161_x
crossref_primary_10_3390_f13071132
crossref_primary_10_1029_2023WR034967
crossref_primary_10_3390_rs16214060
crossref_primary_10_1016_j_ejrh_2022_101111
crossref_primary_10_3390_en14154490
crossref_primary_10_1016_j_heliyon_2025_e42041
crossref_primary_10_3390_rs14225773
crossref_primary_10_1186_s40537_023_00730_7
crossref_primary_10_1186_s42408_024_00320_9
crossref_primary_10_3390_rs15204960
crossref_primary_10_1016_j_jer_2024_08_006
crossref_primary_10_1109_JSTARS_2024_3380580
crossref_primary_10_2139_ssrn_4054431
crossref_primary_10_1080_19475705_2022_2030808
crossref_primary_10_3390_rs14174382
crossref_primary_10_3390_geomatics3040026
crossref_primary_10_1007_s12665_024_12045_8
crossref_primary_10_1016_j_envsoft_2024_106022
crossref_primary_10_3390_rs12111882
crossref_primary_10_1007_s44163_024_00198_1
crossref_primary_10_1016_j_scitotenv_2024_173099
crossref_primary_10_1097_st9_0000000000000045
crossref_primary_10_1016_j_envsoft_2024_106268
crossref_primary_10_3390_agriculture13020388
crossref_primary_10_3390_rs13112047
crossref_primary_10_3390_rs13234819
crossref_primary_10_1016_j_jclepro_2024_142595
crossref_primary_10_1016_j_isprsjprs_2023_03_003
crossref_primary_10_1007_s11356_023_30110_w
crossref_primary_10_3390_rs13173501
crossref_primary_10_2205_2022ES000812
crossref_primary_10_1016_j_jenvman_2022_116920
crossref_primary_10_1029_2021EF002123
crossref_primary_10_1051_e3sconf_202459109011
crossref_primary_10_3390_rs14205279
crossref_primary_10_1029_2021WR031399
crossref_primary_10_4995_raet_2024_20831
crossref_primary_10_5194_nhess_24_4385_2024
crossref_primary_10_1007_s40333_022_0085_x
crossref_primary_10_3390_rs13183778
crossref_primary_10_1016_j_isprsjprs_2024_11_005
crossref_primary_10_1002_ldr_4790
crossref_primary_10_1016_j_jhydrol_2025_132905
crossref_primary_10_3390_land13020222
crossref_primary_10_3389_fenvs_2022_884440
crossref_primary_10_1080_07038992_2021_1901562
crossref_primary_10_3390_agronomy13123037
crossref_primary_10_3390_rs12203454
crossref_primary_10_1016_j_jag_2025_104456
crossref_primary_10_1016_j_ijdrr_2023_104056
crossref_primary_10_3390_land14020313
crossref_primary_10_3390_rs16244810
crossref_primary_10_3390_rs16071184
crossref_primary_10_3390_land13030386
crossref_primary_10_1016_j_jhydrol_2024_131771
crossref_primary_10_3390_rs15051368
crossref_primary_10_1016_j_isprsjprs_2023_05_025
crossref_primary_10_3390_rs14112510
crossref_primary_10_1007_s11676_024_01700_2
crossref_primary_10_1109_ACCESS_2024_3414996
crossref_primary_10_1109_JSTARS_2024_3382580
crossref_primary_10_1142_S0218126625501841
crossref_primary_10_3390_data7060074
crossref_primary_10_3390_rs14143253
crossref_primary_10_3389_esss_2024_10110
crossref_primary_10_1016_j_ecolind_2024_112027
crossref_primary_10_1007_s12145_022_00918_0
crossref_primary_10_3390_jmse12050800
crossref_primary_10_1016_j_heliyon_2025_e42619
crossref_primary_10_1016_j_xinn_2024_100691
crossref_primary_10_1038_s41598_020_74561_4
crossref_primary_10_3390_rs15143479
crossref_primary_10_1007_s10661_023_11650_7
crossref_primary_10_1080_10095020_2022_2162980
crossref_primary_10_1016_j_indic_2025_100611
crossref_primary_10_3390_rs13061098
crossref_primary_10_1016_j_ecolind_2023_110904
crossref_primary_10_1080_24749508_2024_2430047
crossref_primary_10_1007_s12145_023_01035_2
crossref_primary_10_1007_s10518_025_02108_x
crossref_primary_10_1007_s10661_022_09888_8
crossref_primary_10_3390_rs15215160
crossref_primary_10_3390_su15086798
crossref_primary_10_3390_rs14215296
crossref_primary_10_3390_rs15112835
crossref_primary_10_3934_geosci_2024005
crossref_primary_10_3390_rs14051165
crossref_primary_10_4018_IJAEIS_367572
crossref_primary_10_2166_aqua_2024_233
crossref_primary_10_18343_jipi_30_1_108
crossref_primary_10_1080_15481603_2024_2380125
crossref_primary_10_3390_rs14215289
crossref_primary_10_1016_j_future_2024_107644
crossref_primary_10_1080_15481603_2023_2211881
crossref_primary_10_1038_s41597_022_01474_4
crossref_primary_10_1098_rspb_2024_1712
crossref_primary_10_1007_s11442_023_2160_4
crossref_primary_10_1016_j_earscirev_2024_104941
crossref_primary_10_1007_s11356_021_17257_0
crossref_primary_10_1080_09715010_2025_2479839
crossref_primary_10_1088_1755_1315_893_1_012057
crossref_primary_10_3390_rs15051263
crossref_primary_10_3390_rs14194978
crossref_primary_10_3390_s24030834
crossref_primary_10_3390_rs14164097
crossref_primary_10_1080_22797254_2022_2052188
crossref_primary_10_1109_JSTARS_2025_3540302
crossref_primary_10_1007_s12524_022_01588_7
crossref_primary_10_1061_NHREFO_NHENG_1801
crossref_primary_10_3389_fpls_2022_892625
crossref_primary_10_1007_s12524_024_01922_1
crossref_primary_10_1016_j_indic_2024_100541
crossref_primary_10_1016_j_jnc_2021_126081
crossref_primary_10_1007_s44327_025_00051_9
crossref_primary_10_1038_s41598_021_04754_y
crossref_primary_10_3390_rs13214347
crossref_primary_10_1016_j_indic_2024_100427
crossref_primary_10_1088_2051_672X_ac9492
crossref_primary_10_3390_rs13061084
crossref_primary_10_3390_rs15112741
crossref_primary_10_3390_w12102822
crossref_primary_10_1038_s41598_022_17454_y
crossref_primary_10_3390_s22051942
crossref_primary_10_1016_j_marpolbul_2024_116529
crossref_primary_10_1002_hyp_70062
crossref_primary_10_1016_j_jag_2021_102481
crossref_primary_10_1016_j_ecolind_2024_112246
crossref_primary_10_47134_jtp_v1i4_379
crossref_primary_10_1016_j_rsase_2022_100907
crossref_primary_10_5194_essd_13_4799_2021
crossref_primary_10_1016_j_jag_2021_102485
crossref_primary_10_1080_01431161_2024_2413025
crossref_primary_10_1016_j_jag_2022_102784
crossref_primary_10_1080_15481603_2020_1846948
crossref_primary_10_1007_s42979_024_03500_1
crossref_primary_10_1515_geo_2022_0625
crossref_primary_10_3390_rs14194723
crossref_primary_10_1016_j_isprsjprs_2024_06_007
crossref_primary_10_3390_s23062947
crossref_primary_10_1109_ACCESS_2024_3468384
crossref_primary_10_3390_s24051651
crossref_primary_10_1016_j_isprsjprs_2021_01_012
crossref_primary_10_1002_joc_8130
crossref_primary_10_1016_j_ecoinf_2023_102075
crossref_primary_10_1016_j_gecco_2022_e02126
crossref_primary_10_1016_j_catena_2024_108354
crossref_primary_10_3389_ffgc_2024_1345047
crossref_primary_10_1007_s11069_024_06907_4
crossref_primary_10_1080_2150704X_2022_2027543
crossref_primary_10_11922_11_6035_csd_2022_0058_zh
crossref_primary_10_3390_rs13214480
crossref_primary_10_3389_feart_2023_1188093
crossref_primary_10_1109_JSTARS_2022_3231890
crossref_primary_10_1007_s12145_024_01372_w
crossref_primary_10_1016_j_ecolind_2022_109842
crossref_primary_10_1016_j_isprsjprs_2022_10_012
crossref_primary_10_1088_1755_1315_1240_1_012017
crossref_primary_10_1108_DLP_06_2024_0090
crossref_primary_10_1109_TGRS_2023_3299956
crossref_primary_10_3390_f15111919
crossref_primary_10_1016_j_geoderma_2020_114890
crossref_primary_10_1155_2021_1140611
crossref_primary_10_3390_ijgi12040141
crossref_primary_10_1007_s10661_024_12677_0
crossref_primary_10_1038_s41597_023_02285_x
crossref_primary_10_1080_17538947_2023_2270459
crossref_primary_10_1080_17538947_2023_2179675
crossref_primary_10_1016_j_rsase_2023_101078
crossref_primary_10_3390_rs16224161
crossref_primary_10_1007_s11769_021_1226_4
crossref_primary_10_1080_15481603_2023_2222627
crossref_primary_10_1371_journal_pone_0288694
crossref_primary_10_3390_rs14215498
crossref_primary_10_1007_s13201_022_01862_6
crossref_primary_10_3389_feart_2023_1252597
crossref_primary_10_1016_j_ophoto_2023_100049
crossref_primary_10_1016_j_scib_2023_07_035
crossref_primary_10_1109_TGRS_2023_3323641
crossref_primary_10_1007_s42489_022_00121_7
crossref_primary_10_1016_j_ecoleng_2025_107525
crossref_primary_10_1016_j_jnc_2023_126464
crossref_primary_10_2166_wcc_2024_574
crossref_primary_10_1007_s12145_024_01549_3
crossref_primary_10_1016_j_adhoc_2024_103460
crossref_primary_10_1016_j_jag_2024_104027
crossref_primary_10_1016_j_pce_2024_103569
crossref_primary_10_3390_rs15061592
crossref_primary_10_3390_ijgi10080511
crossref_primary_10_3389_fenvs_2023_1107393
crossref_primary_10_1029_2022JG007101
crossref_primary_10_1016_j_buildenv_2023_111112
crossref_primary_10_3390_rs14051123
crossref_primary_10_3390_rs14194906
crossref_primary_10_1007_s40808_021_01157_w
crossref_primary_10_1016_j_rse_2024_114404
crossref_primary_10_3390_rs13214378
crossref_primary_10_3390_atmos16010022
crossref_primary_10_3390_rs17040680
crossref_primary_10_5814_j_issn_1674_764x_2025_01_001
crossref_primary_10_1109_JSTARS_2025_3528429
crossref_primary_10_3390_heritage8010030
crossref_primary_10_36680_j_itcon_2021_044
crossref_primary_10_47134_jbkd_v1i3_2593
crossref_primary_10_1016_j_resconrec_2024_107751
crossref_primary_10_1016_j_envc_2024_101026
crossref_primary_10_1016_j_simpa_2023_100607
crossref_primary_10_1007_s41742_025_00752_4
crossref_primary_10_3390_cli12030045
crossref_primary_10_1016_j_cageo_2022_105034
crossref_primary_10_1088_1755_1315_1345_1_012005
crossref_primary_10_1016_j_ecolind_2024_112150
crossref_primary_10_1016_j_heliyon_2024_e26913
crossref_primary_10_1016_j_isprsjprs_2023_06_010
crossref_primary_10_3390_f15010165
crossref_primary_10_1016_j_jag_2021_102453
crossref_primary_10_3390_agronomy12071518
crossref_primary_10_3390_su14074104
crossref_primary_10_3390_rs15051461
crossref_primary_10_1016_j_rsase_2023_101095
crossref_primary_10_3390_rs15030763
crossref_primary_10_1016_j_envpol_2021_118397
crossref_primary_10_3390_rs12142190
crossref_primary_10_1155_2022_8103242
crossref_primary_10_1016_j_ecoinf_2023_102147
crossref_primary_10_1016_j_rsase_2024_101171
crossref_primary_10_3390_agronomy13092302
crossref_primary_10_1007_s00704_024_04874_1
crossref_primary_10_3390_rs13040586
crossref_primary_10_1016_j_rse_2022_113082
crossref_primary_10_3390_rs14215361
crossref_primary_10_3390_land11112039
crossref_primary_10_3390_rs15133447
crossref_primary_10_3390_s22134729
crossref_primary_10_3390_rs16224275
crossref_primary_10_1016_j_iswcr_2023_03_002
crossref_primary_10_1016_j_scitotenv_2024_176521
crossref_primary_10_1080_17538947_2024_2365386
crossref_primary_10_3390_rs15143495
crossref_primary_10_1007_s00500_023_08142_8
crossref_primary_10_3390_geomatics3010012
crossref_primary_10_3390_rs15030655
crossref_primary_10_3390_su151411413
crossref_primary_10_1016_j_jag_2024_104040
crossref_primary_10_1109_JSTARS_2022_3190027
crossref_primary_10_3390_rs14112663
crossref_primary_10_3390_rs15164055
crossref_primary_10_1007_s12145_023_01010_x
crossref_primary_10_1080_17538947_2024_2436494
crossref_primary_10_1080_10106049_2022_2087759
crossref_primary_10_1016_j_scitotenv_2022_153335
crossref_primary_10_3390_s23125734
crossref_primary_10_3390_su162411130
crossref_primary_10_1016_j_pce_2025_103893
crossref_primary_10_3390_rs15040984
crossref_primary_10_1016_j_jenvman_2024_123677
crossref_primary_10_1016_j_ecolind_2022_109365
crossref_primary_10_3390_fire7110413
crossref_primary_10_1016_j_isprsjprs_2021_03_018
crossref_primary_10_3389_fenvs_2023_1137835
crossref_primary_10_1002_ldr_4824
crossref_primary_10_1016_j_isprsjprs_2024_01_014
crossref_primary_10_1080_15481603_2020_1835080
crossref_primary_10_51800_ecd_1296895
crossref_primary_10_3390_rs14133041
crossref_primary_10_3390_rs16122210
crossref_primary_10_3390_su142214868
crossref_primary_10_3390_rs15143504
crossref_primary_10_3390_hydrology9080135
crossref_primary_10_1016_j_rsase_2024_101275
crossref_primary_10_31548_zemleustriy2023_01_12
crossref_primary_10_1016_j_scitotenv_2023_165964
crossref_primary_10_3390_rs16132389
crossref_primary_10_1088_1755_1315_1127_1_012021
crossref_primary_10_3390_land11030372
crossref_primary_10_3390_atmos15030318
crossref_primary_10_1088_2515_7620_ad2bb5
crossref_primary_10_1007_s11852_023_01020_3
crossref_primary_10_1016_j_isprsjprs_2021_11_017
crossref_primary_10_1016_j_rsase_2024_101279
crossref_primary_10_1109_ACCESS_2023_3285246
crossref_primary_10_3390_rs13030403
crossref_primary_10_1007_s10661_022_10437_6
crossref_primary_10_1007_s11600_023_01177_3
crossref_primary_10_1111_ddi_13491
crossref_primary_10_61186_NMCE_2401_1045
crossref_primary_10_1016_j_rsase_2022_100842
crossref_primary_10_1080_13675567_2022_2130211
crossref_primary_10_3390_rs12162531
crossref_primary_10_1007_s11356_023_25685_3
crossref_primary_10_1111_1752_1688_13160
crossref_primary_10_3390_agriculture12091435
crossref_primary_10_1016_j_jag_2023_103638
crossref_primary_10_1080_10406026_2025_2460097
crossref_primary_10_3390_rs16030583
crossref_primary_10_3389_fenvs_2021_805174
crossref_primary_10_1071_CP23340
crossref_primary_10_1016_j_isprsjprs_2024_08_010
crossref_primary_10_1016_j_cliser_2023_100444
crossref_primary_10_24850_j_tyca_2024_04_04
crossref_primary_10_3390_ijgi11080423
crossref_primary_10_1016_j_isprsjprs_2024_08_019
crossref_primary_10_1088_1755_1315_1127_1_012033
crossref_primary_10_1109_JSTARS_2022_3194324
crossref_primary_10_1002_esp_5791
crossref_primary_10_1016_j_agwat_2023_108493
crossref_primary_10_3390_su151813305
crossref_primary_10_1016_j_atmosenv_2022_119219
crossref_primary_10_3390_su15032535
crossref_primary_10_1007_s12517_022_10494_8
crossref_primary_10_1007_s12145_021_00739_7
crossref_primary_10_1080_22797254_2021_1948356
crossref_primary_10_1016_j_jag_2024_103822
crossref_primary_10_1016_j_isprsjprs_2022_05_007
crossref_primary_10_1016_j_rse_2022_112913
crossref_primary_10_1016_j_isprsjprs_2023_07_015
crossref_primary_10_3390_s20247315
crossref_primary_10_1016_j_ocecoaman_2021_105842
crossref_primary_10_1016_j_apgeog_2023_103081
crossref_primary_10_1016_j_coldregions_2022_103682
crossref_primary_10_1016_j_enggeo_2025_107948
crossref_primary_10_3390_ijgi10060384
crossref_primary_10_47818_DRArch_2022_v3i2055
crossref_primary_10_3390_rs15215095
crossref_primary_10_3390_su14095687
crossref_primary_10_1016_j_foreco_2022_120764
crossref_primary_10_1080_07038992_2022_2054405
crossref_primary_10_1002_ird_2931
crossref_primary_10_1016_j_jenvman_2024_120192
crossref_primary_10_1007_s00477_023_02555_5
crossref_primary_10_1080_17538947_2022_2115567
crossref_primary_10_1080_17538947_2023_2197263
crossref_primary_10_1080_17538947_2024_2365981
crossref_primary_10_3390_rs14163967
crossref_primary_10_1016_j_still_2024_106270
crossref_primary_10_14358_PERS_24_00026R2
crossref_primary_10_3390_rs14020273
crossref_primary_10_3390_rs16122122
crossref_primary_10_3390_rs13132510
crossref_primary_10_54033_cadpedv21n7_213
crossref_primary_10_1016_j_ecoinf_2024_102529
crossref_primary_10_3390_rs17050933
crossref_primary_10_3390_land13030335
crossref_primary_10_1016_j_clwat_2025_100070
crossref_primary_10_1016_j_jag_2023_103409
crossref_primary_10_1016_j_jenvman_2022_116568
crossref_primary_10_3390_earth5020012
crossref_primary_10_1051_bioconf_20249905006
crossref_primary_10_3390_rs14010230
crossref_primary_10_3389_fmars_2024_1488577
crossref_primary_10_3390_rs16061052
crossref_primary_10_1007_s11356_021_15782_6
crossref_primary_10_1007_s13762_022_04704_9
crossref_primary_10_1016_j_tfp_2021_100119
crossref_primary_10_1016_j_marpol_2024_106128
crossref_primary_10_1080_24749508_2024_2431354
crossref_primary_10_3390_app131910692
crossref_primary_10_5334_jcaa_177
crossref_primary_10_1016_j_jenvman_2025_124969
crossref_primary_10_3390_rs13071381
crossref_primary_10_1088_1755_1315_1438_1_012088
crossref_primary_10_3390_land10050516
crossref_primary_10_3390_rs13142792
crossref_primary_10_1080_13658816_2024_2427870
crossref_primary_10_61186_jsaeh_10_1_71
crossref_primary_10_3390_rs12193139
crossref_primary_10_1007_s12518_024_00569_4
crossref_primary_10_3390_rs13122301
crossref_primary_10_1080_1331677X_2023_2166555
crossref_primary_10_3390_agriengineering3010008
crossref_primary_10_1111_gcb_17548
crossref_primary_10_1007_s41101_021_00105_0
crossref_primary_10_3389_feart_2021_613395
crossref_primary_10_3390_rs15143675
crossref_primary_10_1016_j_asr_2024_08_046
crossref_primary_10_1007_s10668_024_05113_3
crossref_primary_10_1080_17538947_2021_2012533
crossref_primary_10_1016_j_pt_2021_03_003
crossref_primary_10_1016_j_isprsjprs_2021_04_018
crossref_primary_10_1016_j_ufug_2023_128095
crossref_primary_10_1016_j_scitotenv_2023_167810
crossref_primary_10_3390_su132413758
crossref_primary_10_1080_15481603_2024_2421574
crossref_primary_10_3390_ijgi12020081
crossref_primary_10_37394_23209_2021_18_22
crossref_primary_10_1007_s12517_025_12226_0
crossref_primary_10_1007_s41685_023_00286_7
crossref_primary_10_1038_s41597_024_03976_9
crossref_primary_10_3390_rs15092381
crossref_primary_10_1186_s13021_022_00212_y
crossref_primary_10_1016_j_ejrs_2024_03_003
crossref_primary_10_1088_1755_1315_648_1_012212
crossref_primary_10_1016_j_jum_2024_11_009
crossref_primary_10_1109_JSTARS_2023_3310363
crossref_primary_10_1016_j_rse_2022_112958
crossref_primary_10_3390_rs16203762
crossref_primary_10_1097_EE9_0000000000000301
crossref_primary_10_1080_10106049_2022_2120551
crossref_primary_10_1088_1755_1315_1064_1_012011
crossref_primary_10_1109_JSTARS_2020_3021052
crossref_primary_10_1080_10106049_2022_2120550
crossref_primary_10_3390_rs15174140
crossref_primary_10_1051_bioconf_20249700111
crossref_primary_10_1080_15481603_2021_1947623
crossref_primary_10_1109_TGRS_2024_3400999
crossref_primary_10_1029_2021GL093789
crossref_primary_10_1038_s41598_023_34774_9
crossref_primary_10_3390_rs17050741
crossref_primary_10_3389_feart_2022_981606
crossref_primary_10_3390_rs15205018
crossref_primary_10_1371_journal_pone_0289969
crossref_primary_10_3390_fire8030095
crossref_primary_10_1016_j_agwat_2023_108662
crossref_primary_10_1016_j_isprsjprs_2021_09_021
crossref_primary_10_1016_j_rse_2024_114498
crossref_primary_10_1016_j_rsase_2021_100489
crossref_primary_10_3389_fenvs_2023_1179328
crossref_primary_10_3390_rs16122167
crossref_primary_10_1016_j_asr_2023_07_061
crossref_primary_10_3390_ijgi9060400
crossref_primary_10_1080_17538947_2023_2202421
crossref_primary_10_3390_f12050574
crossref_primary_10_1088_2631_8695_acfa64
crossref_primary_10_1109_JSTARS_2022_3181155
crossref_primary_10_1016_j_eiar_2023_107136
crossref_primary_10_1016_j_renene_2024_121042
crossref_primary_10_1016_j_scs_2022_104060
crossref_primary_10_3390_rs14194896
crossref_primary_10_1088_1755_1315_1350_1_012035
crossref_primary_10_1186_s42269_023_01127_5
crossref_primary_10_1016_j_ecoinf_2023_102433
crossref_primary_10_3390_rs13101958
crossref_primary_10_33411_IJIST_2020020408
crossref_primary_10_1007_s10661_023_11224_7
crossref_primary_10_1016_j_rsase_2024_101445
crossref_primary_10_1016_j_rsase_2024_101325
crossref_primary_10_3390_agronomy12092143
crossref_primary_10_1016_j_catena_2021_105500
crossref_primary_10_1016_j_rse_2020_112002
crossref_primary_10_1029_2021JD035987
crossref_primary_10_1016_j_ecolind_2024_111962
crossref_primary_10_1080_22797254_2022_2093278
crossref_primary_10_1080_10095020_2022_2094288
crossref_primary_10_3390_rs16050917
crossref_primary_10_3390_su152115316
crossref_primary_10_1016_j_agrformet_2021_108609
crossref_primary_10_3390_biology11020169
crossref_primary_10_3390_rs15010136
crossref_primary_10_3390_rs15102596
crossref_primary_10_1002_ece3_10560
crossref_primary_10_1016_j_scitotenv_2023_161757
crossref_primary_10_1016_j_wse_2024_02_001
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_1016_j_rse_2024_114151
crossref_primary_10_1007_s13762_023_05072_8
crossref_primary_10_1134_S106422932460221X
crossref_primary_10_3390_rs13091744
crossref_primary_10_3389_fmars_2022_871470
crossref_primary_10_1186_s42269_024_01286_z
crossref_primary_10_3390_app13116359
crossref_primary_10_3389_frsen_2024_1374862
crossref_primary_10_1080_17538947_2024_2402418
crossref_primary_10_3390_rs13050896
crossref_primary_10_1016_j_jnc_2024_126804
crossref_primary_10_3390_app122311922
crossref_primary_10_1016_j_jag_2024_103659
crossref_primary_10_5194_nhess_22_2829_2022
crossref_primary_10_1016_j_rsase_2023_100987
crossref_primary_10_3390_land12061250
crossref_primary_10_1088_1755_1315_1190_1_012012
crossref_primary_10_3390_rs14235920
crossref_primary_10_3390_land11030419
crossref_primary_10_1007_s12145_020_00562_6
crossref_primary_10_3390_environments10100170
crossref_primary_10_3390_su141710645
crossref_primary_10_1016_j_tfp_2023_100388
crossref_primary_10_3389_fevo_2023_1157981
crossref_primary_10_3390_agronomy14040784
crossref_primary_10_1007_s41651_024_00175_3
crossref_primary_10_1016_j_rse_2024_114281
crossref_primary_10_1007_s41324_022_00465_2
crossref_primary_10_1016_j_jag_2022_103092
crossref_primary_10_1016_j_jclepro_2022_134286
crossref_primary_10_1155_2022_7122846
crossref_primary_10_3390_f14030652
crossref_primary_10_1007_s42797_022_00056_2
crossref_primary_10_1109_JSTARS_2024_3519425
crossref_primary_10_3390_ijgi9110663
crossref_primary_10_1109_JSTARS_2022_3201380
crossref_primary_10_1088_1755_1315_739_1_012087
crossref_primary_10_3390_land13010080
crossref_primary_10_1016_j_catena_2024_107829
crossref_primary_10_1016_j_geosus_2024_06_002
crossref_primary_10_3390_rs15010234
crossref_primary_10_3390_rs16091566
crossref_primary_10_1016_j_isprsjprs_2021_12_003
crossref_primary_10_1016_j_wasec_2023_100161
crossref_primary_10_1109_JSTARS_2021_3116258
crossref_primary_10_3390_rs15184597
crossref_primary_10_3390_rs14071648
crossref_primary_10_1007_s10708_025_11305_9
crossref_primary_10_1016_j_asr_2024_09_039
crossref_primary_10_3390_rs16193587
crossref_primary_10_3390_su16146144
crossref_primary_10_1109_JSTARS_2024_3403146
crossref_primary_10_1016_j_envc_2024_100882
crossref_primary_10_3390_ijgi10100670
crossref_primary_10_1002_gj_4365
crossref_primary_10_3390_rs16203833
crossref_primary_10_1093_forestry_cpad039
crossref_primary_10_1016_j_cj_2023_11_011
crossref_primary_10_1016_j_envsoft_2024_106227
crossref_primary_10_3390_rs13234745
crossref_primary_10_1016_j_scitotenv_2023_161852
crossref_primary_10_1080_14498596_2024_2378362
crossref_primary_10_1016_j_isprsjprs_2021_08_015
crossref_primary_10_1016_j_ejrs_2024_07_001
crossref_primary_10_4108_eetsis_5496
crossref_primary_10_3390_atmos15050598
crossref_primary_10_1088_1755_1315_783_1_012148
crossref_primary_10_3390_ijgi10070464
crossref_primary_10_1016_j_envc_2024_100873
crossref_primary_10_1016_j_envdev_2024_101005
crossref_primary_10_1016_j_ecolind_2022_109283
crossref_primary_10_1007_s12524_022_01633_5
crossref_primary_10_3390_rs15194697
crossref_primary_10_3390_rs14153778
crossref_primary_10_1007_s11356_022_19392_8
crossref_primary_10_3390_rs13152869
crossref_primary_10_1016_j_scs_2025_106158
crossref_primary_10_1007_s10661_024_13315_5
crossref_primary_10_1007_s10462_021_10071_7
crossref_primary_10_3390_atmos15121489
crossref_primary_10_1016_j_catena_2023_107336
crossref_primary_10_1016_j_clpl_2024_100088
crossref_primary_10_3390_su15043072
crossref_primary_10_1007_s41651_025_00218_3
crossref_primary_10_1016_j_scitotenv_2021_150139
crossref_primary_10_3390_rs17020281
crossref_primary_10_1016_j_ecolind_2023_111249
crossref_primary_10_3390_rs13050973
crossref_primary_10_3390_rs15235515
crossref_primary_10_1016_j_isprsjprs_2024_02_003
crossref_primary_10_1016_j_jenvman_2022_116675
crossref_primary_10_1109_JSTARS_2020_3022210
crossref_primary_10_1016_j_scitotenv_2023_163849
crossref_primary_10_1080_17538947_2024_2409351
crossref_primary_10_3390_rs16010158
crossref_primary_10_3390_fire7060205
crossref_primary_10_3390_s21092971
crossref_primary_10_1016_j_ecoinf_2024_102903
crossref_primary_10_3390_rs17050912
crossref_primary_10_3390_f13101549
crossref_primary_10_3390_rs12152411
crossref_primary_10_1038_s41597_023_02584_3
crossref_primary_10_1117_1_JRS_17_014506
crossref_primary_10_1016_j_isprsjprs_2022_09_011
crossref_primary_10_3390_rs14102291
crossref_primary_10_3390_ijerph19106095
crossref_primary_10_1016_j_jhydrol_2022_128465
crossref_primary_10_1016_j_jhydrol_2024_130901
crossref_primary_10_3390_rs13081528
crossref_primary_10_1016_j_jag_2023_103589
crossref_primary_10_1109_JSTARS_2024_3435372
crossref_primary_10_1109_TGRS_2025_3531890
crossref_primary_10_3390_land11050674
crossref_primary_10_1016_j_jag_2024_103749
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1016_j_rser_2023_114186
crossref_primary_10_11922_11_6035_noda_2021_0015_zh
crossref_primary_10_3390_rs16010127
crossref_primary_10_1016_j_jag_2023_103340
crossref_primary_10_17211_tcd_1296893
crossref_primary_10_1016_j_scitotenv_2023_162505
crossref_primary_10_1016_j_ejrs_2023_11_010
crossref_primary_10_3390_rs16020293
crossref_primary_10_1088_1755_1315_950_1_012083
crossref_primary_10_1109_JSTARS_2024_3523707
crossref_primary_10_1016_j_ejrh_2022_101072
crossref_primary_10_3390_rs15081988
crossref_primary_10_3389_fenvs_2024_1494098
crossref_primary_10_1016_j_gecco_2025_e03408
crossref_primary_10_1109_TGRS_2024_3456118
crossref_primary_10_3390_ijgi13080276
crossref_primary_10_1016_j_isprsjprs_2020_05_017
crossref_primary_10_1007_s10489_024_05469_z
crossref_primary_10_1016_j_ocecoaman_2021_105813
crossref_primary_10_1016_j_asr_2025_02_004
crossref_primary_10_3390_rs13081535
crossref_primary_10_1007_s12145_024_01441_0
crossref_primary_10_1016_j_jag_2023_103570
crossref_primary_10_55529_jeimp_35_39_55
crossref_primary_10_1016_j_catena_2022_106054
crossref_primary_10_3390_rs12152438
crossref_primary_10_1007_s40899_025_01199_3
crossref_primary_10_1080_17538947_2022_2159553
crossref_primary_10_3390_rs16183460
crossref_primary_10_34133_remotesensing_0143
crossref_primary_10_3390_ijgi11110535
crossref_primary_10_3390_ijgi11110534
crossref_primary_10_3390_f13122122
Cites_doi 10.3390/rs11050516
10.1016/j.rse.2018.02.055
10.1016/j.isprsjprs.2016.01.011
10.1016/j.jag.2018.07.008
10.3390/rs10081178
10.1016/j.dib.2019.103803
10.1016/j.rse.2019.111412
10.1016/j.isprsjprs.2019.07.005
10.1016/j.isprsjprs.2017.05.010
10.1016/j.agsy.2018.07.002
10.1029/2018GL080158
10.1007/s00704-018-2663-6
10.1016/j.coastaleng.2017.12.011
10.3390/rs10101635
10.1175/2009JCLI2900.1
10.1109/JSTARS.2017.2705718
10.3390/rs12010002
10.3390/f10060518
10.1016/j.isprsjprs.2019.06.014
10.1016/j.jag.2018.06.005
10.3390/rs70201320
10.1109/LGRS.2018.2795531
10.1016/j.isprsjprs.2017.07.011
10.1016/j.isprsjprs.2017.01.019
10.5589/m03-068
10.1080/2150704X.2019.1633487
10.3390/rs11121467
10.1080/22797254.2018.1451782
10.3390/rs70608128
10.3389/fenvs.2015.00045
10.1109/36.142926
10.3390/rs10091488
10.1007/s10661-019-7355-x
10.3390/rs11010043
10.1080/07038992.2017.1381549
10.1016/j.rse.2011.11.026
10.1016/j.isprsjprs.2010.11.001
10.1109/LGRS.2006.888843
10.1016/j.rse.2017.06.031
10.1016/j.isprsjprs.2018.07.017
10.1109/JPROC.2016.2598228
10.1016/j.isprsjprs.2019.03.012
10.1016/j.scitotenv.2019.06.514
10.3390/rs9121315
10.7326/0003-4819-151-4-200908180-00135
10.3390/rs10071119
10.1371/journal.pntd.0007105
10.1016/j.isprsjprs.2018.05.009
10.3390/rs11070823
10.1371/journal.pone.0189058
10.1016/j.isprsjprs.2015.10.012
10.1016/j.isprsjprs.2008.07.006
10.1080/01431169208904102
10.1201/9781420089653.ch10
10.1002/ecs2.2347
10.3390/rs10091365
10.1016/j.jag.2018.09.011
10.1016/j.patcog.2016.07.001
10.3390/rs11131582
10.3390/rs10050691
10.1016/j.atmosenv.2004.01.039
10.1371/journal.pone.0170478
10.1109/36.964970
10.1016/j.isprsjprs.2018.12.011
10.1080/01431169308904316
10.1111/jfr3.12303
10.3390/rs11101184
10.3390/rs10101509
10.1117/12.2503653
10.1109/TGRS.2008.916090
10.1007/s12665-011-0934-y
10.1080/07038992.2017.1381550
10.1016/j.rse.2018.06.034
10.1016/j.envsoft.2019.05.004
10.1126/science.1244693
10.1016/j.isprsjprs.2018.10.008
10.1109/MGRS.2017.2762307
10.1109/TGRS.2016.2612821
10.1016/j.future.2014.10.029
10.1016/j.asr.2019.03.013
10.1016/j.isprsjprs.2008.07.005
10.1117/1.JRS.12.036015
10.1016/j.rse.2011.05.028
10.1016/j.isprsjprs.2019.03.015
10.1109/IGARSS.2003.1295258
10.3390/rs11141735
10.1109/JSTARS.2018.2846178
10.3390/rs11131581
10.1016/j.rse.2019.02.015
10.1016/j.isprsjprs.2019.11.021
ContentType Journal Article
Copyright 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2020.04.001
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 170
ExternalDocumentID 10_1016_j_isprsjprs_2020_04_001
S0924271620300927
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a437t-9595f24f38f07669ce1a6752a754aec8a0d5f1adf9dc8db1b0b29ba1d70ec6bf3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Sun Sep 28 11:59:38 EDT 2025
Thu Oct 16 04:44:24 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Fri Feb 23 02:47:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geo-big data
Cloud-based platform
Google Earth Engine
Machine learning
Geospatial
Planetary-scale
Environmental monitoring
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a437t-9595f24f38f07669ce1a6752a754aec8a0d5f1adf9dc8db1b0b29ba1d70ec6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7234-959X
PQID 2431892123
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_2431892123
crossref_primary_10_1016_j_isprsjprs_2020_04_001
crossref_citationtrail_10_1016_j_isprsjprs_2020_04_001
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_04_001
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Forkuor, Hounkpatin, Welp, Thiel (b0095) 2017; 12
Hagenaars, de Vries, Luijendijk, de Boer, Reniers (b0105) 2018; 133
Koskinen, Leinonen, Vollrath, Ortmann, Lindquist, d’Annunzio, Pekkarinen, Käyhkö (b0150) 2019; 148
Moher, Liberati, Tetzlaff, Altman (b0315) 2009; 151
Quintero, Viedma, Urbieta, Moreno (b4049) 2019; 10
Stroppiana, Azar, Calò, Pepe, Imperatore, Boschetti, Silva, Brivio, Lanari (b0395) 2015; 7
Kumar, Mutanga (b0160) 2018; 10
Schulz, K., Hänsch, R., Sörgel, U., 2018. Machine learning methods for remote sensing applications: an overview. In: Earth Resources and Environmental Remote Sensing/GIS Applications IX. International Society for Optics and Photonics, pp. 1079002.
Chen, B., Tai, P.C., Harrison, R., Pan, Y., 2005. Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis. In: 2005 IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05). IEEE, pp. 105–108.
Hird, DeLancey, McDermid, Kariyeva (b9005) 2017; 9
Sidhu, Pebesma, Câmara (b0380) 2018; 51
Workie, Debella (b0455) 2018; 13
Momm, Easson (b0320) 2011
Amazon, E.C., 2015. Amazon web services. Available Httpaws Amaz. Comesec2November 2012.
Wilder (b0445) 2012
Clement, Kilsby, Moore (b0065) 2018; 11
Rezaee, Mahdianpari, Zhang, Salehi (b0355) 2018; 11
Lobo, Souza-Filho, Novo, Carlos, Barbosa (b5041) 2018; 10
Mahdianpari, Salehi, Mohammadimanesh, Brisco, Homayouni, Gill, DeLancey, Bourgeau-Chavez (b0230) 2020
Mahdianpari, Salehi, Mohammadimanesh, Homayouni, Gill (b5036) 2019; 11
Mateo-García, Muñoz-Marí, Gómez-Chova (b0260) 2017
Laney (b0165) 2001; 6
Moed, H., 2012. The Evolution of Big Data as a Research and Scientific Topic: Overview of the Literature, 2012, ResearchTrends.
Mohammadimanesh, Salehi, Mahdianpari, Brisco, Gill (b0285) 2019; 11
Mohammadimanesh, Salehi, Mahdianpari, Brisco, Motagh (b0295) 2018; 142
Choi, Jeong (b0060) 2019; 11
Wang, Jia, Chen, Wang (b0435) 2018; 10
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (b0475) 2018; 216
Mohammadimanesh, Salehi, Mahdianpari, Motagh, Brisco (b0310) 2018; 73
Mahdianpari, Salehi, Mohammadimanesh, Brisco (b0225) 2017; 43
Voight, Hernandez-Aguilar, Garcia, Gutierrez (b0425) 2019; 11
Chen, Xiao, Li, Pan, Doughty, Ma, Dong, Qin, Zhao, Wu, Sun, Lan, Xie, Clinton, Giri (b0045) 2017; 131
Silva, Rudorff, Formaggio, Paradella, Mura (b0385) 2009; 64
McNairn, Hochheim, Rabe (b0270) 2004; 30
Jamei, Rajagopalan, Sun (b0130) 2019; 23
Ravanelli, Nascetti, Cirigliano, Di Rico, Leuzzi, Monti, Crespi (b0345) 2018; 10
Lee, Grunes, Pottier (b0170) 2001; 39
Chrysoulakis, Mitraka, Gorelick (b5037) 2019; 137
Maggiori, Tarabalka, Charpiat, Alliez (b2026) 2017; 55
Mahdianpari, Salehi, Mohammadimanesh, Homayouni, Gill (b0235) 2019; 11
Xie, Lark, Brown, Gibbs (b0465) 2019; 155
Chi, Plaza, Benediktsson, Sun, Shen, Zhu (b0055) 2016; 104
DeLancey, Simms, Mahdianpari, Brisco, Mahoney, Kariyeva (b0075) 2020; 12
Kong, Zhang, Gu, Wang (b0145) 2019; 155
Ma, Wu, Wang, Huang, Ranjan, Zomaya, Jie (b0205) 2015; 51
Benediktsson, Swain, Ersoy (b0015) 1993; 14
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort (b0080) 2012; 120
Teluguntla, Thenkabail, Oliphant, Xiong, Gumma, Congalton, Yadav, Huete (b0405) 2018; 144
Tomer, Al Bitar, Sekhar, Zribi, Bandyopadhyay, Sreelash, Sharma, Corgne, Kerr (b0410) 2015; 7
Steinberg, Colla (b0390) 2009; 9
Sun, Wang (b0400) 2018; 15
Li, Cheng (b0185) 2009
Hu, Dong, Batunacun (b0120) 2018; 146
Lee, Pottier (b0175) 2009
Huang, Jensen (b0125) 1997; 63
Mohammadimanesh, Salehi, Mahdianpari, Brisco, Motagh (b0290) 2018; 1–16
Mountrakis, Im, Ogole (b0325) 2011; 66
Kim, Moon, Park, Kim, Lee (b0140) 2007; 4
McNairn, Shang (b0275) 2016
McNairn, Champagne, Shang, Holmstrom, Reichert (b0265) 2009; 64
Krishnan, Gonzalez (b0155) 2015
Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (b0250) 2018; 10
Xiong, Thenkabail, Gumma, Teluguntla, Poehnelt, Congalton, Yadav, Thau (b0470) 2017; 126
Chen, Jin, Brown (b0035) 2019; 151
Bischof, Schneider, Pinz (b0020) 1992; 30
Mahdianpari, Mohammadimanesh, McNairn, Davidson, Rezaee, Salehi, Homayouni (b0210) 2019; 11
Saah, Johnson, Ashmall, Tondapu, Tenneson, Patterson, Poortinga, Markert, Quyen, San Aung (b0360) 2019; 118
Scherler, Wulf, Gorelick (b0370) 2018; 45
Blanzieri, Melgani (b0030) 2008; 46
Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland (b0110) 2013; 342
Liu, Chen, Zhang, Wang, Du (b0195) 2020; 159
Marghany, Hashim, Cracknell (b0255) 2011; 64
Mahdianpari, Salehi, Mohammadimanesh, Larsen, Peddle (b0240) 2018; 12
Nogueira, Penatti, dos Santos (b0335) 2017; 61
Wong, Thomas, Halpin (b0450) 2019; 233
Lin, Fu, Zhu, Dasmalchi (b0190) 2009
Belgiu, Drăguţ (b0010) 2016; 114
Nguyen, Pham, Dang (b0330) 2019; 191
Weissmann, Kent, Michael, Shnerb (b0440) 2017; 12
Karnieli, Agam, Pinker, Anderson, Imhoff, Gutman, Panov, Goldberg (b0135) 2010; 23
Mahdianpari, Salehi, Mohammadimanesh (b0220) 2017; 43
Liu, Hu, Chen, Li, Xu, Li, Pei, Wang (b5072) 2018; 209
Bittencourt, H.R., Clarke, R.T., 2003. Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, pp. 3751–3753.
de Oliveira, S.S.T., de Castro Cardoso, M., dos Santos, W.M., Costa, P.C., Vagner, J., Martins, W.S., 2016. A new platform for time-series analysis of remote sensing images in a distributed computing environment. In: GeoInfo, pp. 128–139.
Parks, Holsinger, Koontz, Collins, Whitman, Parisien, Loehman, Barnes, Bourdon, Boucher (b2029) 2019; 11
Liu (b0200) 2015; 3
Chen, Zhang, Tian, Li (b0050) 2017; 10
Li, Dragicevic, Castro, Sester, Winter, Coltekin, Pettit, Jiang, Haworth, Stein (b0180) 2016; 115
Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen (b0460) 2019; 225
Callaghan, Major, Lyons, Martin, Kingsford (b4043) 2018; 9
Sader, Winne (b0365) 1992; 13
Walker, Venturini (b2021) 2019; 10
Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0480) 2017; 5
Waller, Villarreal, Poitras, Nauman, Duniway (b0430) 2018; 73
Carrasco-Escobar, Manrique, Ruiz-Cabrejos, Saavedra, Alava, Bickersmith, Prussing, Vinetz, Conn, Moreno (b5042) 2019; 13
Mahdianpari, Salehi, Mohammadimanesh, Motagh (b0245) 2017; 130
Plaza, Chang (b0340) 2007
Kennedy, Yang, Gorelick, Braaten, Cavalcante, Cohen, Healey (b9000) 2018; 10
Torres, Snoeij, Geudtner, Bibby, Davidson, Attema, Potin, Rommen, Floury, Brown (b0415) 2012; 120
Castelli, Oliveira, Abdelli, Dhaou, Bresci, Ouessar (b6062) 2019; 690
Rembold, Meroni, Urbano, Csak, Kerdiles, Perez-Hoyos, Lemoine, Leo, Negre (b0350) 2019; 168
Fang, Li, Wan, Zhu, Wang, Hong, Wang (b0090) 2019; 11
Uddin, Matin, Meyer (b0420) 2019; 11
Engel-Cox, Holloman, Coutant, Hoff (b0085) 2004; 38
Mohammadimanesh, Salehi, Mahdianpari, Gill, Molinier (b0305) 2019; 151
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0100) 2017; 202
Snapir, Momblanch, Jain, Waine, Holman (b2022) 2019; 74
Mahdianpari, Motagh, Akbari, Mohammadimanesh, Salehi (b0215) 2019; 64
Mohammadimanesh, Salehi, Mahdianpari, English, Chamberland, Alasset (b0300) 2018
Holloway, Mengersen (b0115) 2018; 10
Teluguntla (10.1016/j.isprsjprs.2020.04.001_b0405) 2018; 144
Chi (10.1016/j.isprsjprs.2020.04.001_b0055) 2016; 104
Moher (10.1016/j.isprsjprs.2020.04.001_b0315) 2009; 151
Wong (10.1016/j.isprsjprs.2020.04.001_b0450) 2019; 233
10.1016/j.isprsjprs.2020.04.001_b0005
Marghany (10.1016/j.isprsjprs.2020.04.001_b0255) 2011; 64
Rezaee (10.1016/j.isprsjprs.2020.04.001_b0355) 2018; 11
Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0290) 2018; 1–16
10.1016/j.isprsjprs.2020.04.001_b0375
Rembold (10.1016/j.isprsjprs.2020.04.001_b0350) 2019; 168
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0225) 2017; 43
Weissmann (10.1016/j.isprsjprs.2020.04.001_b0440) 2017; 12
Carrasco-Escobar (10.1016/j.isprsjprs.2020.04.001_b5042) 2019; 13
Silva (10.1016/j.isprsjprs.2020.04.001_b0385) 2009; 64
Hansen (10.1016/j.isprsjprs.2020.04.001_b0110) 2013; 342
Lin (10.1016/j.isprsjprs.2020.04.001_b0190) 2009
Xiong (10.1016/j.isprsjprs.2020.04.001_b0470) 2017; 126
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0240) 2018; 12
Ma (10.1016/j.isprsjprs.2020.04.001_b0205) 2015; 51
Scherler (10.1016/j.isprsjprs.2020.04.001_b0370) 2018; 45
Callaghan (10.1016/j.isprsjprs.2020.04.001_b4043) 2018; 9
Belgiu (10.1016/j.isprsjprs.2020.04.001_b0010) 2016; 114
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0250) 2018; 10
Xie (10.1016/j.isprsjprs.2020.04.001_b0465) 2019; 155
Engel-Cox (10.1016/j.isprsjprs.2020.04.001_b0085) 2004; 38
Mateo-García (10.1016/j.isprsjprs.2020.04.001_b0260) 2017
Zhu (10.1016/j.isprsjprs.2020.04.001_b0480) 2017; 5
Clement (10.1016/j.isprsjprs.2020.04.001_b0065) 2018; 11
Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0285) 2019; 11
Liu (10.1016/j.isprsjprs.2020.04.001_b0195) 2020; 159
McNairn (10.1016/j.isprsjprs.2020.04.001_b0265) 2009; 64
Krishnan (10.1016/j.isprsjprs.2020.04.001_b0155) 2015
Ravanelli (10.1016/j.isprsjprs.2020.04.001_b0345) 2018; 10
Saah (10.1016/j.isprsjprs.2020.04.001_b0360) 2019; 118
Blanzieri (10.1016/j.isprsjprs.2020.04.001_b0030) 2008; 46
Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0300) 2018
Voight (10.1016/j.isprsjprs.2020.04.001_b0425) 2019; 11
McNairn (10.1016/j.isprsjprs.2020.04.001_b0275) 2016
Workie (10.1016/j.isprsjprs.2020.04.001_b0455) 2018; 13
10.1016/j.isprsjprs.2020.04.001_b0070
Drusch (10.1016/j.isprsjprs.2020.04.001_b0080) 2012; 120
Lee (10.1016/j.isprsjprs.2020.04.001_b0170) 2001; 39
Koskinen (10.1016/j.isprsjprs.2020.04.001_b0150) 2019; 148
Momm (10.1016/j.isprsjprs.2020.04.001_b0320) 2011
Maggiori (10.1016/j.isprsjprs.2020.04.001_b2026) 2017; 55
Hu (10.1016/j.isprsjprs.2020.04.001_b0120) 2018; 146
Sader (10.1016/j.isprsjprs.2020.04.001_b0365) 1992; 13
Tomer (10.1016/j.isprsjprs.2020.04.001_b0410) 2015; 7
Castelli (10.1016/j.isprsjprs.2020.04.001_b6062) 2019; 690
Hagenaars (10.1016/j.isprsjprs.2020.04.001_b0105) 2018; 133
Nogueira (10.1016/j.isprsjprs.2020.04.001_b0335) 2017; 61
Lobo (10.1016/j.isprsjprs.2020.04.001_b5041) 2018; 10
Plaza (10.1016/j.isprsjprs.2020.04.001_b0340) 2007
Walker (10.1016/j.isprsjprs.2020.04.001_b2021) 2019; 10
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0230) 2020
Laney (10.1016/j.isprsjprs.2020.04.001_b0165) 2001; 6
Snapir (10.1016/j.isprsjprs.2020.04.001_b2022) 2019; 74
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0210) 2019; 11
Quintero (10.1016/j.isprsjprs.2020.04.001_b4049) 2019; 10
Kong (10.1016/j.isprsjprs.2020.04.001_b0145) 2019; 155
Li (10.1016/j.isprsjprs.2020.04.001_b0185) 2009
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0215) 2019; 64
Chen (10.1016/j.isprsjprs.2020.04.001_b0035) 2019; 151
Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0310) 2018; 73
Huang (10.1016/j.isprsjprs.2020.04.001_b0125) 1997; 63
Stroppiana (10.1016/j.isprsjprs.2020.04.001_b0395) 2015; 7
Lee (10.1016/j.isprsjprs.2020.04.001_b0175) 2009
McNairn (10.1016/j.isprsjprs.2020.04.001_b0270) 2004; 30
Jamei (10.1016/j.isprsjprs.2020.04.001_b0130) 2019; 23
Waller (10.1016/j.isprsjprs.2020.04.001_b0430) 2018; 73
Gorelick (10.1016/j.isprsjprs.2020.04.001_b0100) 2017; 202
Chen (10.1016/j.isprsjprs.2020.04.001_b0045) 2017; 131
Hird (10.1016/j.isprsjprs.2020.04.001_b9005) 2017; 9
Torres (10.1016/j.isprsjprs.2020.04.001_b0415) 2012; 120
Uddin (10.1016/j.isprsjprs.2020.04.001_b0420) 2019; 11
Forkuor (10.1016/j.isprsjprs.2020.04.001_b0095) 2017; 12
Parks (10.1016/j.isprsjprs.2020.04.001_b2029) 2019; 11
Sun (10.1016/j.isprsjprs.2020.04.001_b0400) 2018; 15
10.1016/j.isprsjprs.2020.04.001_b0040
Benediktsson (10.1016/j.isprsjprs.2020.04.001_b0015) 1993; 14
Wilder (10.1016/j.isprsjprs.2020.04.001_b0445) 2012
DeLancey (10.1016/j.isprsjprs.2020.04.001_b0075) 2020; 12
Zhang (10.1016/j.isprsjprs.2020.04.001_b0475) 2018; 216
Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0305) 2019; 151
Holloway (10.1016/j.isprsjprs.2020.04.001_b0115) 2018; 10
10.1016/j.isprsjprs.2020.04.001_b0280
Wulder (10.1016/j.isprsjprs.2020.04.001_b0460) 2019; 225
Choi (10.1016/j.isprsjprs.2020.04.001_b0060) 2019; 11
Liu (10.1016/j.isprsjprs.2020.04.001_b0200) 2015; 3
Fang (10.1016/j.isprsjprs.2020.04.001_b0090) 2019; 11
Nguyen (10.1016/j.isprsjprs.2020.04.001_b0330) 2019; 191
Bischof (10.1016/j.isprsjprs.2020.04.001_b0020) 1992; 30
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0235) 2019; 11
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0245) 2017; 130
Kumar (10.1016/j.isprsjprs.2020.04.001_b0160) 2018; 10
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b0220) 2017; 43
Li (10.1016/j.isprsjprs.2020.04.001_b0180) 2016; 115
Chrysoulakis (10.1016/j.isprsjprs.2020.04.001_b5037) 2019; 137
Sidhu (10.1016/j.isprsjprs.2020.04.001_b0380) 2018; 51
Mohammadimanesh (10.1016/j.isprsjprs.2020.04.001_b0295) 2018; 142
Chen (10.1016/j.isprsjprs.2020.04.001_b0050) 2017; 10
Wang (10.1016/j.isprsjprs.2020.04.001_b0435) 2018; 10
10.1016/j.isprsjprs.2020.04.001_b0025
Kennedy (10.1016/j.isprsjprs.2020.04.001_b9000) 2018; 10
Mahdianpari (10.1016/j.isprsjprs.2020.04.001_b5036) 2019; 11
Liu (10.1016/j.isprsjprs.2020.04.001_b5072) 2018; 209
Steinberg (10.1016/j.isprsjprs.2020.04.001_b0390) 2009; 9
Karnieli (10.1016/j.isprsjprs.2020.04.001_b0135) 2010; 23
Kim (10.1016/j.isprsjprs.2020.04.001_b0140) 2007; 4
Mountrakis (10.1016/j.isprsjprs.2020.04.001_b0325) 2011; 66
References_xml – volume: 10
  start-page: 691
  year: 2018
  ident: b9000
  article-title: Implementation of the LandTrendr algorithm on google earth engine
  publication-title: Remote Sens.
– volume: 12
  start-page: e0170478
  year: 2017
  ident: b0095
  article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models
  publication-title: PloS One
– volume: 11
  start-page: 152
  year: 2018
  end-page: 168
  ident: b0065
  article-title: Multi-temporal synthetic aperture radar flood mapping using change detection
  publication-title: J. Flood Risk Manag.
– volume: 12
  year: 2017
  ident: b0440
  article-title: Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition
  publication-title: PloS One
– volume: 51
  start-page: 47
  year: 2015
  end-page: 60
  ident: b0205
  article-title: Remote sensing big data computing: Challenges and opportunities
  publication-title: Future Gener. Comput. Syst.
– volume: 30
  start-page: 482
  year: 1992
  end-page: 490
  ident: b0020
  article-title: Multispectral classification of Landsat-images using neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 130
  start-page: 13
  year: 2017
  end-page: 31
  ident: b0245
  article-title: Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 23
  year: 2019
  ident: b0130
  article-title: Time-series dataset on land surface temperature, vegetation, built up areas and other climatic factors in top 20 global cities (2000–2018)
  publication-title: Data Brief
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: b0325
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: b0100
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 11
  year: 2018
  end-page: 798
  ident: b0370
  article-title: Global Assessment of Supraglacial Debris-Cover Extents
  publication-title: Geophys. Res. Lett.
– volume: 55
  start-page: 645
  year: 2017
  end-page: 657
  ident: b2026
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 2883
  year: 1993
  end-page: 2903
  ident: b0015
  article-title: Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data
  publication-title: Int. J. Remote Sens.
– volume: 9
  start-page: 179
  year: 2009
  ident: b0390
  article-title: CART: classification and regression trees
  publication-title: Top Ten Algorith. Data Min.
– volume: 10
  start-page: 4002
  year: 2017
  end-page: 4009
  ident: b0050
  article-title: Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 690
  start-page: 226
  year: 2019
  end-page: 236
  ident: b6062
  article-title: Effect of traditional check dams (jessour) on soil and olive trees water status in Tunisia
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 486
  year: 2018
  end-page: 500
  ident: b0380
  article-title: Using Google Earth Engine to detect land cover change: Singapore as a use case
  publication-title: Eur. J. Remote Sens.
– volume: 10
  start-page: 1635
  year: 2018
  ident: b0435
  article-title: Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin
  publication-title: Remote Sens.
– volume: 233
  start-page: 111412
  year: 2019
  ident: b0450
  article-title: Automating offshore infrastructure extractions using synthetic aperture radar & Google Earth Engine
  publication-title: Remote Sens. Environ.
– volume: 151
  start-page: 264
  year: 2009
  end-page: 269
  ident: b0315
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann. Intern. Med.
– volume: 13
  start-page: e00366
  year: 2018
  ident: b0455
  article-title: Climate change and its effects on vegetation phenology across ecoregions of Ethiopia
  publication-title: Glob. Ecol. Conserv.
– volume: 38
  start-page: 2495
  year: 2004
  end-page: 2509
  ident: b0085
  article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality
  publication-title: Atmos. Environ.
– volume: 131
  start-page: 104
  year: 2017
  end-page: 120
  ident: b0045
  article-title: A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 13
  start-page: 3055
  year: 1992
  end-page: 3067
  ident: b0365
  article-title: RGB-NDVI colour composites for visualizing forest change dynamics
  publication-title: Int. J. Remote Sens.
– year: 2007
  ident: b0340
  article-title: High performance computing in remote sensing
– volume: 118
  start-page: 166
  year: 2019
  end-page: 171
  ident: b0360
  article-title: Collect Earth: An online tool for systematic reference data collection in land cover and use applications
  publication-title: Environ. Model. Softw.
– volume: 133
  start-page: 113
  year: 2018
  end-page: 125
  ident: b0105
  article-title: On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment
  publication-title: Coast. Eng.
– volume: 15
  start-page: 474
  year: 2018
  end-page: 478
  ident: b0400
  article-title: Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 1942
  year: 2017
  end-page: 1945
  ident: b0260
  article-title: Cloud detection on the Google Earth engine platform
  publication-title: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 11
  start-page: 1184
  year: 2019
  ident: b0060
  article-title: Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform
  publication-title: Remote Sens.
– volume: 10
  start-page: 518
  year: 2019
  ident: b4049
  article-title: Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain
  publication-title: Forests
– volume: 64
  start-page: 64
  year: 2019
  end-page: 78
  ident: b0215
  article-title: A Gaussian random field model for de-speckling of multi-polarized Synthetic Aperture Radar data
  publication-title: Adv. Space Res.
– start-page: 1
  year: 2020
  end-page: 19
  ident: b0230
  article-title: Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform: Mégadonnées pour un grand pays: La première carte d’inventaire des zones humides du Canada à une résolution de 10 m à l’aide des données Sentinel-1 et Sentinel-2 sur la plate-forme informatique en nuage de Google Earth Engine
  publication-title: Can. J. Remote Sens.
– volume: 11
  start-page: 823
  year: 2019
  ident: b0425
  article-title: Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize
  publication-title: Remote Sens.
– volume: 43
  start-page: 485
  year: 2017
  end-page: 503
  ident: b0220
  article-title: The effect of PolSAR image de-speckling on wetland classification: introducing a new adaptive method
  publication-title: Can. J. Remote Sens.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: b0010
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Amazon, E.C., 2015. Amazon web services. Available Httpaws Amaz. Comesec2November 2012.
– volume: 146
  start-page: 347
  year: 2018
  end-page: 359
  ident: b0120
  article-title: An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 74
  start-page: 222
  year: 2019
  end-page: 230
  ident: b2022
  article-title: A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
– volume: 216
  start-page: 57
  year: 2018
  end-page: 70
  ident: b0475
  article-title: An object-based convolutional neural network (OCNN) for urban land use classification
  publication-title: Remote Sens. Environ.
– volume: 64
  start-page: 434
  year: 2009
  end-page: 449
  ident: b0265
  article-title: Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1582
  year: 2019
  ident: b0210
  article-title: Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM)
  publication-title: Remote Sens.
– volume: 11
  start-page: 1735
  year: 2019
  ident: b2029
  article-title: Giving ecological meaning to satellite-derived fire severity metrics across North American forests
  publication-title: Remote Sens.
– volume: 11
  start-page: 516
  year: 2019
  ident: b0285
  article-title: Full and simulated compact polarimetry sar responses to canadian wetlands: Separability analysis and classification
  publication-title: Remote Sens.
– volume: 64
  start-page: 1177
  year: 2011
  end-page: 1189
  ident: b0255
  article-title: Simulation of shoreline change using AIRSAR and POLSAR C-band data
  publication-title: Environ. Earth Sci.
– reference: Schulz, K., Hänsch, R., Sörgel, U., 2018. Machine learning methods for remote sensing applications: an overview. In: Earth Resources and Environmental Remote Sensing/GIS Applications IX. International Society for Optics and Photonics, pp. 1079002.
– volume: 1–16
  year: 2018
  ident: b0290
  article-title: Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review
  publication-title: Can. J. Remote Sens.
– volume: 137
  start-page: 1171
  year: 2019
  end-page: 1179
  ident: b5037
  article-title: Exploiting satellite observations for global surface albedo trends monitoring
  publication-title: Theor. Appl. Climatol.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: b0480
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
– year: 2012
  ident: b0445
  article-title: Cloud architecture patterns: using microsoft azure
– volume: 155
  start-page: 13
  year: 2019
  end-page: 24
  ident: b0145
  article-title: A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 517
  year: 2004
  end-page: 524
  ident: b0270
  article-title: Applying polarimetric radar imagery for mapping the productivity of wheat crops
  publication-title: Can. J. Remote Sens.
– volume: 144
  start-page: 325
  year: 2018
  end-page: 340
  ident: b0405
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: b0110
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
– volume: 7
  start-page: 1320
  year: 2015
  end-page: 1345
  ident: b0395
  article-title: Integration of optical and SAR data for burned area mapping in Mediterranean regions
  publication-title: Remote Sens.
– volume: 151
  start-page: 176
  year: 2019
  end-page: 188
  ident: b0035
  article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 168
  start-page: 247
  year: 2019
  end-page: 257
  ident: b0350
  article-title: ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis
  publication-title: Agric. Syst.
– volume: 3
  start-page: 45
  year: 2015
  ident: b0200
  article-title: A survey of remote-sensing big data
  publication-title: Front. Environ. Sci.
– volume: 12
  start-page: 036015
  year: 2018
  ident: b0240
  article-title: Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle imagery and electromagnetic induction survey data
  publication-title: J. Appl. Remote Sens.
– year: 2015
  ident: b0155
  article-title: Building Your Next Big Thing with Google Cloud Platform: A Guide for Developers and Enterprise Architects
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: b0460
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1178
  year: 2018
  ident: b5041
  article-title: Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery
  publication-title: Remote Sens.
– volume: 11
  start-page: 43
  year: 2019
  ident: b0235
  article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform
  publication-title: Remote Sens.
– volume: 10
  start-page: 1509
  year: 2018
  ident: b0160
  article-title: Google Earth Engine applications since inception: Usage, trends, and potential
  publication-title: Remote Sens.
– year: 2009
  ident: b0175
  article-title: Polarimetric radar imaging: from basics to applications
– volume: 73
  start-page: 450
  year: 2018
  end-page: 462
  ident: b0310
  article-title: An efficient feature optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry data
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
– volume: 43
  start-page: 468
  year: 2017
  end-page: 484
  ident: b0225
  article-title: An assessment of simulated compact polarimetric SAR data for wetland classification using random Forest algorithm
  publication-title: Can. J. Remote Sens.
– volume: 23
  start-page: 618
  year: 2010
  end-page: 633
  ident: b0135
  article-title: Use of NDVI and land surface temperature for drought assessment: Merits and limitations
  publication-title: J. Clim.
– volume: 10
  start-page: 929
  year: 2019
  end-page: 938
  ident: b2021
  article-title: Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine
  publication-title: Remote Sens. Lett.
– volume: 64
  start-page: 458
  year: 2009
  end-page: 463
  ident: b0385
  article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1467
  year: 2019
  ident: b0090
  article-title: Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades
  publication-title: Remote Sens.
– volume: 73
  start-page: 407
  year: 2018
  end-page: 419
  ident: b0430
  article-title: Landsat time series analysis of fractional plant cover changes on abandoned energy development sites
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
– reference: de Oliveira, S.S.T., de Castro Cardoso, M., dos Santos, W.M., Costa, P.C., Vagner, J., Martins, W.S., 2016. A new platform for time-series analysis of remote sensing images in a distributed computing environment. In: GeoInfo, pp. 128–139.
– reference: Moed, H., 2012. The Evolution of Big Data as a Research and Scientific Topic: Overview of the Literature, 2012, ResearchTrends.
– volume: 63
  start-page: 1185
  year: 1997
  end-page: 1193
  ident: b0125
  article-title: A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 10
  start-page: 1365
  year: 2018
  ident: b0115
  article-title: Statistical machine learning methods and remote sensing for sustainable development goals: A review
  publication-title: Remote Sens.
– volume: 126
  start-page: 225
  year: 2017
  end-page: 244
  ident: b0470
  article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 120
  start-page: 9
  year: 2012
  end-page: 24
  ident: b0415
  article-title: GMES Sentinel-1 mission
  publication-title: Remote Sens. Environ.
– volume: 155
  start-page: 136
  year: 2019
  end-page: 149
  ident: b0465
  article-title: Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 2
  year: 2020
  ident: b0075
  article-title: Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada
  publication-title: Remote Sens.
– volume: 11
  start-page: 43
  year: 2019
  ident: b5036
  article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform
  publication-title: Remote Sens.
– volume: 9
  year: 2018
  ident: b4043
  article-title: The effects of local and landscape habitat attributes on bird diversity in urban greenspaces
  publication-title: Ecosphere
– volume: 104
  start-page: 2207
  year: 2016
  end-page: 2219
  ident: b0055
  article-title: Big data for remote sensing: Challenges and opportunities
  publication-title: Proc. IEEE
– start-page: 1
  year: 2018
  end-page: 26
  ident: b0300
  article-title: Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: a case study from Mayo, Yukon Territory, Canada
  publication-title: GIScience Remote Sens.
– reference: Bittencourt, H.R., Clarke, R.T., 2003. Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, pp. 3751–3753.
– volume: 115
  start-page: 119
  year: 2016
  end-page: 133
  ident: b0180
  article-title: Geospatial big data handling theory and methods: A review and research challenges
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 209
  start-page: 227
  year: 2018
  end-page: 239
  ident: b5072
  article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 63
  year: 2019
  end-page: 74
  ident: b0150
  article-title: Participatory mapping of forest plantations with Open Foris and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 191
  start-page: 235
  year: 2019
  ident: b0330
  article-title: An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand
  publication-title: Environ. Monit. Assess.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: b0080
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
– volume: 159
  start-page: 337
  year: 2020
  end-page: 351
  ident: b0195
  article-title: Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  start-page: 1488
  year: 2018
  ident: b0345
  article-title: Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems
  publication-title: Remote Sens.
– volume: 11
  start-page: 1581
  year: 2019
  ident: b0420
  article-title: Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh
  publication-title: Remote Sens.
– volume: 46
  start-page: 1804
  year: 2008
  end-page: 1811
  ident: b0030
  article-title: Nearest neighbor classification of remote sensing images with the maximal margin principle
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Chen, B., Tai, P.C., Harrison, R., Pan, Y., 2005. Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis. In: 2005 IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05). IEEE, pp. 105–108.
– volume: 13
  year: 2019
  ident: b5042
  article-title: High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery
  publication-title: PLoS Negl. Trop. Dis.
– volume: 4
  start-page: 269
  year: 2007
  end-page: 273
  ident: b0140
  article-title: Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 39
  start-page: 2343
  year: 2001
  end-page: 2351
  ident: b0170
  article-title: Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 1315
  year: 2017
  ident: b9005
  article-title: Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping
  publication-title: Remote Sens.
– start-page: 1
  year: 2009
  end-page: 4
  ident: b0185
  article-title: An improved k-nearest neighbor algorithm and its application to high resolution remote sensing image classification
  publication-title: 2009 17th International Conference on Geoinformatics
– year: 2011
  ident: b0320
  article-title: Feature extraction from high-resolution remotely sensed imagery using evolutionary computation
– volume: 11
  start-page: 3030
  year: 2018
  end-page: 3039
  ident: b0355
  article-title: Deep convolutional neural network for complex wetland classification using optical remote sensing imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 61
  start-page: 539
  year: 2017
  end-page: 556
  ident: b0335
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
– volume: 6
  start-page: 1
  year: 2001
  ident: b0165
  article-title: 3D data management: Controlling data volume, velocity and variety
  publication-title: META Group Res. Note
– start-page: 10
  year: 2009
  end-page: 13
  ident: b0190
  article-title: Cloud computing: IT as a service
  publication-title: IT Prof.
– volume: 142
  start-page: 78
  year: 2018
  end-page: 93
  ident: b0295
  article-title: Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 317
  year: 2016
  end-page: 340
  ident: b0275
  article-title: A review of multitemporal synthetic aperture radar (SAR) for crop monitoring
  publication-title: Multitemporal Remote Sensing
– volume: 7
  start-page: 8128
  year: 2015
  end-page: 8153
  ident: b0410
  article-title: Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a semi-arid tropical region
  publication-title: Remote Sens.
– volume: 10
  start-page: 1119
  year: 2018
  ident: b0250
  article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery
  publication-title: Remote Sens.
– volume: 151
  start-page: 223
  year: 2019
  end-page: 236
  ident: b0305
  article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0185
  article-title: An improved k-nearest neighbor algorithm and its application to high resolution remote sensing image classification
– volume: 11
  start-page: 516
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0285
  article-title: Full and simulated compact polarimetry sar responses to canadian wetlands: Separability analysis and classification
  publication-title: Remote Sens.
  doi: 10.3390/rs11050516
– volume: 209
  start-page: 227
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b5072
  article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.055
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.04.001_b0010
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 73
  start-page: 407
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0430
  article-title: Landsat time series analysis of fractional plant cover changes on abandoned energy development sites
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
  doi: 10.1016/j.jag.2018.07.008
– volume: 6
  start-page: 1
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.04.001_b0165
  article-title: 3D data management: Controlling data volume, velocity and variety
  publication-title: META Group Res. Note
– year: 2007
  ident: 10.1016/j.isprsjprs.2020.04.001_b0340
– volume: 13
  start-page: e00366
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0455
  article-title: Climate change and its effects on vegetation phenology across ecoregions of Ethiopia
  publication-title: Glob. Ecol. Conserv.
– year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0175
– volume: 10
  start-page: 1178
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b5041
  article-title: Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10081178
– volume: 23
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0130
  article-title: Time-series dataset on land surface temperature, vegetation, built up areas and other climatic factors in top 20 global cities (2000–2018)
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.103803
– ident: 10.1016/j.isprsjprs.2020.04.001_b0070
– volume: 233
  start-page: 111412
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0450
  article-title: Automating offshore infrastructure extractions using synthetic aperture radar & Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111412
– volume: 155
  start-page: 136
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0465
  article-title: Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.07.005
– volume: 130
  start-page: 13
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0245
  article-title: Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.010
– volume: 168
  start-page: 247
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0350
  article-title: ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2018.07.002
– start-page: 1
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.04.001_b0230
  publication-title: Can. J. Remote Sens.
– volume: 45
  start-page: 11
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0370
  article-title: Global Assessment of Supraglacial Debris-Cover Extents
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080158
– volume: 137
  start-page: 1171
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b5037
  article-title: Exploiting satellite observations for global surface albedo trends monitoring
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2663-6
– volume: 133
  start-page: 113
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0105
  article-title: On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2017.12.011
– volume: 10
  start-page: 1635
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0435
  article-title: Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin
  publication-title: Remote Sens.
  doi: 10.3390/rs10101635
– volume: 23
  start-page: 618
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.04.001_b0135
  article-title: Use of NDVI and land surface temperature for drought assessment: Merits and limitations
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2900.1
– volume: 10
  start-page: 4002
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0050
  article-title: Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2705718
– volume: 12
  start-page: 2
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.04.001_b0075
  article-title: Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada
  publication-title: Remote Sens.
  doi: 10.3390/rs12010002
– volume: 10
  start-page: 518
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b4049
  article-title: Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain
  publication-title: Forests
  doi: 10.3390/f10060518
– volume: 155
  start-page: 13
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0145
  article-title: A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.06.014
– volume: 1–16
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0290
  article-title: Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review
  publication-title: Can. J. Remote Sens.
– volume: 73
  start-page: 450
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0310
  article-title: An efficient feature optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry data
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
  doi: 10.1016/j.jag.2018.06.005
– volume: 7
  start-page: 1320
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.04.001_b0395
  article-title: Integration of optical and SAR data for burned area mapping in Mediterranean regions
  publication-title: Remote Sens.
  doi: 10.3390/rs70201320
– volume: 15
  start-page: 474
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0400
  article-title: Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2795531
– volume: 131
  start-page: 104
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0045
  article-title: A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.011
– volume: 126
  start-page: 225
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0470
  article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.01.019
– volume: 30
  start-page: 517
  year: 2004
  ident: 10.1016/j.isprsjprs.2020.04.001_b0270
  article-title: Applying polarimetric radar imagery for mapping the productivity of wheat crops
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m03-068
– volume: 10
  start-page: 929
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b2021
  article-title: Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1633487
– volume: 11
  start-page: 1467
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0090
  article-title: Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades
  publication-title: Remote Sens.
  doi: 10.3390/rs11121467
– volume: 51
  start-page: 486
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0380
  article-title: Using Google Earth Engine to detect land cover change: Singapore as a use case
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1451782
– volume: 7
  start-page: 8128
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.04.001_b0410
  article-title: Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a semi-arid tropical region
  publication-title: Remote Sens.
  doi: 10.3390/rs70608128
– volume: 3
  start-page: 45
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.04.001_b0200
  article-title: A survey of remote-sensing big data
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2015.00045
– volume: 30
  start-page: 482
  year: 1992
  ident: 10.1016/j.isprsjprs.2020.04.001_b0020
  article-title: Multispectral classification of Landsat-images using neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.142926
– volume: 10
  start-page: 1488
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0345
  article-title: Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems
  publication-title: Remote Sens.
  doi: 10.3390/rs10091488
– volume: 191
  start-page: 235
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0330
  article-title: An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7355-x
– year: 2012
  ident: 10.1016/j.isprsjprs.2020.04.001_b0445
– volume: 11
  start-page: 43
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b5036
  article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform
  publication-title: Remote Sens.
  doi: 10.3390/rs11010043
– volume: 43
  start-page: 485
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0220
  article-title: The effect of PolSAR image de-speckling on wetland classification: introducing a new adaptive method
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2017.1381549
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.04.001_b0080
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 66
  start-page: 247
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.04.001_b0325
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: 10.1016/j.isprsjprs.2020.04.001_b0280
– volume: 4
  start-page: 269
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.04.001_b0140
  article-title: Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2006.888843
– start-page: 1942
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0260
  article-title: Cloud detection on the Google Earth engine platform
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0100
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 144
  start-page: 325
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0405
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.07.017
– volume: 104
  start-page: 2207
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.04.001_b0055
  article-title: Big data for remote sensing: Challenges and opportunities
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2598228
– volume: 151
  start-page: 176
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0035
  article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.012
– volume: 690
  start-page: 226
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b6062
  article-title: Effect of traditional check dams (jessour) on soil and olive trees water status in Tunisia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.514
– ident: 10.1016/j.isprsjprs.2020.04.001_b0040
– volume: 9
  start-page: 1315
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b9005
  article-title: Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs9121315
– volume: 151
  start-page: 264
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0315
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-151-4-200908180-00135
– volume: 10
  start-page: 1119
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0250
  article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10071119
– volume: 13
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b5042
  article-title: High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0007105
– volume: 142
  start-page: 78
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0295
  article-title: Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.009
– volume: 11
  start-page: 823
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0425
  article-title: Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize
  publication-title: Remote Sens.
  doi: 10.3390/rs11070823
– volume: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0440
  article-title: Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition
  publication-title: PloS One
  doi: 10.1371/journal.pone.0189058
– start-page: 10
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0190
  article-title: Cloud computing: IT as a service
  publication-title: IT Prof.
– year: 2015
  ident: 10.1016/j.isprsjprs.2020.04.001_b0155
– volume: 115
  start-page: 119
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.04.001_b0180
  article-title: Geospatial big data handling theory and methods: A review and research challenges
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.10.012
– volume: 64
  start-page: 434
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0265
  article-title: Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2008.07.006
– volume: 11
  start-page: 43
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0235
  article-title: The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform
  publication-title: Remote Sens.
  doi: 10.3390/rs11010043
– volume: 13
  start-page: 3055
  year: 1992
  ident: 10.1016/j.isprsjprs.2020.04.001_b0365
  article-title: RGB-NDVI colour composites for visualizing forest change dynamics
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904102
– volume: 9
  start-page: 179
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0390
  article-title: CART: classification and regression trees
  publication-title: Top Ten Algorith. Data Min.
  doi: 10.1201/9781420089653.ch10
– volume: 9
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b4043
  article-title: The effects of local and landscape habitat attributes on bird diversity in urban greenspaces
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2347
– volume: 10
  start-page: 1365
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0115
  article-title: Statistical machine learning methods and remote sensing for sustainable development goals: A review
  publication-title: Remote Sens.
  doi: 10.3390/rs10091365
– ident: 10.1016/j.isprsjprs.2020.04.001_b0005
– volume: 74
  start-page: 222
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b2022
  article-title: A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
  doi: 10.1016/j.jag.2018.09.011
– volume: 61
  start-page: 539
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0335
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.001
– volume: 11
  start-page: 1582
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0210
  article-title: Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM)
  publication-title: Remote Sens.
  doi: 10.3390/rs11131582
– volume: 10
  start-page: 691
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b9000
  article-title: Implementation of the LandTrendr algorithm on google earth engine
  publication-title: Remote Sens.
  doi: 10.3390/rs10050691
– volume: 38
  start-page: 2495
  year: 2004
  ident: 10.1016/j.isprsjprs.2020.04.001_b0085
  article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.01.039
– volume: 12
  start-page: e0170478
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0095
  article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models
  publication-title: PloS One
  doi: 10.1371/journal.pone.0170478
– volume: 39
  start-page: 2343
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.04.001_b0170
  article-title: Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.964970
– volume: 148
  start-page: 63
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0150
  article-title: Participatory mapping of forest plantations with Open Foris and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.12.011
– volume: 14
  start-page: 2883
  year: 1993
  ident: 10.1016/j.isprsjprs.2020.04.001_b0015
  article-title: Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169308904316
– volume: 11
  start-page: 152
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0065
  article-title: Multi-temporal synthetic aperture radar flood mapping using change detection
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12303
– volume: 11
  start-page: 1184
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0060
  article-title: Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform
  publication-title: Remote Sens.
  doi: 10.3390/rs11101184
– volume: 63
  start-page: 1185
  year: 1997
  ident: 10.1016/j.isprsjprs.2020.04.001_b0125
  article-title: A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 10
  start-page: 1509
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0160
  article-title: Google Earth Engine applications since inception: Usage, trends, and potential
  publication-title: Remote Sens.
  doi: 10.3390/rs10101509
– ident: 10.1016/j.isprsjprs.2020.04.001_b0375
  doi: 10.1117/12.2503653
– volume: 46
  start-page: 1804
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.04.001_b0030
  article-title: Nearest neighbor classification of remote sensing images with the maximal margin principle
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916090
– volume: 64
  start-page: 1177
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.04.001_b0255
  article-title: Simulation of shoreline change using AIRSAR and POLSAR C-band data
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-0934-y
– volume: 43
  start-page: 468
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0225
  article-title: An assessment of simulated compact polarimetric SAR data for wetland classification using random Forest algorithm
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2017.1381550
– volume: 216
  start-page: 57
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0475
  article-title: An object-based convolutional neural network (OCNN) for urban land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.034
– volume: 118
  start-page: 166
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0360
  article-title: Collect Earth: An online tool for systematic reference data collection in land cover and use applications
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.05.004
– volume: 342
  start-page: 850
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.04.001_b0110
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 146
  start-page: 347
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0120
  article-title: An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.10.008
– start-page: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0300
  article-title: Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: a case study from Mayo, Yukon Territory, Canada
  publication-title: GIScience Remote Sens.
– volume: 5
  start-page: 8
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b0480
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 55
  start-page: 645
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.04.001_b2026
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2612821
– volume: 51
  start-page: 47
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.04.001_b0205
  article-title: Remote sensing big data computing: Challenges and opportunities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.10.029
– start-page: 317
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.04.001_b0275
  article-title: A review of multitemporal synthetic aperture radar (SAR) for crop monitoring
– year: 2011
  ident: 10.1016/j.isprsjprs.2020.04.001_b0320
– volume: 64
  start-page: 64
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0215
  article-title: A Gaussian random field model for de-speckling of multi-polarized Synthetic Aperture Radar data
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2019.03.013
– volume: 64
  start-page: 458
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.04.001_b0385
  article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2008.07.005
– volume: 12
  start-page: 036015
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0240
  article-title: Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle imagery and electromagnetic induction survey data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.12.036015
– volume: 120
  start-page: 9
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.04.001_b0415
  article-title: GMES Sentinel-1 mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.028
– volume: 151
  start-page: 223
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0305
  article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.015
– ident: 10.1016/j.isprsjprs.2020.04.001_b0025
  doi: 10.1109/IGARSS.2003.1295258
– volume: 11
  start-page: 1735
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b2029
  article-title: Giving ecological meaning to satellite-derived fire severity metrics across North American forests
  publication-title: Remote Sens.
  doi: 10.3390/rs11141735
– volume: 11
  start-page: 3030
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.04.001_b0355
  article-title: Deep convolutional neural network for complex wetland classification using optical remote sensing imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2846178
– volume: 11
  start-page: 1581
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0420
  article-title: Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh
  publication-title: Remote Sens.
  doi: 10.3390/rs11131581
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.04.001_b0460
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 159
  start-page: 337
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.04.001_b0195
  article-title: Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.021
SSID ssj0001568
Score 2.7140155
Snippet Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms algorithms
analytical methods
application programming interface
artificial intelligence
Cloud-based platform
computer software
computers
data collection
drought
Environmental monitoring
Geo-big data
geographical distribution
Geospatial
Google Earth Engine
infrastructure
Internet
land cover
Landsat
languages
Machine learning
meta-analysis
normalized difference vegetation index
Planetary-scale
regression analysis
Remote sensing
spatial data
systematic review
vegetation
Title Google Earth Engine for geo-big data applications: A meta-analysis and systematic review
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.04.001
https://www.proquest.com/docview/2431892123
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIABQQFRXjISq6mTOg-zVailgGABpG6RHdulVUmqEgYWfjvnxKEFITEwREqis5LcXe4h332H0Bk4oSiWPCCgwJyw2HhEciVIqNOQKYvxVXbI3d2Hgyd2MwyGDXRZ98LYskpn-yubXlprd6ftuNmejcftBwqpg28BkEBP4dx2lDMW2SkG5x-LMg-vaoezxMRSf6vxGr_O5q8TOCBR9GmJeeqmw_zioX7Y6tIB9bfQposccbd6uW3U0FkTbSzhCTbRmhtp_vy-g4ZXeT6aatyDr3nGFRmGCBWPdA7p8Ajb2lC8vH99gbv4RReCCAdUgkWm8ALqGVdtLrvoqd97vBwQN0aBCNaJCsIDHhifmU5saBSGPNWegDTBF1HAhE5jQVVgPKEMV2mspCep9LkUnoooCEyazh5ayfJM7yNMYyMhpPHTThgwE8pYslSaSCvNlJGStVBYsy5JHca4HXUxTepisknyxfPE8jyhzJbVtRD9WjirYDb-XnJRyyb5pjEJOIO_F5_W0kzgf7KbJCLT-RsQQUQVc-vQD_7zgEO0bq-qorIjtFLM3_QxhC-FPCn18wStdq9vB_efRWPyOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB4BVwAFAg7E8zASrVkn6zxMhxDc3vFoAGk7y47tZREkq92loOG3M04cHickiisiRclYSWYm85BnvgE4QCeU5VokFBVYUJ67iGphFE1tkXLjMb7qDrnLq7R3y__2k_4MnLS9ML6sMtj-xqbX1jpc6QRudkbDYeeaYeoQewAk1FM8z2bhB0_izGdghy_vdR5R0w_nqakn_1TkNZyMxpN7PDBTjFkNehrGw3zhov4x1rUHOluGpRA6kuPm7VZgxparsPgBUHAV5sNM87vnn9D_XVWDB0tO8XPuSENGMEQlA1thPjwgvjiUfNzAPiLH5NFOFVUBqYSo0pB3rGfS9Lmswe3Z6c1Jj4Y5ClTxbjalIhGJi7nr5o5laSoKGynME2KVJVzZIlfMJC5SxglT5EZHmulYaBWZjKHEtOuuw1xZlXYDCMudxpgmLrppwl2qc80L7TJrLDdOa74Jacs6WQSQcT_r4kG21WT38o3n0vNcMu7r6jaBvS0cNTgb3y85amUjP6mMRG_w_eL9VpoSfyi_S6JKWz0hEYZUufAefet_HrAH872bywt58efqfBsW_J2mwmwH5qbjJ7uLscxU_6p19RXhWfPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Google+Earth+Engine+for+geo-big+data+applications%3A+A+meta-analysis+and+systematic+review&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Tamiminia%2C+Haifa&rft.au=Salehi%2C+Bahram&rft.au=Mahdianpari%2C+Masoud&rft.au=Quackenbush%2C+Lindi&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=164&rft.spage=152&rft.epage=170&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.04.001&rft.externalDocID=S0924271620300927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon