Non-uniqueness with refraction inversion - the Mt Bulga shear zone

ABSTRACT The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is...

Full description

Saved in:
Bibliographic Details
Published inGeophysical Prospecting Vol. 58; no. 4; pp. 561 - 575
Main Author Palmer, Derecke
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2010
Blackwell
Subjects
Online AccessGet full text
ISSN0016-8025
1365-2478
DOI10.1111/j.1365-2478.2009.00855.x

Cover

Abstract ABSTRACT The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable.
AbstractList The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable.
ABSTRACT The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable.
The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study.
Author Palmer, Derecke
Author_xml – sequence: 1
  givenname: Derecke
  surname: Palmer
  fullname: Palmer, Derecke
  email: d.palmer@unsw.edu.au
  organization: School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney 2052, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22811918$$DView record in Pascal Francis
BookMark eNqNkM1O3DAUhS1EJQbKO3iDWCW1c-PYI1VIBbVTJKAI8SOxuXIcp-NpcKidKQNPj8MAi67wxlfy-Y7PPdtk0_feEkI5y3k6XxY5h0pkRSlVXjA2zRlTQuSrDTJ5f9gkE8Z4lSlWiC2yHeOCMWBClBNyeNb7bOnd36X1Nkb64IY5DbYN2gyu99T5fzbEccroMLf0dKCHy-63pnFudaBPKcxn8qnVXbS7r_cOufrx_fLoZ3bya3Z89O0k0yUIkQkAxjnUUCsA2aZcoqnL0paNhKYELZu6qQtVs1YKbUCBZKYVthS6MaaoCtgh-2vf-9CnuHHAOxeN7Trtbb-MKAXICqbVNCn3XpU6Gt2lZbxxEe-Du9PhEYtCcT7lKukO1joT-hjT1mjcoMe9h6Bdh5zh2DEucKwSxypx7BhfOsZVMlD_Gbz98QH06xp9cJ19_DCHs_OLNCQ8W-MuDnb1juvwBysJUuDN2QxPLy-uZyxZ3sIzdPujjw
CODEN GPPRAR
CitedBy_id crossref_primary_10_1071_EG11012
crossref_primary_10_1071_EG11023
crossref_primary_10_1111_1365_2478_12240
crossref_primary_10_1190_tle32060680_1
crossref_primary_10_1071_EG11029
crossref_primary_10_1016_j_jappgeo_2011_03_004
crossref_primary_10_1190_geo2013_0422_1
crossref_primary_10_1071_EG09028
crossref_primary_10_1190_geo2022_0540_1
crossref_primary_10_3997_1873_0604_2014031
Cites_doi 10.1046/j.1365-2478.2003.00365.x
10.1111/j.1365-2478.1991.tb00358.x
10.1071/EG05018
10.3997/1365-2397.26.8.28507
10.1071/EG05007
10.1190/1.1487103
10.1111/j.1365-2478.2009.00818.x
10.1190/1.1487104
10.3997/1365-2397.2009010
10.1190/1.1443514
10.1190/1.9781560801900
10.1190/1.1441157
10.1144/GSL.QJEG.1980.013.03.01
10.1190/1.1439464
10.1016/0016-7142(79)90036-X
10.1007/s00024-004-2615-1
10.1071/EG01307
10.1111/j.1365-2478.2005.00478.x
10.1109/TGRS.1984.6499187
10.1111/j.1365-2478.1959.tb01460.x
10.1201/NOE0415364409
10.1190/1.1438961
10.1071/EG08019
10.1007/s00024-004-2616-0
10.1111/j.1365-2478.1956.tb01401.x
10.1130/G20190.2
10.1071/ASEG2003ab123
10.1111/j.1365-2478.2006.00567.x
10.3138/9781442652668
10.1190/1.9781560802426
10.1071/EG08119
ContentType Journal Article
Copyright 2010 European Association of Geoscientists & Engineers
2015 INIST-CNRS
Copyright_xml – notice: 2010 European Association of Geoscientists & Engineers
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SM
8FD
FR3
KR7
DOI 10.1111/j.1365-2478.2009.00855.x
DatabaseName Istex
CrossRef
Pascal-Francis
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
DatabaseTitleList CrossRef

Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 575
ExternalDocumentID 22811918
10_1111_j_1365_2478_2009_00855_x
GPR855
ark_67375_WNG_MTRVG010_Z
Genre article
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
BSCLL
DDYGU
FZ0
PALCI
AAYXX
CITATION
IQODW
7SM
8FD
FR3
KR7
ID FETCH-LOGICAL-a4355-5330113b3b8337f2475db44e4d73d43a7dbdb28b0f75ac38370cf5e45adcc2623
IEDL.DBID DR2
ISSN 0016-8025
IngestDate Thu Oct 02 05:45:05 EDT 2025
Mon Jul 21 09:11:59 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Tue Jul 01 01:43:22 EDT 2025
Sat Aug 24 01:10:11 EDT 2024
Sun Sep 21 06:18:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords reversals
waves
algorithms
models
inverse problem
computer programs
geologic sections
spectral analysis
accuracy
weathering
velocity
seismic profiles
velocity analysis
lateral variations
boreholes
amplitude
tomography
shear zones
travel time
reduction
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4355-5330113b3b8337f2475db44e4d73d43a7dbdb28b0f75ac38370cf5e45adcc2623
Notes ark:/67375/WNG-MTRVG010-Z
ArticleID:GPR855
istex:0684436E8918737A2A81AABBC10B7E82F42D7597
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 753763969
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_753763969
pascalfrancis_primary_22811918
crossref_citationtrail_10_1111_j_1365_2478_2009_00855_x
crossref_primary_10_1111_j_1365_2478_2009_00855_x
wiley_primary_10_1111_j_1365_2478_2009_00855_x_GPR855
istex_primary_ark_67375_WNG_MTRVG010_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: July 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Geophysical Prospecting
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Palmer D. 2010. Non-uniqueness with refraction inversion - A synclinal model study. Geophysical Prospecting. doi:10.1111/j.1365-2478.2009.00818.x
Simpson G. 2004. Role of river incision in enhancing deformation. Geology 32, 341-344. doi:10.1130/G20190.2
De Franco R. 2005. Multi-refractor imaging with stacked refraction convolution section. Geophysical Prospecting 53, 335-348.
Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26(8), 69-77.
Fell R., MacGregor P. and Stapledon D. 2005. Geotechnical Engineering of Dams. CRC Press. ISBN 9780415364409.
Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147.
Palmer D. 2009a. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40/Butsuri-Tansa62/Mulli-Tamsa12, 85-98.
Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141
Červený V. and Ravindra R. 1971. Theory of Seismic Head Waves. University of Toronto Press.
Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060.
Palmer D. 1986. Refraction Seismic: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press.
Oldenburg D.W. 1984. An introduction to linear inverse theory. Trans IEEE Geoscience and Remote Sensing GE-22, 665-674.
Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323.
Palmer D. 2001a. Imaging refractors with the convolution section. Geophysics 66, 1582-1589.
Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182.
Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137.
Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604.
Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518.
Palmer D. 2009b. Integrating long and short wavelength time and amplitude statics. First Break 27(6), 57-65.
Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166.
Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477.
Palmer D. 2001c. Measurement of rock fabric in shallow refraction seismology. Exploration Geophysics 32, 907-914.
Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I: Types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459.
Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt). The Leading Edge 7, 32-35.
Palmer D. 1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation. SEG.
Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819.
Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17.
Chopra S. and Marfurt K.J. 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG.
Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203.
Nichols T.C. 1980. Rebound -Its nature and effect on engineering works. Quarterly Journal of Engineering Geology 13, 133-152.
Palmer D. 2001b. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593.
Palmer D. and Jones L. 2005. A simple approach to refraction statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 36, 18-25.
2009b; 27
1979; 17
1991; 39
2001c; 32
2006; 54
2010
2008; 39
1981; 46
2007
2005
1971
2001b; 66
2003
2001a; 66
2003; 51
1939; 17
1959; 7
1956
2004; 32
1993; 58
1984; GE‐22
1980; 13
2009a
2005a; 162
1988; 7
2005b; 162
1986
2008; 26
2005; 53
1980
1961; 26
1956; 4
2005; 36
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Hagiwara T. (e_1_2_6_9_1) 1939; 17
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Palmer D. (e_1_2_6_17_1) 1986
Palmer D. (e_1_2_6_24_1) 2008; 26
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Palmer D. (e_1_2_6_26_1) 2009; 27
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – reference: Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt). The Leading Edge 7, 32-35.
– reference: Palmer D. 2010. Non-uniqueness with refraction inversion - A synclinal model study. Geophysical Prospecting. doi:10.1111/j.1365-2478.2009.00818.x
– reference: Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137.
– reference: Palmer D. 2001c. Measurement of rock fabric in shallow refraction seismology. Exploration Geophysics 32, 907-914.
– reference: Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17.
– reference: Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518.
– reference: Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147.
– reference: Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141
– reference: Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323.
– reference: Červený V. and Ravindra R. 1971. Theory of Seismic Head Waves. University of Toronto Press.
– reference: Palmer D. 2001a. Imaging refractors with the convolution section. Geophysics 66, 1582-1589.
– reference: Palmer D. 2001b. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593.
– reference: Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604.
– reference: Nichols T.C. 1980. Rebound -Its nature and effect on engineering works. Quarterly Journal of Engineering Geology 13, 133-152.
– reference: Palmer D. 2009b. Integrating long and short wavelength time and amplitude statics. First Break 27(6), 57-65.
– reference: Chopra S. and Marfurt K.J. 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG.
– reference: Simpson G. 2004. Role of river incision in enhancing deformation. Geology 32, 341-344. doi:10.1130/G20190.2
– reference: Palmer D. 1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation. SEG.
– reference: Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I: Types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459.
– reference: Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060.
– reference: Fell R., MacGregor P. and Stapledon D. 2005. Geotechnical Engineering of Dams. CRC Press. ISBN 9780415364409.
– reference: Palmer D. and Jones L. 2005. A simple approach to refraction statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 36, 18-25.
– reference: Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166.
– reference: Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182.
– reference: Palmer D. 1986. Refraction Seismic: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press.
– reference: Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477.
– reference: Oldenburg D.W. 1984. An introduction to linear inverse theory. Trans IEEE Geoscience and Remote Sensing GE-22, 665-674.
– reference: Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203.
– reference: De Franco R. 2005. Multi-refractor imaging with stacked refraction convolution section. Geophysical Prospecting 53, 335-348.
– reference: Palmer D. 2009a. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40/Butsuri-Tansa62/Mulli-Tamsa12, 85-98.
– reference: Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819.
– reference: Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26(8), 69-77.
– volume: 66
  start-page: 1582
  year: 2001a
  end-page: 1589
  article-title: Imaging refractors with the convolution section
  publication-title: Geophysics
– year: 2005
– volume: 53
  start-page: 335
  year: 2005
  end-page: 348
  article-title: Multi‐refractor imaging with stacked refraction convolution section
  publication-title: Geophysical Prospecting
– volume: 26
  start-page: 69
  issue: 8
  year: 2008
  end-page: 77
  article-title: Is it time to re‐engineer geotechnical seismic refraction methods?
  publication-title: First Break
– volume: 32
  start-page: 907
  year: 2001c
  end-page: 914
  article-title: Measurement of rock fabric in shallow refraction seismology
  publication-title: Exploration Geophysics
– year: 2007
– volume: 7
  start-page: 158
  year: 1959
  end-page: 182
  article-title: The plus‐minus method of interpreting seismic refraction sections
  publication-title: Geophysical Prospecting
– year: 2003
– volume: 39
  start-page: 139
  year: 2008
  end-page: 147
  article-title: Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section
  publication-title: Exploration Geophysics
– year: 1971
– volume: 39
  start-page: 1031
  year: 1991
  end-page: 1060
  article-title: The resolution of narrow low‐velocity zones with the generalized reciprocal method
  publication-title: Geophysical Prospecting
– volume: 17
  start-page: 125
  year: 1979
  end-page: 141
  article-title: Velocity inversion and the shallow seismic refraction method
  publication-title: Geoexploration
– volume: 26
  start-page: 806
  year: 1961
  end-page: 819
  article-title: The reciprocal method of routine shallow seismic refraction investigations
  publication-title: Geophysics
– volume: 66
  start-page: 1590
  year: 2001b
  end-page: 1593
  article-title: Resolving refractor ambiguities with amplitudes
  publication-title: Geophysics
– volume: 58
  start-page: 1314
  year: 1993
  end-page: 1323
  article-title: Wavepath eikonal traveltime inversion: Theory
  publication-title: Geophysics
– volume: 162
  start-page: 461
  year: 2005b
  end-page: 477
  article-title: The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three‐layer model
  publication-title: Pure and Applied Geophysics
– volume: 7
  start-page: 32
  year: 1988
  end-page: 35
  article-title: Geophysical examples of inversion (with a grain of salt)
  publication-title: The Leading Edge
– volume: 17
  start-page: 118
  year: 1939
  end-page: 137
  article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting)
  publication-title: Tokyo University Earthquake Research Institute Bulletin
– year: 1986
– volume: 13
  start-page: 133
  year: 1980
  end-page: 152
  article-title: Rebound –Its nature and effect on engineering works
  publication-title: Quarterly Journal of Engineering Geology
– volume: 162
  start-page: 447
  year: 2005a
  end-page: 459
  article-title: The inverse problem of refraction travel times, part I: Types of geophysical nonuniqueness through minimization
  publication-title: Pure and Applied Geophysics
– year: 1980
– volume: 36
  start-page: 7
  year: 2005
  end-page: 17
  article-title: Statics corrections for shallow seismic refraction data
  publication-title: Exploration Geophysics
– volume: 4
  start-page: 140
  year: 1956
  end-page: 166
  article-title: Some problems of shallow refraction investigations
  publication-title: Geophysical Prospecting
– start-page: 85
  year: 2009a
  end-page: 98
  article-title: Maximising the lateral resolution of near‐surface seismic refraction methods
  publication-title: Exploration Geophysics
– volume: 27
  start-page: 57
  issue: 6
  year: 2009b
  end-page: 65
  article-title: Integrating long and short wavelength time and amplitude statics
  publication-title: First Break
– volume: 51
  start-page: 195
  year: 2003
  end-page: 203
  article-title: Velocity imaging by tau‐p transformation of refracted traveltimes
  publication-title: Geophysical Prospecting
– year: 2010
  article-title: Non‐uniqueness with refraction inversion – A synclinal model study
  publication-title: Geophysical Prospecting
– volume: 46
  start-page: 1508
  year: 1981
  end-page: 1518
  article-title: An introduction to the generalized reciprocal method of seismic refraction interpretation
  publication-title: Geophysics
– volume: 36
  start-page: 18
  year: 2005
  end-page: 25
  article-title: A simple approach to refraction statics with the generalized reciprocal method and the refraction convolution section
  publication-title: Exploration Geophysics
– volume: 32
  start-page: 341
  year: 2004
  end-page: 344
  article-title: Role of river incision in enhancing deformation
  publication-title: Geology
– volume: 54
  start-page: 589
  year: 2006
  end-page: 604
  article-title: Refraction traveltime and amplitude corrections for very near‐surface inhomogeneities
  publication-title: Geophysical Prospecting
– volume: GE‐22
  start-page: 665
  year: 1984
  end-page: 674
  article-title: An introduction to linear inverse theory
  publication-title: Trans IEEE Geoscience and Remote Sensing
– start-page: 509
  year: 1956
  end-page: 515
– ident: e_1_2_6_2_1
  doi: 10.1046/j.1365-2478.2003.00365.x
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-2478.1991.tb00358.x
– ident: e_1_2_6_28_1
  doi: 10.1071/EG05018
– volume: 26
  start-page: 69
  issue: 8
  year: 2008
  ident: e_1_2_6_24_1
  article-title: Is it time to re‐engineer geotechnical seismic refraction methods?
  publication-title: First Break
  doi: 10.3997/1365-2397.26.8.28507
– ident: e_1_2_6_29_1
  doi: 10.1071/EG05007
– ident: e_1_2_6_19_1
  doi: 10.1190/1.1487103
– volume-title: Refraction Seismic: The Lateral Resolution of Structure and Seismic Velocity
  year: 1986
  ident: e_1_2_6_17_1
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-2478.2009.00818.x
– ident: e_1_2_6_20_1
  doi: 10.1190/1.1487104
– volume: 27
  start-page: 57
  issue: 6
  year: 2009
  ident: e_1_2_6_26_1
  article-title: Integrating long and short wavelength time and amplitude statics
  publication-title: First Break
  doi: 10.3997/1365-2397.2009010
– ident: e_1_2_6_31_1
  doi: 10.1190/1.1443514
– ident: e_1_2_6_4_1
  doi: 10.1190/1.9781560801900
– ident: e_1_2_6_16_1
  doi: 10.1190/1.1441157
– ident: e_1_2_6_13_1
  doi: 10.1144/GSL.QJEG.1980.013.03.01
– ident: e_1_2_6_33_1
  doi: 10.1190/1.1439464
– ident: e_1_2_6_34_1
  doi: 10.1016/0016-7142(79)90036-X
– ident: e_1_2_6_11_1
  doi: 10.1007/s00024-004-2615-1
– ident: e_1_2_6_21_1
  doi: 10.1071/EG01307
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-2478.2005.00478.x
– ident: e_1_2_6_14_1
  doi: 10.1109/TGRS.1984.6499187
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1365-2478.1959.tb01460.x
– ident: e_1_2_6_6_1
  doi: 10.1201/NOE0415364409
– ident: e_1_2_6_10_1
  doi: 10.1190/1.1438961
– ident: e_1_2_6_30_1
  doi: 10.1071/EG08019
– ident: e_1_2_6_12_1
  doi: 10.1007/s00024-004-2616-0
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1365-2478.1956.tb01401.x
– ident: e_1_2_6_35_1
– ident: e_1_2_6_32_1
  doi: 10.1130/G20190.2
– ident: e_1_2_6_22_1
  doi: 10.1071/ASEG2003ab123
– volume: 17
  start-page: 118
  year: 1939
  ident: e_1_2_6_9_1
  article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting)
  publication-title: Tokyo University Earthquake Research Institute Bulletin
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2478.2006.00567.x
– ident: e_1_2_6_3_1
  doi: 10.3138/9781442652668
– ident: e_1_2_6_15_1
  doi: 10.1190/1.9781560802426
– ident: e_1_2_6_25_1
  doi: 10.1071/EG08119
SSID ssj0030554
ssj0017384
Score 1.937529
Snippet ABSTRACT The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography....
The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this...
The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 561
SubjectTerms Algorithms
Applied geophysics
Computer programs
Data processing
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Inversion
Inversions
Mathematical models
Prospecting
Refraction
Seismic phenomena
Seismics
Shear zone
Tomography
Velocity analysis
Title Non-uniqueness with refraction inversion - the Mt Bulga shear zone
URI https://api.istex.fr/ark:/67375/WNG-MTRVG010-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2478.2009.00855.x
https://www.proquest.com/docview/753763969
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0016-8025
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RaxQxEB6kIuhDq1XxrJY8iG97dDdJk33U4l0R7pCj1eJLSHazIlf2yt2t1D71Jwj-w_6SziR3y634UMS3XZYJyWRmMsl--QbgTU5l3mzhEusqkYjK-iR3kie6VFYL7iz3dHd4ND48PhUfz-TZCv9Ed2EiP0R74EaeEeI1Obh1i66TB4SWUHpNO6ml7FM-iR_C7mrSMkmlitN9zPhCJFeRnTklMt5MdhE-f221s2zdpxm4JBilXaAmq1gCo5Ojbma6Yaka7MB0PciIUJn2m6XrF1d_8D_-Hy08hu1VRsveRRN8Avd8vQuPNngOd-HBMNQP_vkUBuNZfXP9qwm0sRRlGR0EMxzvPN6wYN_rH_EIj91c_2aYnrLRkr1vzr9ZtqDq2-xqVvtncDr4cHJ0nKxKOSQW8zGZEIY1TbnjTnOuKuyuLJ0QXpSKl4JbVbrSZdodVEragnbNB0UlvZC2LIoMU7TnsFVj8y-AeUGEOxiVK1cI6YRDqRwjk3ZCZ8LmPVDrmTLFiuecym2cm439DurMkM6oCmdugs7MZQ_SVvIicn3cQeZtMIZWwM6nhJVT0nwZD83oZPJ5iFte87UH-x1raQWyTBPJnu4BW5uPQRen_za29rNmYRRR7vD8EIcmgy3cuXdm-GmCDy__UW4PHkawBKGTX8HWct7415iDLd1-8K5bNEwhOg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB6hXSHgwM_CivKz-IC4pdrEdu0cAdEW2Fao6sKKi2UnDkJbpaht0LKnfQQk3nCfhJm4jRrEYYW4JYex7PGM881k_A3A85TavNnMRdYVIhKF9VHqJI90rqwW3Fnu6e7waNwbHot3J_Jk3Q6I7sIEfogm4UaeUZ_X5OCUkG57eV2iJZTe8E5qKbsIKHdFD8MWQkiThksqVpxuZIYXorkK_Mwx0fEmsl3j89dhWx-uXdqDMyqktEvUZRGaYLRQ6jbWrT9W_Tsw2ywz1KicdquV62bnfzBA_ic93IXba1DLXgYrvAfXfLkHt7aoDvfg-qBuIfzjPvTH8_Ly4mdVM8fSQcsoF8xwwYtwyYJ9Lb-HLB67vPjFEKGy0Yq9qmZfLFtSA252Pi_9Azjuv5m-Hkbrbg6RRUgmIypjjWPuuNOcqwKnK3MnhBe54rngVuUud4l2h4WSNqPA-TArpBfS5lmWIErbh50Sh38IzAvi3MGDuXCZkE44lErxcNJO6ETYtANqs1UmW1OdU8eNmdkKeVBnhnRGjThTU-vMnHUgbiS_BbqPK8i8qK2hEbCLUyqXU9J8Gg_MaDr5OMCo13zuwEHLXBqBJNHEs6c7wDb2Y9DL6deNLf28WhpFrDs87eHSZG0MV56dGXyY4MOjf5R7BjeG09GROXo7fv8YbobaCSpWfgI7q0XlnyIkW7mD2tV-A1_zJVs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hVq3gQH8AsVCKD4hbVk1s186xUHYLdFfVqoWKi2UnDkJdZavdDWp76iMg9Q37JPXYu9Gm4lAhbslhLHs8Mxk733wD8C7FNm86M5E2BYtYoW2UGk4jmQstGTWaWqwd7vV3D07Yl1N-OmsHhLUwgR-ivnBDz_DxGh3cnudF08s9RIsJOeedlJy3XUK5zHgqEd-3P6i5pGJBsSIzvCDNVeBnjpGON-FNjM9fh218uJZxDy4QSKknTpdFaILRyFIXc13_seqswXC-zIBROWtXU9POru4xQP4nPazD01lSS_aCFW7AI1tuwpMFqsNNWOn6FsKXz6DTH5W3138qzxyLgZbgXTBxCx6HIgvyq_wdbvHI7fUNcRkq6U3Jh2r4U5MJNuAmV6PSPoeTzqfjjwfRrJtDpF1KxiOEscYxNdRISkXhpstzw5hluaA5o1rkJjeJNDuF4DrDg_NOVnDLuM6zLHFZ2gtYKt3wL4FYhpw7LjAXJmPcMOOkUhecpGEyYTptgZhvlcpmVOfYcWOoFo48TmcKdYaNOFPldaYuWhDXkueB7uMBMu-9NdQCenyGcDnB1fd-V_WOB9-67tSrfrRgu2EutUCSSOTZky0gc_tRzsvx140u7aiaKIGsOzTddUvj3hgePDvVPRq4h1f_KPcWVo_2O-rwc__ra3gcoBOIVd6Cpem4sm9cRjY1297T7gDUoiTf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-uniqueness+with+refraction+inversion+-+the+Mt+Bulga+shear+zone&rft.jtitle=Geophysical+prospecting&rft.au=PALMER%2C+Derecke&rft.date=2010-07-01&rft.pub=Blackwell&rft.issn=0016-8025&rft.volume=58&rft.issue=4&rft.spage=561&rft.epage=575&rft_id=info:doi/10.1111%2Fj.1365-2478.2009.00855.x&rft.externalDBID=n%2Fa&rft.externalDocID=22811918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon