River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia
Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment dischar...
        Saved in:
      
    
          | Published in | Water resources management Vol. 26; no. 7; pp. 1879 - 1897 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.05.2012
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-4741 1573-1650  | 
| DOI | 10.1007/s11269-012-9992-5 | 
Cover
| Abstract | Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment discharge of a river (Pari River at Silibin) in Peninsular Malaysia. The training algorithms are Gradient Descent (GD), Gradient Descent with Momentum (GDM), Scaled Conjugate Gradient (SCG), and Levenberg Marquardt (LM). Different statistical measures, time of convergence and number of epochs to reach the required accuracy were used to evaluate the performance of training algorithms. The analysis showed that SCG and LM performed better than GD and GDM. While the performance of the superior algorithms (i.e., SCG and LM) is similar, LM required considerably shorter time of convergence. It was concluded that both training algorithms SCG and LM could be recommended for suspended sediment prediction using MLP networks. However, LM was the faster (1/7 of SCG convergence time) of the two algorithms. | 
    
|---|---|
| AbstractList | Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment discharge of a river (Pari River at Silibin) in Peninsular Malaysia. The training algorithms are Gradient Descent (GD), Gradient Descent with Momentum (GDM), Scaled Conjugate Gradient (SCG), and Levenberg Marquardt (LM). Different statistical measures, time of convergence and number of epochs to reach the required accuracy were used to evaluate the performance of training algorithms. The analysis showed that SCG and LM performed better than GD and GDM. While the performance of the superior algorithms (i.e., SCG and LM) is similar, LM required considerably shorter time of convergence. It was concluded that both training algorithms SCG and LM could be recommended for suspended sediment prediction using MLP networks. However, LM was the faster (1/7 of SCG convergence time) of the two algorithms. Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment discharge of a river (Pari River at Silibin) in Peninsular Malaysia. The training algorithms are Gradient Descent (GD), Gradient Descent with Momentum (GDM), Scaled Conjugate Gradient (SCG), and Levenberg Marquardt (LM). Different statistical measures, time of convergence and number of epochs to reach the required accuracy were used to evaluate the performance of training algorithms. The analysis showed that SCG and LM performed better than GD and GDM. While the performance of the superior algorithms (i.e., SCG and LM) is similar, LM required considerably shorter time of convergence. It was concluded that both training algorithms SCG and LM could be recommended for suspended sediment prediction using MLP networks. However, LM was the faster (1/7 of SCG convergence time) of the two algorithms.[PUBLICATION ABSTRACT] Erratum DOI: 10.1007/s11269-012-0028-y  | 
    
| Author | Saiedi, S. Isa, M. H. Mustafa, M. R. Rezaur, R. B.  | 
    
| Author_xml | – sequence: 1 givenname: M. R. surname: Mustafa fullname: Mustafa, M. R. organization: Department of Civil Engineering, Universiti Teknologi Petronas – sequence: 2 givenname: R. B. surname: Rezaur fullname: Rezaur, R. B. organization: Golder Associates Ltd – sequence: 3 givenname: S. surname: Saiedi fullname: Saiedi, S. organization: Department of Civil Engineering, Universiti Teknologi Petronas – sequence: 4 givenname: M. H. surname: Isa fullname: Isa, M. H. email: hasnain_isa@yahoo.co.uk, hasnain_isa@petronas.com.my organization: Department of Civil Engineering, Universiti Teknologi Petronas  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25849805$$DView record in Pascal Francis | 
    
| BookMark | eNqNkUFrFDEYhoNUcFv9Ad4CIngZTTLJZHJcFquFVovbeg2ZzDdrajazJhllb734D_yF_hIzbAUpKF7y5fA8L_nyHqOjMAZA6CklLykh8lWilDWqIpRVSilWiQdoQYWsK9oIcoQWRDFSccnpI3Sc0g0hxVJkgb5_cF8h4vWUdhB66PEaereFkPFlLDeb3RjwdXJhgz-a6MYp4YvJZ-fNvmiXEC3scizMO5ii8WXkb2P8jK-icWG2ln4zRpc_bdPP2x9LvDIJ8DpP_R67gC9MyUnOPEYPB-MTPLmbJ-j69PXV6m11_v7N2Wp5Xhlei1y1Qwdd23Pb96IbGjrwpudgGIO2U0x0rWiIBdUNQwNWtoJBTUEM0EHPhDGyPkEvDrm7OH6ZIGW9dcmC9yZAWU1Tzhsma8L_AyVUqrYctKDP7qE34xRDWaRQjDa1EpIV6vkdZZI1fogmWJf0LrqtiXvNRMtLniicPHA2jilFGLR12cw95PKnvkTquXF9aFyXxvXcuJ5Nes_8Hf4vhx2cVNiwgfjn2_8m_QJfzMKd | 
    
| CODEN | WRMAEJ | 
    
| CitedBy_id | crossref_primary_10_1088_1742_6596_2123_1_012037 crossref_primary_10_1007_s10661_021_09202_y crossref_primary_10_1007_s11269_017_1842_z crossref_primary_10_1016_j_foodchem_2014_11_121 crossref_primary_10_1016_j_jhydrol_2016_07_048 crossref_primary_10_1007_s11269_017_1785_4 crossref_primary_10_1007_s00704_016_1735_8 crossref_primary_10_1007_s11269_019_02216_9 crossref_primary_10_14770_jgsk_2022_58_2_205 crossref_primary_10_2166_wpt_2022_050 crossref_primary_10_1007_s11269_015_1107_7 crossref_primary_10_1007_s11269_012_0098_x crossref_primary_10_1080_1943815X_2013_852591 crossref_primary_10_1155_2015_273730 crossref_primary_10_1007_s40710_019_00363_0 crossref_primary_10_1038_s41598_022_08342_6 crossref_primary_10_1155_2021_5540284 crossref_primary_10_1007_s11269_014_0553_y crossref_primary_10_3390_w15122222 crossref_primary_10_1007_s12145_024_01671_2 crossref_primary_10_1007_s10661_015_4672_6 crossref_primary_10_1007_s11269_016_1481_9 crossref_primary_10_4028_www_scientific_net_AMM_567_122 crossref_primary_10_1007_s11269_013_0487_9 crossref_primary_10_1016_j_gsd_2021_100643 crossref_primary_10_1039_C6RA05618K crossref_primary_10_1515_jwld_2017_0018 crossref_primary_10_1016_j_catena_2020_105024 crossref_primary_10_1080_15715124_2018_1437740 crossref_primary_10_1007_s00500_018_3528_8 crossref_primary_10_1038_s41598_021_04419_w crossref_primary_10_1007_s11356_023_29769_y crossref_primary_10_3390_w12102877 crossref_primary_10_1088_1742_6596_954_1_012030 crossref_primary_10_29252_jwmr_9_17_119 crossref_primary_10_1007_s12665_018_7892_6 crossref_primary_10_1080_10106049_2020_1753821 crossref_primary_10_1007_s12205_020_1889_x crossref_primary_10_1080_10298436_2022_2057975 crossref_primary_10_1007_s00521_019_04079_y crossref_primary_10_1080_02626667_2020_1786571 crossref_primary_10_1007_s11269_016_1405_8 crossref_primary_10_1016_j_jhydrol_2012_06_019 crossref_primary_10_1155_2022_7874826 crossref_primary_10_21015_vtse_v10i1_835 crossref_primary_10_1007_s11269_014_0706_z crossref_primary_10_1016_j_jhydrol_2016_02_012 crossref_primary_10_3390_w11102060 crossref_primary_10_1007_s11270_017_3613_0 crossref_primary_10_1007_s11600_019_00373_4 crossref_primary_10_1016_j_envpol_2021_116973 crossref_primary_10_3390_su10124600 crossref_primary_10_1016_j_seta_2020_100827 crossref_primary_10_1080_02626667_2013_872787 crossref_primary_10_3390_su13094648 crossref_primary_10_1155_2018_8241342 crossref_primary_10_1007_s12517_020_06408_1 crossref_primary_10_1080_10106049_2022_2122590 crossref_primary_10_1007_s11356_020_11335_5 crossref_primary_10_1007_s11269_014_0870_1 crossref_primary_10_22490_21456453_3441 crossref_primary_10_3390_app9194149  | 
    
| Cites_doi | 10.1007/s11269-010-9736-3 10.1007/s11269-009-9539-6 10.2307/2946540 10.5194/hess-6-619-2002 10.1007/s11269-010-9721-x 10.4236/jwarp.2009.15044 10.1016/j.geomorph.2006.07.010 10.1016/S0893-6080(98)00116-6 10.1016/j.advengsoft.2005.05.002 10.1061/(ASCE)0733-9429(2006)132:5(521) 10.1016/j.envsoft.2005.09.009 10.1016/j.jhydrol.2005.05.019 10.1016/j.envsoft.2010.02.003 10.1016/j.agwat.2010.12.012 10.1016/S0893-6080(05)80056-5 10.1061/(ASCE)0887-3801(1997)11:3(206) 10.1016/j.envsoft.2008.07.004 10.1016/S1364-8152(02)00068-3 10.1061/(ASCE)1084-0699(2009)14:3(286) 10.1016/j.advengsoft.2008.08.002 10.1623/hysj.51.4.563 10.1016/j.jenvman.2006.10.015 10.1061/(ASCE)0733-9429(2002)128:6(588) 10.1061/(ASCE)0733-9496(1995)121:6(499) 10.1016/j.matcom.2007.10.005 10.1080/02626660209492997 10.1016/j.advwatres.2003.10.003 10.1007/s11269-010-9773-y 10.1016/j.advengsoft.2008.06.004 10.1016/S1364-8152(99)00007-9 10.1007/s11269-009-9436-z 10.1061/(ASCE)HE.1943-5584.0000075 10.1111/0885-9507.00089 10.1016/j.neucom.2008.12.032 10.1007/s11269-009-9522-2 10.1109/72.329697 10.5194/adgeo-5-89-2005 10.1016/S0022-1694(96)03330-6 10.1007/978-3-642-61068-4 10.1093/oso/9780198538493.001.0001  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media B.V. 2012 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: Springer Science+Business Media B.V. 2012 – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.0 L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6  | 
    
| DOI | 10.1007/s11269-012-9992-5 | 
    
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Agricultural & Environmental Science Database ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1573-1650 | 
    
| EndPage | 1897 | 
    
| ExternalDocumentID | 2693703861 25849805 10_1007_s11269_012_9992_5  | 
    
| Genre | Report Feature Case Study  | 
    
| GeographicLocations | Far East Asia Malaysia  | 
    
| GeographicLocations_xml | – name: Malaysia | 
    
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7QH 7ST 7UA 7XB 8FD 8FK AFFHD C1K F1W FR3 H97 KR7 L.- L.0 L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-a435t-8fbeb8d4cdd5bf61f46d4ea22e8b925b8560ce9bff6ec7852e31e5febed25aa73 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0920-4741 | 
    
| IngestDate | Wed Oct 08 05:23:54 EDT 2025 Fri Sep 05 09:13:07 EDT 2025 Wed Oct 29 23:27:30 EDT 2025 Mon Jul 21 09:14:48 EDT 2025 Wed Oct 01 01:44:48 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Fri Feb 21 02:26:49 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | Suspended sediment Multilayer perceptron neural network Training algorithms Modeling Discharge Prediction rivers algorithms neural networks accuracy case studies suspended materials hydraulics water resources Discharge · Suspended sediment discharge water resource management prediction s Multilayer perceptron neural network  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a435t-8fbeb8d4cdd5bf61f46d4ea22e8b925b8560ce9bff6ec7852e31e5febed25aa73 | 
    
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1021639572 | 
    
| PQPubID | 54174 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_miscellaneous_1446273047 proquest_miscellaneous_1017980171 proquest_journals_1021639572 pascalfrancis_primary_25849805 crossref_citationtrail_10_1007_s11269_012_9992_5 crossref_primary_10_1007_s11269_012_9992_5 springer_journals_10_1007_s11269_012_9992_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-05-01 | 
    
| PublicationDateYYYYMMDD | 2012-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) | 
    
| PublicationTitle | Water resources management | 
    
| PublicationTitleAbbrev | Water Resour Manage | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer Netherlands Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V  | 
    
| References | Bhadra, Bandyopadhyay, Singh, Raghuwanshi (CR3) 2010; 24 Sinnakaudan, Ab Ghani, Ahmad, Zakaria (CR42) 2003; 18 Guven, Kişi (CR18) 2011; 25 Nagy, Watanabe, Hirano (CR34) 2002; 128 Maier, Jain, Dandy, Sudheer (CR29) 2010; 25 Samseldin (CR40) 1997; 199 Agarwal, Rai, Upadhyay (CR1) 2009; 1 Chou (CR6) 2010; 24 CR38 Deift, Zhou (CR12) 1993; 137 Tayfur (CR47) 2002; 47 Sinnakaudan, Ab Ghani, Ahmad, Zakaria (CR43) 2006; 132 Tawfik, Ibharim, Fahmy (CR46) 1997; 11 Panagoulia (CR35) 2006; 51 CR4 Smith, Eli (CR44) 1995; 121 Cigizoglu, Alp (CR8) 2006; 37 Moller (CR33) 1993; 6 Cigizoglu, Kisi (CR9) 2006; 317 Ju, Yu, Hao, Ou, Zhao, Liu (CR22) 2009; 72 Melesse, Ahmad, McClain, Wang, Lim (CR31) 2011; 98 Krause, Byole, Base (CR27) 2005; 5 May, Sivakumar (CR30) 2009; 24 Maier, Dandy (CR28) 2000; 15 CR48 Qian (CR36) 1999; 12 CR41 Rojas (CR39) 1996 (CR14) 1988 Fernando, Shamseldin (CR17) 2009; 14 Evsukoff, Lima, Ebecken (CR16) 2011; 25 Qin, Richard, Yuan, Mark, Bo (CR37) 2007; 85 Mohamed, Ouillon (CR32) 2007; 343 Jothiprakash, Garg (CR21) 2009; 14 CR10 Talebizadeh, Morid, Ayyoubzadeh, Ghasemzadeh (CR45) 2010; 24 Hagan, Menhaj (CR19) 1994; 5 Dawson, Harpham, Wilby, Chen (CR11) 2002; 6 Cigizoglu (CR7) 2004; 27 Edossa, Babel (CR15) 2011; 25 Demirel, Anabela, Kahya (CR13) 2009; 40 CR26 Kisi (CR24) 2008; 79 Caudill (CR5) 1987; 2 Kisi, Haktanir (CR25) 2009; 40 Kisi (CR23) 2005; 50 Jayawardena, Fernando (CR20) 1998; 3 Alp, Cigizoglu (CR2) 2007; 22 Zhu, Lu, Zhou (CR49) 2007; 84 A Agarwal (9992_CR1) 2009; 1 M Tawfik (9992_CR46) 1997; 11 MC Demirel (9992_CR13) 2009; 40 9992_CR4 HR Maier (9992_CR28) 2000; 15 M Talebizadeh (9992_CR45) 2010; 24 MT Hagan (9992_CR19) 1994; 5 A Evsukoff (9992_CR16) 2011; 25 A Guven (9992_CR18) 2011; 25 9992_CR38 O Kisi (9992_CR23) 2005; 50 P Krause (9992_CR27) 2005; 5 AM Melesse (9992_CR31) 2011; 98 KH Cigizoglu (9992_CR9) 2006; 317 D Edossa (9992_CR15) 2011; 25 M Qin (9992_CR37) 2007; 85 DB May (9992_CR30) 2009; 24 V Jothiprakash (9992_CR21) 2009; 14 YM Zhu (9992_CR49) 2007; 84 CW Dawson (9992_CR11) 2002; 6 A Bhadra (9992_CR3) 2010; 24 Q Ju (9992_CR22) 2009; 72 O Kisi (9992_CR24) 2008; 79 M Caudill (9992_CR5) 1987; 2 MF Moller (9992_CR33) 1993; 6 G Tayfur (9992_CR47) 2002; 47 SK Sinnakaudan (9992_CR42) 2003; 18 9992_CR48 R Rojas (9992_CR39) 1996 A Mohamed (9992_CR32) 2007; 343 9992_CR41 HM Nagy (9992_CR34) 2002; 128 SK Sinnakaudan (9992_CR43) 2006; 132 P Deift (9992_CR12) 1993; 137 HK Cigizoglu (9992_CR7) 2004; 27 AW Jayawardena (9992_CR20) 1998; 3 AY Samseldin (9992_CR40) 1997; 199 N Qian (9992_CR36) 1999; 12 D Panagoulia (9992_CR35) 2006; 51 9992_CR10 J Smith (9992_CR44) 1995; 121 HR Maier (9992_CR29) 2010; 25 M Alp (9992_CR2) 2007; 22 HK Cigizoglu (9992_CR8) 2006; 37 DID (9992_CR14) 1988 W-C Chou (9992_CR6) 2010; 24 9992_CR26 O Kisi (9992_CR25) 2009; 40 DAK Fernando (9992_CR17) 2009; 14  | 
    
| References_xml | – volume: 25 start-page: 963 year: 2011 end-page: 985 ident: CR16 article-title: Long-term runoff modeling using rainfall forecasts with application to the Iguaçu River Basin publication-title: Water Resour Manag doi: 10.1007/s11269-010-9736-3 – volume: 24 start-page: 2075 year: 2010 end-page: 2090 ident: CR6 article-title: Modelling watershed scale soil loss prediction and sediment yield estimation publication-title: Water Resour Manag doi: 10.1007/s11269-009-9539-6 – volume: 137 start-page: 295 issue: 2 year: 1993 end-page: 368 ident: CR12 article-title: A steepest descent method for oscillatory Riemann-Hilbert problems Asymptotics for the MKdV equation publication-title: Ann Math doi: 10.2307/2946540 – volume: 343 start-page: 187 issue: 3–4 year: 2007 end-page: 202 ident: CR32 article-title: Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973–1995) publication-title: J Hydrol – ident: CR4 – volume: 6 start-page: 619 issue: 4 year: 2002 end-page: 626 ident: CR11 article-title: Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-6-619-2002 – volume: 25 start-page: 691 year: 2011 end-page: 704 ident: CR18 article-title: Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming publication-title: Water Resour Manag doi: 10.1007/s11269-010-9721-x – volume: 1 start-page: 368 year: 2009 end-page: 375 ident: CR1 article-title: Forecasting of runoff and sediment yield using Artificial Neural Networks publication-title: J Water Resour Prot doi: 10.4236/jwarp.2009.15044 – volume: 84 start-page: 111 year: 2007 end-page: 125 ident: CR49 article-title: Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.07.010 – volume: 12 start-page: 145 year: 1999 end-page: 151 ident: CR36 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – volume: 37 start-page: 63 issue: 2 year: 2006 end-page: 68 ident: CR8 article-title: Generalized regression neural network in modelling river sediment yield publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.05.002 – volume: 132 start-page: 521 issue: 5 year: 2006 end-page: 528 ident: CR43 article-title: Multiple linear regression model for total bed material load prediction publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2006)132:5(521) – volume: 22 start-page: 2 issue: 1 year: 2007 end-page: 13 ident: CR2 article-title: Suspended sediment load simulation by two artificial neural network methods using hydro-meteorological data publication-title: Environ Modell Softw doi: 10.1016/j.envsoft.2005.09.009 – volume: 317 start-page: 221 issue: 3–4 year: 2006 end-page: 238 ident: CR9 article-title: Methods to improve the neural network performance in suspended sediment estimation publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.05.019 – volume: 25 start-page: 891 year: 2010 end-page: 909 ident: CR29 article-title: Methods used for the development of neural networks for the prediction of water resources variables in river systems: Current status and future directions publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2010.02.003 – volume: 98 start-page: 855 issue: 5 year: 2011 end-page: 866 ident: CR31 article-title: Suspended sediment load prediction of river systems: an artificial neural network approach publication-title: Agric Water Manag doi: 10.1016/j.agwat.2010.12.012 – volume: 6 start-page: 525 issue: 4 year: 1993 end-page: 533 ident: CR33 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80056-5 – volume: 11 start-page: 206 issue: 3 year: 1997 end-page: 211 ident: CR46 article-title: Hysteresis sensitive Neural Network for modeling rating curves publication-title: J Comput Civil Eng ASCE doi: 10.1061/(ASCE)0887-3801(1997)11:3(206) – volume: 24 start-page: 296 year: 2009 end-page: 302 ident: CR30 article-title: Prediction of urban storm water quality using artificial neural networks publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2008.07.004 – volume: 18 start-page: 119 issue: 2 year: 2003 end-page: 130 ident: CR42 article-title: Flood risk mapping for Pari River incorporating sediment transport publication-title: J Environ Modell Softw doi: 10.1016/S1364-8152(02)00068-3 – year: 1988 ident: CR14 publication-title: Hydrological data: Streamflow and river suspended sediment records – volume: 14 start-page: 286 issue: 3 year: 2009 end-page: 292 ident: CR17 article-title: Investigation of internal functioning of the radial basis function neural network river flow forecasting models publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2009)14:3(286) – volume: 40 start-page: 467 year: 2009 end-page: 473 ident: CR13 article-title: Flow forecast by SWAT model and ANN in Pracana Basin, Portugal publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.08.002 – volume: 51 start-page: 563 issue: 4 year: 2006 end-page: 587 ident: CR35 article-title: Artificial neural networks and high and low flows in various climate regimes publication-title: Hydrol Sci J doi: 10.1623/hysj.51.4.563 – volume: 85 start-page: 858 issue: 4 year: 2007 end-page: 865 ident: CR37 article-title: The effects of sediment-laden waters on irrigated lands along the lower Yellow River in China publication-title: J Environ Manag doi: 10.1016/j.jenvman.2006.10.015 – volume: 128 start-page: 588 issue: 6 year: 2002 end-page: 595 ident: CR34 article-title: Prediction of sediment load concentration in rivers using artificial neural network model publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2002)128:6(588) – ident: CR26 – volume: 121 start-page: 499 issue: 6 year: 1995 end-page: 580 ident: CR44 article-title: Neural network models of rainfall runoff process publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(1995)121:6(499) – volume: 79 start-page: 94 issue: 1 year: 2008 end-page: 103 ident: CR24 article-title: Constructing neural network sediment estimation models using a data-driven algorithm publication-title: Math Comput Simulat doi: 10.1016/j.matcom.2007.10.005 – volume: 47 start-page: 879 issue: 6 year: 2002 end-page: 892 ident: CR47 article-title: Artificial neural networks for sheet sediment transport/Application des réseaux de neurones artificiels pour le transport sédimentaire en nappe publication-title: Hydrol Sci J doi: 10.1080/02626660209492997 – volume: 27 start-page: 185 issue: 2 year: 2004 end-page: 195 ident: CR7 article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2003.10.003 – volume: 25 start-page: 1759 year: 2011 end-page: 1773 ident: CR15 article-title: Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia publication-title: Water Resour Manag doi: 10.1007/s11269-010-9773-y – volume: 40 start-page: 438 issue: 6 year: 2009 end-page: 444 ident: CR25 article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.06.004 – ident: CR10 – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: CR28 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 24 start-page: 37 year: 2010 end-page: 62 ident: CR3 article-title: Rainfall-runoff modeling: comparison of two approaches with different data requirements publication-title: Water Resour Manag doi: 10.1007/s11269-009-9436-z – volume: 14 start-page: 1035 issue: 9 year: 2009 end-page: 1040 ident: CR21 article-title: Reservoir sedimentation estimation using artificial neural network publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000075 – start-page: 151 year: 1996 end-page: 184 ident: CR39 publication-title: Neural networks: A systematic introduction – volume: 50 start-page: 693 issue: 4 year: 2005 end-page: 696 ident: CR23 article-title: Suspended sediment estimation using neuro-fuzzy and neural network approaches publication-title: Hydrol Sci J – ident: CR48 – volume: 3 start-page: 91 issue: 2 year: 1998 end-page: 99 ident: CR20 article-title: Use of radial basis function type artificial neural network for runoff simulation publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/0885-9507.00089 – ident: CR38 – volume: 72 start-page: 2873 year: 2009 end-page: 2883 ident: CR22 article-title: Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.032 – volume: 24 start-page: 1747 year: 2010 end-page: 1761 ident: CR45 article-title: Uncertainty analysis in sediment load modeling using ANN and SWAT model publication-title: Water Resour Manag doi: 10.1007/s11269-009-9522-2 – volume: 5 start-page: 989 issue: 6 year: 1994 end-page: 993 ident: CR19 article-title: Training feed forward networks with the Marquardt algorithm publication-title: IEEE Trans Neural Netw doi: 10.1109/72.329697 – volume: 5 start-page: 89 year: 2005 end-page: 97 ident: CR27 article-title: Comparison of different efficiency criteria for hydrological model assessment publication-title: Adv Geosci doi: 10.5194/adgeo-5-89-2005 – ident: CR41 – volume: 2 start-page: 46 issue: 12 year: 1987 end-page: 52 ident: CR5 article-title: Neural Networks Primer, Part I publication-title: AI Expert – volume: 199 start-page: 272 year: 1997 end-page: 294 ident: CR40 article-title: Application of neural network technique to rainfall runoff modeling publication-title: J Hydrol doi: 10.1016/S0022-1694(96)03330-6 – volume: 14 start-page: 286 issue: 3 year: 2009 ident: 9992_CR17 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2009)14:3(286) – volume: 85 start-page: 858 issue: 4 year: 2007 ident: 9992_CR37 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2006.10.015 – volume: 98 start-page: 855 issue: 5 year: 2011 ident: 9992_CR31 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2010.12.012 – ident: 9992_CR38 – volume: 11 start-page: 206 issue: 3 year: 1997 ident: 9992_CR46 publication-title: J Comput Civil Eng ASCE doi: 10.1061/(ASCE)0887-3801(1997)11:3(206) – volume: 132 start-page: 521 issue: 5 year: 2006 ident: 9992_CR43 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2006)132:5(521) – volume: 47 start-page: 879 issue: 6 year: 2002 ident: 9992_CR47 publication-title: Hydrol Sci J doi: 10.1080/02626660209492997 – volume: 24 start-page: 2075 year: 2010 ident: 9992_CR6 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9539-6 – volume: 50 start-page: 693 issue: 4 year: 2005 ident: 9992_CR23 publication-title: Hydrol Sci J – volume: 51 start-page: 563 issue: 4 year: 2006 ident: 9992_CR35 publication-title: Hydrol Sci J doi: 10.1623/hysj.51.4.563 – volume: 6 start-page: 619 issue: 4 year: 2002 ident: 9992_CR11 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-6-619-2002 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 9992_CR19 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.329697 – volume: 40 start-page: 438 issue: 6 year: 2009 ident: 9992_CR25 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.06.004 – volume: 37 start-page: 63 issue: 2 year: 2006 ident: 9992_CR8 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.05.002 – volume: 79 start-page: 94 issue: 1 year: 2008 ident: 9992_CR24 publication-title: Math Comput Simulat doi: 10.1016/j.matcom.2007.10.005 – volume: 25 start-page: 963 year: 2011 ident: 9992_CR16 publication-title: Water Resour Manag doi: 10.1007/s11269-010-9736-3 – volume: 25 start-page: 1759 year: 2011 ident: 9992_CR15 publication-title: Water Resour Manag doi: 10.1007/s11269-010-9773-y – ident: 9992_CR41 – ident: 9992_CR48 – volume: 72 start-page: 2873 year: 2009 ident: 9992_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.032 – start-page: 151 volume-title: Neural networks: A systematic introduction year: 1996 ident: 9992_CR39 doi: 10.1007/978-3-642-61068-4 – volume: 199 start-page: 272 year: 1997 ident: 9992_CR40 publication-title: J Hydrol doi: 10.1016/S0022-1694(96)03330-6 – volume: 137 start-page: 295 issue: 2 year: 1993 ident: 9992_CR12 publication-title: Ann Math doi: 10.2307/2946540 – volume: 2 start-page: 46 issue: 12 year: 1987 ident: 9992_CR5 publication-title: AI Expert – volume: 1 start-page: 368 year: 2009 ident: 9992_CR1 publication-title: J Water Resour Prot doi: 10.4236/jwarp.2009.15044 – volume: 25 start-page: 891 year: 2010 ident: 9992_CR29 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2010.02.003 – volume: 22 start-page: 2 issue: 1 year: 2007 ident: 9992_CR2 publication-title: Environ Modell Softw doi: 10.1016/j.envsoft.2005.09.009 – volume: 317 start-page: 221 issue: 3–4 year: 2006 ident: 9992_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.05.019 – volume: 5 start-page: 89 year: 2005 ident: 9992_CR27 publication-title: Adv Geosci doi: 10.5194/adgeo-5-89-2005 – ident: 9992_CR26 – volume: 24 start-page: 37 year: 2010 ident: 9992_CR3 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9436-z – ident: 9992_CR10 – volume: 343 start-page: 187 issue: 3–4 year: 2007 ident: 9992_CR32 publication-title: J Hydrol – volume: 12 start-page: 145 year: 1999 ident: 9992_CR36 publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – ident: 9992_CR4 doi: 10.1093/oso/9780198538493.001.0001 – volume: 14 start-page: 1035 issue: 9 year: 2009 ident: 9992_CR21 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000075 – volume: 3 start-page: 91 issue: 2 year: 1998 ident: 9992_CR20 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/0885-9507.00089 – volume: 24 start-page: 1747 year: 2010 ident: 9992_CR45 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9522-2 – volume: 121 start-page: 499 issue: 6 year: 1995 ident: 9992_CR44 publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(1995)121:6(499) – volume: 27 start-page: 185 issue: 2 year: 2004 ident: 9992_CR7 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2003.10.003 – volume: 128 start-page: 588 issue: 6 year: 2002 ident: 9992_CR34 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2002)128:6(588) – volume: 84 start-page: 111 year: 2007 ident: 9992_CR49 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.07.010 – volume: 18 start-page: 119 issue: 2 year: 2003 ident: 9992_CR42 publication-title: J Environ Modell Softw doi: 10.1016/S1364-8152(02)00068-3 – volume: 24 start-page: 296 year: 2009 ident: 9992_CR30 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2008.07.004 – volume: 25 start-page: 691 year: 2011 ident: 9992_CR18 publication-title: Water Resour Manag doi: 10.1007/s11269-010-9721-x – volume-title: Hydrological data: Streamflow and river suspended sediment records year: 1988 ident: 9992_CR14 – volume: 40 start-page: 467 year: 2009 ident: 9992_CR13 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.08.002 – volume: 15 start-page: 101 year: 2000 ident: 9992_CR28 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 9992_CR33 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80056-5  | 
    
| SSID | ssj0010090 | 
    
| Score | 2.2399912 | 
    
| Snippet | Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a... | 
    
| SourceID | proquest pascalfrancis crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1879 | 
    
| SubjectTerms | Algorithms Atmospheric Sciences Case studies Civil Engineering Convergence Discharge Earth and Environmental Science Earth Sciences Earth, ocean, space Environment Exact sciences and technology Freshwater Geotechnical Engineering & Applied Earth Sciences Hydraulic structures Hydrogeology Hydrology. Hydrogeology Hydrology/Water Resources Load Malaysia Neural networks Neurons Performance evaluation prediction problem solving Rivers Sediment discharge Sediment transport sediment yield Sediments Stream flow Suspended sediments Training Water resources  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZGdxlCEzDQCmMyEqdNFo1jJ_YBoTJtmpBWVfuBdovs2IZJXVqa9sCdP3zvOUm3ItFz7CTye_b77Pf5fYR8cioP0qjABipPmRClZSb4jEGsDNqYkHiD55AXo-z8Rny_lbdbZNTdhUFaZbcmxoXaTUs8I_-MEtQZJpX419lvhqpRmF3tJDRMK63gvsQSY8_INsfKWD2y_e10NL5c5RUAUcRTFw2bJgHBtMtzxst0Cc-QO8SZRkqmXItUL2amhkELjdrFGhz9J4MaA9PZS7LbIko6bFzgFdny1Wvy_EmdwT3y9xLZF_RqWUfFW0evIGThsSAdzzFRg8ahkTxAf8DeebqsabyYOzEAyOm44b7MoQ2W8oBvjRruOL1u9SXocPITxmrx675mbEhPIDJSJCj-oXcVvTDwmvrOvCE3Z6fXJ-eslV9gBjDUgqlgvVVOlM5JG7IkiMwJbzj3ymourQKwVHptQ8h8mSvJfZp4GcArHJfG5Olb0qumld8nVJc-MTLVzpWAWKxUPs2F4MEHK02uZZ8MuqEuyrY2OUpkTIrHqsponQKsU6B1CuhytOoyawpzbGp8uGa_VQ8O-EurATQ46AxatJO4Lh5drk8-rh7D9MOciqk8WKOIK5rCokMb2sCWG1DiQOR9ctw5y9PP_Oev323-qfdkh6O3RvblAekt5kv_ARDSwh62bv8A5UkQNg priority: 102 providerName: ProQuest  | 
    
| Title | River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia | 
    
| URI | https://link.springer.com/article/10.1007/s11269-012-9992-5 https://www.proquest.com/docview/1021639572 https://www.proquest.com/docview/1017980171 https://www.proquest.com/docview/1446273047  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoewEhVP7ElnZlJE6gSBvHTuxjqHZbFXW1aruonCI7tstKS1pttofeuPAGPCFPwoyTbLuoVOKUQ8ZO5LE933g-zxDy3srMCy19NJBZEnFemkh7l0ZgK73S2sdO4znk8Tg9nPKjc3He3uOuO7Z7F5IMO_XtZbeYpcjtYZFCyqTYIFsCs3nBJJ6yfBU6ANAQDlYU-EUc7GUXyryvizVj9PRK1zAuvilosYY4_wqSBtsz2ibPWtBI80bLz8kjV70gT-6kEnxJfp4gwYKeXtehqK2lp2CV8OSPThYYi8Hxp4EfQL-Aewz-Pg13b-caMDedNPSWBchgtg741rihh9OztoQEzecXl4vZ8tv3-vePXzndB-tHkYR4Q2cVPdbQTz3Tr8h0NDzbP4zaEguRBpy0jKQ3zkjLS2uF8WnseWq504w5aRQTRgIgKp0y3qeuzKRgLomd8KB5y4TWWfKabFaXlXtDqCpdrEWirC0BlRghXZJxzrzzRuhMiR4ZdGNdlG3-cSyDMS9uMyejegpQT4HqKaDJh1WTqyb5xkPC_TUFrlowwFhKDkBgt9No0S7UusDK5inGKlmPvFu9hiWGcRNdOVBHEXYtiYmFHpABtxqQ4IBnPfKxmy13P_OPv975L-m35DHD2RsIl7tkc7m4dnsAipamTzbk6KBPtvKDr5-H8Pw0HE9O-mFp_AGCKQwL | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewCEEE8RKMVIcAFZzXrtXe-hQqG0SmkTRW2Kelvstd1WCpuQTYR653fx25jZR9ogkVvP68fufmPPN57xDCHvrIq91MqztopDJkRmmPYuYqArfaK1D5zGc8heP-qeiq9n8myN_GnuwmBYZbMnlhu1HWd4Rr6NJagjdCrxT5OfDKtGoXe1KaGh69IKdqdMMVZf7Dh0V7_AhCt2Dr4A3u85398b7nZZXWWAaaAKM6a8cUZZkVkrjY8CLyIrnObcKZNwaRRwgswlxvvIZbGS3IWBkx4-3nKpdRzCuHfIhghFAsbfxue9_uB44ccABlOe8iRgpAlQ3o1ftby8F_AIY5U4SzAEVC5pxgcTXQBIvqqusUR___HYlopw_xF5WDNY2qlE7jFZc_kTcv9GXsOn5PcxRnvQk3lRVti19ARUJB5D0sEUHUMoDLQMVqDfwFYfzwtaXgQeaTAA6KCKtZlCG0wdAnP1q1h1OqzrWdDO6BywmV38KBjr0F3QxBQDIq_oZU57GoYpLvUzcnorQDwn6_k4dy8ITTIXaBkm1mbAkIxULoyF4N55I3WcyBZpN786zepc6FiSY5ReZ3FGdFJAJ0V0UujyYdFlUiUCWdV4awm_RQ8OfC9RbWiw2QCa1ptGkV6LeIu8XTyG5Y4-HJ07QCMtd1CFSY5WtAETH1hpW8Qt8rERlpvT_OetX65-qTfkbnfYO0qPDvqHr8g9jpJbRn5ukvXZdO5eAzubma16CVDy_bZX3V8B9lB2 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGkBAIIT5FYQwjwQvIWuPYifOAULVRNsaqim1ob8GO7W1SSUvTCu2dX8Wv414n6VYk-rbn2Pk6177Hvsf3EvLaqtRLrTzrqjRmQhSGae8SBr7SZ1r7yGnchzwYJLvH4vOJPFkjf9qzMCirbOfEMFHbcYF75FtYgjrBoBLf8o0sYrjT_zD5ybCCFEZa23IatYnsu4tfsHyr3u_tANZvOO9_PNreZU2FAaaBJsyY8sYZZUVhrTQ-ibxIrHCac6dMxqVRwAcKlxnvE1ekSnIXR056-HDLpdZpDPe9QW6mmMUdT6n3Py0iGMBdwv5OBsszAW67jaiGY3sRT1ClxFmG4k-55BPvTnQF8Pi6rsYS8f0nVhtcYP8-uddwV9qrje0BWXPlQ3LnSkbDR-T3V9R50MN5FWrrWnoIzhE3IOlwiiEhNAMaZAr0G6zSx_OKhiPAIw3Unw5rlc0U2mDSEHjWoFap06OmkgXtjU4BidnZj4qxHt0GH0xRCnlBz0t6oOE21bl-TI6vBYYnZL0cl-4poVnhIi3jzNoCuJGRysWpENw7b6ROM9kh3fZX50WTBR2LcYzyy_zNiE4O6OSITg5d3i66TOoUIKsaby7ht-jBgellqgsNNlpA82a6qPJL4-6QV4vLMNAxeqNLB2jkYe5UmN5oRRtY3AMf7Yq0Q961xnL1Mf9562erX-oluQVjLf-yN9h_Tm5zNNwg-dwg67Pp3L0AWjYzm8H-Kfl-3QPuL9wuThA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=River+Suspended+Sediment+Prediction+Using+Various+Multilayer+Perceptron+Neural+Network+Training+Algorithms%E2%80%94A+Case+Study+in+Malaysia&rft.jtitle=Water+resources+management&rft.au=Mustafa%2C+M.+R.&rft.au=Rezaur%2C+R.+B.&rft.au=Saiedi%2C+S.&rft.au=Isa%2C+M.+H.&rft.date=2012-05-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=26&rft.issue=7&rft.spage=1879&rft.epage=1897&rft_id=info:doi/10.1007%2Fs11269-012-9992-5&rft.externalDocID=10_1007_s11269_012_9992_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |