River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia

Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment dischar...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 26; no. 7; pp. 1879 - 1897
Main Authors Mustafa, M. R., Rezaur, R. B., Saiedi, S., Isa, M. H.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-012-9992-5

Cover

Abstract Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment discharge of a river (Pari River at Silibin) in Peninsular Malaysia. The training algorithms are Gradient Descent (GD), Gradient Descent with Momentum (GDM), Scaled Conjugate Gradient (SCG), and Levenberg Marquardt (LM). Different statistical measures, time of convergence and number of epochs to reach the required accuracy were used to evaluate the performance of training algorithms. The analysis showed that SCG and LM performed better than GD and GDM. While the performance of the superior algorithms (i.e., SCG and LM) is similar, LM required considerably shorter time of convergence. It was concluded that both training algorithms SCG and LM could be recommended for suspended sediment prediction using MLP networks. However, LM was the faster (1/7 of SCG convergence time) of the two algorithms.
AbstractList Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment discharge of a river (Pari River at Silibin) in Peninsular Malaysia. The training algorithms are Gradient Descent (GD), Gradient Descent with Momentum (GDM), Scaled Conjugate Gradient (SCG), and Levenberg Marquardt (LM). Different statistical measures, time of convergence and number of epochs to reach the required accuracy were used to evaluate the performance of training algorithms. The analysis showed that SCG and LM performed better than GD and GDM. While the performance of the superior algorithms (i.e., SCG and LM) is similar, LM required considerably shorter time of convergence. It was concluded that both training algorithms SCG and LM could be recommended for suspended sediment prediction using MLP networks. However, LM was the faster (1/7 of SCG convergence time) of the two algorithms.
Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a Multilayer Perceptron (MLP) feed forward neural network with four different training algorithms was used to predict the suspended sediment discharge of a river (Pari River at Silibin) in Peninsular Malaysia. The training algorithms are Gradient Descent (GD), Gradient Descent with Momentum (GDM), Scaled Conjugate Gradient (SCG), and Levenberg Marquardt (LM). Different statistical measures, time of convergence and number of epochs to reach the required accuracy were used to evaluate the performance of training algorithms. The analysis showed that SCG and LM performed better than GD and GDM. While the performance of the superior algorithms (i.e., SCG and LM) is similar, LM required considerably shorter time of convergence. It was concluded that both training algorithms SCG and LM could be recommended for suspended sediment prediction using MLP networks. However, LM was the faster (1/7 of SCG convergence time) of the two algorithms.[PUBLICATION ABSTRACT] Erratum DOI: 10.1007/s11269-012-0028-y
Author Saiedi, S.
Isa, M. H.
Mustafa, M. R.
Rezaur, R. B.
Author_xml – sequence: 1
  givenname: M. R.
  surname: Mustafa
  fullname: Mustafa, M. R.
  organization: Department of Civil Engineering, Universiti Teknologi Petronas
– sequence: 2
  givenname: R. B.
  surname: Rezaur
  fullname: Rezaur, R. B.
  organization: Golder Associates Ltd
– sequence: 3
  givenname: S.
  surname: Saiedi
  fullname: Saiedi, S.
  organization: Department of Civil Engineering, Universiti Teknologi Petronas
– sequence: 4
  givenname: M. H.
  surname: Isa
  fullname: Isa, M. H.
  email: hasnain_isa@yahoo.co.uk, hasnain_isa@petronas.com.my
  organization: Department of Civil Engineering, Universiti Teknologi Petronas
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25849805$$DView record in Pascal Francis
BookMark eNqNkUFrFDEYhoNUcFv9Ad4CIngZTTLJZHJcFquFVovbeg2ZzDdrajazJhllb734D_yF_hIzbAUpKF7y5fA8L_nyHqOjMAZA6CklLykh8lWilDWqIpRVSilWiQdoQYWsK9oIcoQWRDFSccnpI3Sc0g0hxVJkgb5_cF8h4vWUdhB66PEaereFkPFlLDeb3RjwdXJhgz-a6MYp4YvJZ-fNvmiXEC3scizMO5ii8WXkb2P8jK-icWG2ln4zRpc_bdPP2x9LvDIJ8DpP_R67gC9MyUnOPEYPB-MTPLmbJ-j69PXV6m11_v7N2Wp5Xhlei1y1Qwdd23Pb96IbGjrwpudgGIO2U0x0rWiIBdUNQwNWtoJBTUEM0EHPhDGyPkEvDrm7OH6ZIGW9dcmC9yZAWU1Tzhsma8L_AyVUqrYctKDP7qE34xRDWaRQjDa1EpIV6vkdZZI1fogmWJf0LrqtiXvNRMtLniicPHA2jilFGLR12cw95PKnvkTquXF9aFyXxvXcuJ5Nes_8Hf4vhx2cVNiwgfjn2_8m_QJfzMKd
CODEN WRMAEJ
CitedBy_id crossref_primary_10_1088_1742_6596_2123_1_012037
crossref_primary_10_1007_s10661_021_09202_y
crossref_primary_10_1007_s11269_017_1842_z
crossref_primary_10_1016_j_foodchem_2014_11_121
crossref_primary_10_1016_j_jhydrol_2016_07_048
crossref_primary_10_1007_s11269_017_1785_4
crossref_primary_10_1007_s00704_016_1735_8
crossref_primary_10_1007_s11269_019_02216_9
crossref_primary_10_14770_jgsk_2022_58_2_205
crossref_primary_10_2166_wpt_2022_050
crossref_primary_10_1007_s11269_015_1107_7
crossref_primary_10_1007_s11269_012_0098_x
crossref_primary_10_1080_1943815X_2013_852591
crossref_primary_10_1155_2015_273730
crossref_primary_10_1007_s40710_019_00363_0
crossref_primary_10_1038_s41598_022_08342_6
crossref_primary_10_1155_2021_5540284
crossref_primary_10_1007_s11269_014_0553_y
crossref_primary_10_3390_w15122222
crossref_primary_10_1007_s12145_024_01671_2
crossref_primary_10_1007_s10661_015_4672_6
crossref_primary_10_1007_s11269_016_1481_9
crossref_primary_10_4028_www_scientific_net_AMM_567_122
crossref_primary_10_1007_s11269_013_0487_9
crossref_primary_10_1016_j_gsd_2021_100643
crossref_primary_10_1039_C6RA05618K
crossref_primary_10_1515_jwld_2017_0018
crossref_primary_10_1016_j_catena_2020_105024
crossref_primary_10_1080_15715124_2018_1437740
crossref_primary_10_1007_s00500_018_3528_8
crossref_primary_10_1038_s41598_021_04419_w
crossref_primary_10_1007_s11356_023_29769_y
crossref_primary_10_3390_w12102877
crossref_primary_10_1088_1742_6596_954_1_012030
crossref_primary_10_29252_jwmr_9_17_119
crossref_primary_10_1007_s12665_018_7892_6
crossref_primary_10_1080_10106049_2020_1753821
crossref_primary_10_1007_s12205_020_1889_x
crossref_primary_10_1080_10298436_2022_2057975
crossref_primary_10_1007_s00521_019_04079_y
crossref_primary_10_1080_02626667_2020_1786571
crossref_primary_10_1007_s11269_016_1405_8
crossref_primary_10_1016_j_jhydrol_2012_06_019
crossref_primary_10_1155_2022_7874826
crossref_primary_10_21015_vtse_v10i1_835
crossref_primary_10_1007_s11269_014_0706_z
crossref_primary_10_1016_j_jhydrol_2016_02_012
crossref_primary_10_3390_w11102060
crossref_primary_10_1007_s11270_017_3613_0
crossref_primary_10_1007_s11600_019_00373_4
crossref_primary_10_1016_j_envpol_2021_116973
crossref_primary_10_3390_su10124600
crossref_primary_10_1016_j_seta_2020_100827
crossref_primary_10_1080_02626667_2013_872787
crossref_primary_10_3390_su13094648
crossref_primary_10_1155_2018_8241342
crossref_primary_10_1007_s12517_020_06408_1
crossref_primary_10_1080_10106049_2022_2122590
crossref_primary_10_1007_s11356_020_11335_5
crossref_primary_10_1007_s11269_014_0870_1
crossref_primary_10_22490_21456453_3441
crossref_primary_10_3390_app9194149
Cites_doi 10.1007/s11269-010-9736-3
10.1007/s11269-009-9539-6
10.2307/2946540
10.5194/hess-6-619-2002
10.1007/s11269-010-9721-x
10.4236/jwarp.2009.15044
10.1016/j.geomorph.2006.07.010
10.1016/S0893-6080(98)00116-6
10.1016/j.advengsoft.2005.05.002
10.1061/(ASCE)0733-9429(2006)132:5(521)
10.1016/j.envsoft.2005.09.009
10.1016/j.jhydrol.2005.05.019
10.1016/j.envsoft.2010.02.003
10.1016/j.agwat.2010.12.012
10.1016/S0893-6080(05)80056-5
10.1061/(ASCE)0887-3801(1997)11:3(206)
10.1016/j.envsoft.2008.07.004
10.1016/S1364-8152(02)00068-3
10.1061/(ASCE)1084-0699(2009)14:3(286)
10.1016/j.advengsoft.2008.08.002
10.1623/hysj.51.4.563
10.1016/j.jenvman.2006.10.015
10.1061/(ASCE)0733-9429(2002)128:6(588)
10.1061/(ASCE)0733-9496(1995)121:6(499)
10.1016/j.matcom.2007.10.005
10.1080/02626660209492997
10.1016/j.advwatres.2003.10.003
10.1007/s11269-010-9773-y
10.1016/j.advengsoft.2008.06.004
10.1016/S1364-8152(99)00007-9
10.1007/s11269-009-9436-z
10.1061/(ASCE)HE.1943-5584.0000075
10.1111/0885-9507.00089
10.1016/j.neucom.2008.12.032
10.1007/s11269-009-9522-2
10.1109/72.329697
10.5194/adgeo-5-89-2005
10.1016/S0022-1694(96)03330-6
10.1007/978-3-642-61068-4
10.1093/oso/9780198538493.001.0001
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2012
2015 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media B.V. 2012
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.0
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-012-9992-5
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Agricultural & Environmental Science Database
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 1897
ExternalDocumentID 2693703861
25849805
10_1007_s11269_012_9992_5
Genre Report
Feature
Case Study
GeographicLocations Far East
Asia
Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7QH
7ST
7UA
7XB
8FD
8FK
AFFHD
C1K
F1W
FR3
H97
KR7
L.-
L.0
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a435t-8fbeb8d4cdd5bf61f46d4ea22e8b925b8560ce9bff6ec7852e31e5febed25aa73
IEDL.DBID U2A
ISSN 0920-4741
IngestDate Wed Oct 08 05:23:54 EDT 2025
Fri Sep 05 09:13:07 EDT 2025
Wed Oct 29 23:27:30 EDT 2025
Mon Jul 21 09:14:48 EDT 2025
Wed Oct 01 01:44:48 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Fri Feb 21 02:26:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Suspended sediment
Multilayer perceptron neural network
Training algorithms
Modeling
Discharge
Prediction
rivers
algorithms
neural networks
accuracy
case studies
suspended materials
hydraulics
water resources
Discharge · Suspended sediment
discharge
water resource management
prediction
s Multilayer perceptron neural network
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-8fbeb8d4cdd5bf61f46d4ea22e8b925b8560ce9bff6ec7852e31e5febed25aa73
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1021639572
PQPubID 54174
PageCount 19
ParticipantIDs proquest_miscellaneous_1446273047
proquest_miscellaneous_1017980171
proquest_journals_1021639572
pascalfrancis_primary_25849805
crossref_citationtrail_10_1007_s11269_012_9992_5
crossref_primary_10_1007_s11269_012_9992_5
springer_journals_10_1007_s11269_012_9992_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2012
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Bhadra, Bandyopadhyay, Singh, Raghuwanshi (CR3) 2010; 24
Sinnakaudan, Ab Ghani, Ahmad, Zakaria (CR42) 2003; 18
Guven, Kişi (CR18) 2011; 25
Nagy, Watanabe, Hirano (CR34) 2002; 128
Maier, Jain, Dandy, Sudheer (CR29) 2010; 25
Samseldin (CR40) 1997; 199
Agarwal, Rai, Upadhyay (CR1) 2009; 1
Chou (CR6) 2010; 24
CR38
Deift, Zhou (CR12) 1993; 137
Tayfur (CR47) 2002; 47
Sinnakaudan, Ab Ghani, Ahmad, Zakaria (CR43) 2006; 132
Tawfik, Ibharim, Fahmy (CR46) 1997; 11
Panagoulia (CR35) 2006; 51
CR4
Smith, Eli (CR44) 1995; 121
Cigizoglu, Alp (CR8) 2006; 37
Moller (CR33) 1993; 6
Cigizoglu, Kisi (CR9) 2006; 317
Ju, Yu, Hao, Ou, Zhao, Liu (CR22) 2009; 72
Melesse, Ahmad, McClain, Wang, Lim (CR31) 2011; 98
Krause, Byole, Base (CR27) 2005; 5
May, Sivakumar (CR30) 2009; 24
Maier, Dandy (CR28) 2000; 15
CR48
Qian (CR36) 1999; 12
CR41
Rojas (CR39) 1996
(CR14) 1988
Fernando, Shamseldin (CR17) 2009; 14
Evsukoff, Lima, Ebecken (CR16) 2011; 25
Qin, Richard, Yuan, Mark, Bo (CR37) 2007; 85
Mohamed, Ouillon (CR32) 2007; 343
Jothiprakash, Garg (CR21) 2009; 14
CR10
Talebizadeh, Morid, Ayyoubzadeh, Ghasemzadeh (CR45) 2010; 24
Hagan, Menhaj (CR19) 1994; 5
Dawson, Harpham, Wilby, Chen (CR11) 2002; 6
Cigizoglu (CR7) 2004; 27
Edossa, Babel (CR15) 2011; 25
Demirel, Anabela, Kahya (CR13) 2009; 40
CR26
Kisi (CR24) 2008; 79
Caudill (CR5) 1987; 2
Kisi, Haktanir (CR25) 2009; 40
Kisi (CR23) 2005; 50
Jayawardena, Fernando (CR20) 1998; 3
Alp, Cigizoglu (CR2) 2007; 22
Zhu, Lu, Zhou (CR49) 2007; 84
A Agarwal (9992_CR1) 2009; 1
M Tawfik (9992_CR46) 1997; 11
MC Demirel (9992_CR13) 2009; 40
9992_CR4
HR Maier (9992_CR28) 2000; 15
M Talebizadeh (9992_CR45) 2010; 24
MT Hagan (9992_CR19) 1994; 5
A Evsukoff (9992_CR16) 2011; 25
A Guven (9992_CR18) 2011; 25
9992_CR38
O Kisi (9992_CR23) 2005; 50
P Krause (9992_CR27) 2005; 5
AM Melesse (9992_CR31) 2011; 98
KH Cigizoglu (9992_CR9) 2006; 317
D Edossa (9992_CR15) 2011; 25
M Qin (9992_CR37) 2007; 85
DB May (9992_CR30) 2009; 24
V Jothiprakash (9992_CR21) 2009; 14
YM Zhu (9992_CR49) 2007; 84
CW Dawson (9992_CR11) 2002; 6
A Bhadra (9992_CR3) 2010; 24
Q Ju (9992_CR22) 2009; 72
O Kisi (9992_CR24) 2008; 79
M Caudill (9992_CR5) 1987; 2
MF Moller (9992_CR33) 1993; 6
G Tayfur (9992_CR47) 2002; 47
SK Sinnakaudan (9992_CR42) 2003; 18
9992_CR48
R Rojas (9992_CR39) 1996
A Mohamed (9992_CR32) 2007; 343
9992_CR41
HM Nagy (9992_CR34) 2002; 128
SK Sinnakaudan (9992_CR43) 2006; 132
P Deift (9992_CR12) 1993; 137
HK Cigizoglu (9992_CR7) 2004; 27
AW Jayawardena (9992_CR20) 1998; 3
AY Samseldin (9992_CR40) 1997; 199
N Qian (9992_CR36) 1999; 12
D Panagoulia (9992_CR35) 2006; 51
9992_CR10
J Smith (9992_CR44) 1995; 121
HR Maier (9992_CR29) 2010; 25
M Alp (9992_CR2) 2007; 22
HK Cigizoglu (9992_CR8) 2006; 37
DID (9992_CR14) 1988
W-C Chou (9992_CR6) 2010; 24
9992_CR26
O Kisi (9992_CR25) 2009; 40
DAK Fernando (9992_CR17) 2009; 14
References_xml – volume: 25
  start-page: 963
  year: 2011
  end-page: 985
  ident: CR16
  article-title: Long-term runoff modeling using rainfall forecasts with application to the Iguaçu River Basin
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9736-3
– volume: 24
  start-page: 2075
  year: 2010
  end-page: 2090
  ident: CR6
  article-title: Modelling watershed scale soil loss prediction and sediment yield estimation
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9539-6
– volume: 137
  start-page: 295
  issue: 2
  year: 1993
  end-page: 368
  ident: CR12
  article-title: A steepest descent method for oscillatory Riemann-Hilbert problems Asymptotics for the MKdV equation
  publication-title: Ann Math
  doi: 10.2307/2946540
– volume: 343
  start-page: 187
  issue: 3–4
  year: 2007
  end-page: 202
  ident: CR32
  article-title: Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973–1995)
  publication-title: J Hydrol
– ident: CR4
– volume: 6
  start-page: 619
  issue: 4
  year: 2002
  end-page: 626
  ident: CR11
  article-title: Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-6-619-2002
– volume: 25
  start-page: 691
  year: 2011
  end-page: 704
  ident: CR18
  article-title: Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9721-x
– volume: 1
  start-page: 368
  year: 2009
  end-page: 375
  ident: CR1
  article-title: Forecasting of runoff and sediment yield using Artificial Neural Networks
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2009.15044
– volume: 84
  start-page: 111
  year: 2007
  end-page: 125
  ident: CR49
  article-title: Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.07.010
– volume: 12
  start-page: 145
  year: 1999
  end-page: 151
  ident: CR36
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 37
  start-page: 63
  issue: 2
  year: 2006
  end-page: 68
  ident: CR8
  article-title: Generalized regression neural network in modelling river sediment yield
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.05.002
– volume: 132
  start-page: 521
  issue: 5
  year: 2006
  end-page: 528
  ident: CR43
  article-title: Multiple linear regression model for total bed material load prediction
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2006)132:5(521)
– volume: 22
  start-page: 2
  issue: 1
  year: 2007
  end-page: 13
  ident: CR2
  article-title: Suspended sediment load simulation by two artificial neural network methods using hydro-meteorological data
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2005.09.009
– volume: 317
  start-page: 221
  issue: 3–4
  year: 2006
  end-page: 238
  ident: CR9
  article-title: Methods to improve the neural network performance in suspended sediment estimation
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.05.019
– volume: 25
  start-page: 891
  year: 2010
  end-page: 909
  ident: CR29
  article-title: Methods used for the development of neural networks for the prediction of water resources variables in river systems: Current status and future directions
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 98
  start-page: 855
  issue: 5
  year: 2011
  end-page: 866
  ident: CR31
  article-title: Suspended sediment load prediction of river systems: an artificial neural network approach
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2010.12.012
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  end-page: 533
  ident: CR33
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 11
  start-page: 206
  issue: 3
  year: 1997
  end-page: 211
  ident: CR46
  article-title: Hysteresis sensitive Neural Network for modeling rating curves
  publication-title: J Comput Civil Eng ASCE
  doi: 10.1061/(ASCE)0887-3801(1997)11:3(206)
– volume: 24
  start-page: 296
  year: 2009
  end-page: 302
  ident: CR30
  article-title: Prediction of urban storm water quality using artificial neural networks
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2008.07.004
– volume: 18
  start-page: 119
  issue: 2
  year: 2003
  end-page: 130
  ident: CR42
  article-title: Flood risk mapping for Pari River incorporating sediment transport
  publication-title: J Environ Modell Softw
  doi: 10.1016/S1364-8152(02)00068-3
– year: 1988
  ident: CR14
  publication-title: Hydrological data: Streamflow and river suspended sediment records
– volume: 14
  start-page: 286
  issue: 3
  year: 2009
  end-page: 292
  ident: CR17
  article-title: Investigation of internal functioning of the radial basis function neural network river flow forecasting models
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2009)14:3(286)
– volume: 40
  start-page: 467
  year: 2009
  end-page: 473
  ident: CR13
  article-title: Flow forecast by SWAT model and ANN in Pracana Basin, Portugal
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.08.002
– volume: 51
  start-page: 563
  issue: 4
  year: 2006
  end-page: 587
  ident: CR35
  article-title: Artificial neural networks and high and low flows in various climate regimes
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.4.563
– volume: 85
  start-page: 858
  issue: 4
  year: 2007
  end-page: 865
  ident: CR37
  article-title: The effects of sediment-laden waters on irrigated lands along the lower Yellow River in China
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2006.10.015
– volume: 128
  start-page: 588
  issue: 6
  year: 2002
  end-page: 595
  ident: CR34
  article-title: Prediction of sediment load concentration in rivers using artificial neural network model
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2002)128:6(588)
– ident: CR26
– volume: 121
  start-page: 499
  issue: 6
  year: 1995
  end-page: 580
  ident: CR44
  article-title: Neural network models of rainfall runoff process
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(1995)121:6(499)
– volume: 79
  start-page: 94
  issue: 1
  year: 2008
  end-page: 103
  ident: CR24
  article-title: Constructing neural network sediment estimation models using a data-driven algorithm
  publication-title: Math Comput Simulat
  doi: 10.1016/j.matcom.2007.10.005
– volume: 47
  start-page: 879
  issue: 6
  year: 2002
  end-page: 892
  ident: CR47
  article-title: Artificial neural networks for sheet sediment transport/Application des réseaux de neurones artificiels pour le transport sédimentaire en nappe
  publication-title: Hydrol Sci J
  doi: 10.1080/02626660209492997
– volume: 27
  start-page: 185
  issue: 2
  year: 2004
  end-page: 195
  ident: CR7
  article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2003.10.003
– volume: 25
  start-page: 1759
  year: 2011
  end-page: 1773
  ident: CR15
  article-title: Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9773-y
– volume: 40
  start-page: 438
  issue: 6
  year: 2009
  end-page: 444
  ident: CR25
  article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.06.004
– ident: CR10
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: CR28
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 24
  start-page: 37
  year: 2010
  end-page: 62
  ident: CR3
  article-title: Rainfall-runoff modeling: comparison of two approaches with different data requirements
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9436-z
– volume: 14
  start-page: 1035
  issue: 9
  year: 2009
  end-page: 1040
  ident: CR21
  article-title: Reservoir sedimentation estimation using artificial neural network
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000075
– start-page: 151
  year: 1996
  end-page: 184
  ident: CR39
  publication-title: Neural networks: A systematic introduction
– volume: 50
  start-page: 693
  issue: 4
  year: 2005
  end-page: 696
  ident: CR23
  article-title: Suspended sediment estimation using neuro-fuzzy and neural network approaches
  publication-title: Hydrol Sci J
– ident: CR48
– volume: 3
  start-page: 91
  issue: 2
  year: 1998
  end-page: 99
  ident: CR20
  article-title: Use of radial basis function type artificial neural network for runoff simulation
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/0885-9507.00089
– ident: CR38
– volume: 72
  start-page: 2873
  year: 2009
  end-page: 2883
  ident: CR22
  article-title: Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.032
– volume: 24
  start-page: 1747
  year: 2010
  end-page: 1761
  ident: CR45
  article-title: Uncertainty analysis in sediment load modeling using ANN and SWAT model
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9522-2
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  end-page: 993
  ident: CR19
  article-title: Training feed forward networks with the Marquardt algorithm
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.329697
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  ident: CR27
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-5-89-2005
– ident: CR41
– volume: 2
  start-page: 46
  issue: 12
  year: 1987
  end-page: 52
  ident: CR5
  article-title: Neural Networks Primer, Part I
  publication-title: AI Expert
– volume: 199
  start-page: 272
  year: 1997
  end-page: 294
  ident: CR40
  article-title: Application of neural network technique to rainfall runoff modeling
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(96)03330-6
– volume: 14
  start-page: 286
  issue: 3
  year: 2009
  ident: 9992_CR17
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2009)14:3(286)
– volume: 85
  start-page: 858
  issue: 4
  year: 2007
  ident: 9992_CR37
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2006.10.015
– volume: 98
  start-page: 855
  issue: 5
  year: 2011
  ident: 9992_CR31
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2010.12.012
– ident: 9992_CR38
– volume: 11
  start-page: 206
  issue: 3
  year: 1997
  ident: 9992_CR46
  publication-title: J Comput Civil Eng ASCE
  doi: 10.1061/(ASCE)0887-3801(1997)11:3(206)
– volume: 132
  start-page: 521
  issue: 5
  year: 2006
  ident: 9992_CR43
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2006)132:5(521)
– volume: 47
  start-page: 879
  issue: 6
  year: 2002
  ident: 9992_CR47
  publication-title: Hydrol Sci J
  doi: 10.1080/02626660209492997
– volume: 24
  start-page: 2075
  year: 2010
  ident: 9992_CR6
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9539-6
– volume: 50
  start-page: 693
  issue: 4
  year: 2005
  ident: 9992_CR23
  publication-title: Hydrol Sci J
– volume: 51
  start-page: 563
  issue: 4
  year: 2006
  ident: 9992_CR35
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.4.563
– volume: 6
  start-page: 619
  issue: 4
  year: 2002
  ident: 9992_CR11
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-6-619-2002
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 9992_CR19
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.329697
– volume: 40
  start-page: 438
  issue: 6
  year: 2009
  ident: 9992_CR25
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.06.004
– volume: 37
  start-page: 63
  issue: 2
  year: 2006
  ident: 9992_CR8
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.05.002
– volume: 79
  start-page: 94
  issue: 1
  year: 2008
  ident: 9992_CR24
  publication-title: Math Comput Simulat
  doi: 10.1016/j.matcom.2007.10.005
– volume: 25
  start-page: 963
  year: 2011
  ident: 9992_CR16
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9736-3
– volume: 25
  start-page: 1759
  year: 2011
  ident: 9992_CR15
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9773-y
– ident: 9992_CR41
– ident: 9992_CR48
– volume: 72
  start-page: 2873
  year: 2009
  ident: 9992_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.032
– start-page: 151
  volume-title: Neural networks: A systematic introduction
  year: 1996
  ident: 9992_CR39
  doi: 10.1007/978-3-642-61068-4
– volume: 199
  start-page: 272
  year: 1997
  ident: 9992_CR40
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(96)03330-6
– volume: 137
  start-page: 295
  issue: 2
  year: 1993
  ident: 9992_CR12
  publication-title: Ann Math
  doi: 10.2307/2946540
– volume: 2
  start-page: 46
  issue: 12
  year: 1987
  ident: 9992_CR5
  publication-title: AI Expert
– volume: 1
  start-page: 368
  year: 2009
  ident: 9992_CR1
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2009.15044
– volume: 25
  start-page: 891
  year: 2010
  ident: 9992_CR29
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 22
  start-page: 2
  issue: 1
  year: 2007
  ident: 9992_CR2
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2005.09.009
– volume: 317
  start-page: 221
  issue: 3–4
  year: 2006
  ident: 9992_CR9
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.05.019
– volume: 5
  start-page: 89
  year: 2005
  ident: 9992_CR27
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-5-89-2005
– ident: 9992_CR26
– volume: 24
  start-page: 37
  year: 2010
  ident: 9992_CR3
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9436-z
– ident: 9992_CR10
– volume: 343
  start-page: 187
  issue: 3–4
  year: 2007
  ident: 9992_CR32
  publication-title: J Hydrol
– volume: 12
  start-page: 145
  year: 1999
  ident: 9992_CR36
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– ident: 9992_CR4
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 14
  start-page: 1035
  issue: 9
  year: 2009
  ident: 9992_CR21
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000075
– volume: 3
  start-page: 91
  issue: 2
  year: 1998
  ident: 9992_CR20
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/0885-9507.00089
– volume: 24
  start-page: 1747
  year: 2010
  ident: 9992_CR45
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9522-2
– volume: 121
  start-page: 499
  issue: 6
  year: 1995
  ident: 9992_CR44
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(1995)121:6(499)
– volume: 27
  start-page: 185
  issue: 2
  year: 2004
  ident: 9992_CR7
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2003.10.003
– volume: 128
  start-page: 588
  issue: 6
  year: 2002
  ident: 9992_CR34
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2002)128:6(588)
– volume: 84
  start-page: 111
  year: 2007
  ident: 9992_CR49
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.07.010
– volume: 18
  start-page: 119
  issue: 2
  year: 2003
  ident: 9992_CR42
  publication-title: J Environ Modell Softw
  doi: 10.1016/S1364-8152(02)00068-3
– volume: 24
  start-page: 296
  year: 2009
  ident: 9992_CR30
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2008.07.004
– volume: 25
  start-page: 691
  year: 2011
  ident: 9992_CR18
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9721-x
– volume-title: Hydrological data: Streamflow and river suspended sediment records
  year: 1988
  ident: 9992_CR14
– volume: 40
  start-page: 467
  year: 2009
  ident: 9992_CR13
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.08.002
– volume: 15
  start-page: 101
  year: 2000
  ident: 9992_CR28
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 9992_CR33
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80056-5
SSID ssj0010090
Score 2.2399912
Snippet Estimation of suspended sediment discharge in rivers has a vital role in dealing with water resources problems and hydraulic structures. In this study, a...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1879
SubjectTerms Algorithms
Atmospheric Sciences
Case studies
Civil Engineering
Convergence
Discharge
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Environment
Exact sciences and technology
Freshwater
Geotechnical Engineering & Applied Earth Sciences
Hydraulic structures
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Load
Malaysia
Neural networks
Neurons
Performance evaluation
prediction
problem solving
Rivers
Sediment discharge
Sediment transport
sediment yield
Sediments
Stream flow
Suspended sediments
Training
Water resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZGdxlCEzDQCmMyEqdNFo1jJ_YBoTJtmpBWVfuBdovs2IZJXVqa9sCdP3zvOUm3ItFz7CTye_b77Pf5fYR8cioP0qjABipPmRClZSb4jEGsDNqYkHiD55AXo-z8Rny_lbdbZNTdhUFaZbcmxoXaTUs8I_-MEtQZJpX419lvhqpRmF3tJDRMK63gvsQSY8_INsfKWD2y_e10NL5c5RUAUcRTFw2bJgHBtMtzxst0Cc-QO8SZRkqmXItUL2amhkELjdrFGhz9J4MaA9PZS7LbIko6bFzgFdny1Wvy_EmdwT3y9xLZF_RqWUfFW0evIGThsSAdzzFRg8ahkTxAf8DeebqsabyYOzEAyOm44b7MoQ2W8oBvjRruOL1u9SXocPITxmrx675mbEhPIDJSJCj-oXcVvTDwmvrOvCE3Z6fXJ-eslV9gBjDUgqlgvVVOlM5JG7IkiMwJbzj3ymourQKwVHptQ8h8mSvJfZp4GcArHJfG5Olb0qumld8nVJc-MTLVzpWAWKxUPs2F4MEHK02uZZ8MuqEuyrY2OUpkTIrHqsponQKsU6B1CuhytOoyawpzbGp8uGa_VQ8O-EurATQ46AxatJO4Lh5drk8-rh7D9MOciqk8WKOIK5rCokMb2sCWG1DiQOR9ctw5y9PP_Oev323-qfdkh6O3RvblAekt5kv_ARDSwh62bv8A5UkQNg
  priority: 102
  providerName: ProQuest
Title River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia
URI https://link.springer.com/article/10.1007/s11269-012-9992-5
https://www.proquest.com/docview/1021639572
https://www.proquest.com/docview/1017980171
https://www.proquest.com/docview/1446273047
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoewEhVP7ElnZlJE6gSBvHTuxjqHZbFXW1aruonCI7tstKS1pttofeuPAGPCFPwoyTbLuoVOKUQ8ZO5LE933g-zxDy3srMCy19NJBZEnFemkh7l0ZgK73S2sdO4znk8Tg9nPKjc3He3uOuO7Z7F5IMO_XtZbeYpcjtYZFCyqTYIFsCs3nBJJ6yfBU6ANAQDlYU-EUc7GUXyryvizVj9PRK1zAuvilosYY4_wqSBtsz2ibPWtBI80bLz8kjV70gT-6kEnxJfp4gwYKeXtehqK2lp2CV8OSPThYYi8Hxp4EfQL-Aewz-Pg13b-caMDedNPSWBchgtg741rihh9OztoQEzecXl4vZ8tv3-vePXzndB-tHkYR4Q2cVPdbQTz3Tr8h0NDzbP4zaEguRBpy0jKQ3zkjLS2uF8WnseWq504w5aRQTRgIgKp0y3qeuzKRgLomd8KB5y4TWWfKabFaXlXtDqCpdrEWirC0BlRghXZJxzrzzRuhMiR4ZdGNdlG3-cSyDMS9uMyejegpQT4HqKaDJh1WTqyb5xkPC_TUFrlowwFhKDkBgt9No0S7UusDK5inGKlmPvFu9hiWGcRNdOVBHEXYtiYmFHpABtxqQ4IBnPfKxmy13P_OPv975L-m35DHD2RsIl7tkc7m4dnsAipamTzbk6KBPtvKDr5-H8Pw0HE9O-mFp_AGCKQwL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewCEEE8RKMVIcAFZzXrtXe-hQqG0SmkTRW2Kelvstd1WCpuQTYR653fx25jZR9ogkVvP68fufmPPN57xDCHvrIq91MqztopDJkRmmPYuYqArfaK1D5zGc8heP-qeiq9n8myN_GnuwmBYZbMnlhu1HWd4Rr6NJagjdCrxT5OfDKtGoXe1KaGh69IKdqdMMVZf7Dh0V7_AhCt2Dr4A3u85398b7nZZXWWAaaAKM6a8cUZZkVkrjY8CLyIrnObcKZNwaRRwgswlxvvIZbGS3IWBkx4-3nKpdRzCuHfIhghFAsbfxue9_uB44ccABlOe8iRgpAlQ3o1ftby8F_AIY5U4SzAEVC5pxgcTXQBIvqqusUR___HYlopw_xF5WDNY2qlE7jFZc_kTcv9GXsOn5PcxRnvQk3lRVti19ARUJB5D0sEUHUMoDLQMVqDfwFYfzwtaXgQeaTAA6KCKtZlCG0wdAnP1q1h1OqzrWdDO6BywmV38KBjr0F3QxBQDIq_oZU57GoYpLvUzcnorQDwn6_k4dy8ITTIXaBkm1mbAkIxULoyF4N55I3WcyBZpN786zepc6FiSY5ReZ3FGdFJAJ0V0UujyYdFlUiUCWdV4awm_RQ8OfC9RbWiw2QCa1ptGkV6LeIu8XTyG5Y4-HJ07QCMtd1CFSY5WtAETH1hpW8Qt8rERlpvT_OetX65-qTfkbnfYO0qPDvqHr8g9jpJbRn5ukvXZdO5eAzubma16CVDy_bZX3V8B9lB2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGkBAIIT5FYQwjwQvIWuPYifOAULVRNsaqim1ob8GO7W1SSUvTCu2dX8Wv414n6VYk-rbn2Pk6177Hvsf3EvLaqtRLrTzrqjRmQhSGae8SBr7SZ1r7yGnchzwYJLvH4vOJPFkjf9qzMCirbOfEMFHbcYF75FtYgjrBoBLf8o0sYrjT_zD5ybCCFEZa23IatYnsu4tfsHyr3u_tANZvOO9_PNreZU2FAaaBJsyY8sYZZUVhrTQ-ibxIrHCac6dMxqVRwAcKlxnvE1ekSnIXR056-HDLpdZpDPe9QW6mmMUdT6n3Py0iGMBdwv5OBsszAW67jaiGY3sRT1ClxFmG4k-55BPvTnQF8Pi6rsYS8f0nVhtcYP8-uddwV9qrje0BWXPlQ3LnSkbDR-T3V9R50MN5FWrrWnoIzhE3IOlwiiEhNAMaZAr0G6zSx_OKhiPAIw3Unw5rlc0U2mDSEHjWoFap06OmkgXtjU4BidnZj4qxHt0GH0xRCnlBz0t6oOE21bl-TI6vBYYnZL0cl-4poVnhIi3jzNoCuJGRysWpENw7b6ROM9kh3fZX50WTBR2LcYzyy_zNiE4O6OSITg5d3i66TOoUIKsaby7ht-jBgellqgsNNlpA82a6qPJL4-6QV4vLMNAxeqNLB2jkYe5UmN5oRRtY3AMf7Yq0Q961xnL1Mf9562erX-oluQVjLf-yN9h_Tm5zNNwg-dwg67Pp3L0AWjYzm8H-Kfl-3QPuL9wuThA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=River+Suspended+Sediment+Prediction+Using+Various+Multilayer+Perceptron+Neural+Network+Training+Algorithms%E2%80%94A+Case+Study+in+Malaysia&rft.jtitle=Water+resources+management&rft.au=Mustafa%2C+M.+R.&rft.au=Rezaur%2C+R.+B.&rft.au=Saiedi%2C+S.&rft.au=Isa%2C+M.+H.&rft.date=2012-05-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=26&rft.issue=7&rft.spage=1879&rft.epage=1897&rft_id=info:doi/10.1007%2Fs11269-012-9992-5&rft.externalDocID=10_1007_s11269_012_9992_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon