Non-uniqueness with refraction inversion - the Mt Bulga shear zone
ABSTRACT The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is...
        Saved in:
      
    
          | Published in | Geophysical Prospecting Vol. 58; no. 4; pp. 561 - 575 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford, UK
          Blackwell Publishing Ltd
    
        01.07.2010
     Blackwell  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0016-8025 1365-2478  | 
| DOI | 10.1111/j.1365-2478.2009.00855.x | 
Cover
| Abstract | ABSTRACT
The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study.
By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation.
Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default.
Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective.
Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable. | 
    
|---|---|
| AbstractList | The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study.
By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation.
Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default.
Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective.
Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable. ABSTRACT The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable. The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study.  | 
    
| Author | Palmer, Derecke | 
    
| Author_xml | – sequence: 1 givenname: Derecke surname: Palmer fullname: Palmer, Derecke email: d.palmer@unsw.edu.au organization: School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney 2052, Australia  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22811918$$DView record in Pascal Francis | 
    
| BookMark | eNqNkM1O3DAUhS1EJQbKO3iDWCW1c-PYI1VIBbVTJKAI8SOxuXIcp-NpcKidKQNPj8MAi67wxlfy-Y7PPdtk0_feEkI5y3k6XxY5h0pkRSlVXjA2zRlTQuSrDTJ5f9gkE8Z4lSlWiC2yHeOCMWBClBNyeNb7bOnd36X1Nkb64IY5DbYN2gyu99T5fzbEccroMLf0dKCHy-63pnFudaBPKcxn8qnVXbS7r_cOufrx_fLoZ3bya3Z89O0k0yUIkQkAxjnUUCsA2aZcoqnL0paNhKYELZu6qQtVs1YKbUCBZKYVthS6MaaoCtgh-2vf-9CnuHHAOxeN7Trtbb-MKAXICqbVNCn3XpU6Gt2lZbxxEe-Du9PhEYtCcT7lKukO1joT-hjT1mjcoMe9h6Bdh5zh2DEucKwSxypx7BhfOsZVMlD_Gbz98QH06xp9cJ19_DCHs_OLNCQ8W-MuDnb1juvwBysJUuDN2QxPLy-uZyxZ3sIzdPujjw | 
    
| CODEN | GPPRAR | 
    
| CitedBy_id | crossref_primary_10_1071_EG11012 crossref_primary_10_1071_EG11023 crossref_primary_10_1111_1365_2478_12240 crossref_primary_10_1190_tle32060680_1 crossref_primary_10_1071_EG11029 crossref_primary_10_1016_j_jappgeo_2011_03_004 crossref_primary_10_1190_geo2013_0422_1 crossref_primary_10_1071_EG09028 crossref_primary_10_1190_geo2022_0540_1 crossref_primary_10_3997_1873_0604_2014031  | 
    
| Cites_doi | 10.1046/j.1365-2478.2003.00365.x 10.1111/j.1365-2478.1991.tb00358.x 10.1071/EG05018 10.3997/1365-2397.26.8.28507 10.1071/EG05007 10.1190/1.1487103 10.1111/j.1365-2478.2009.00818.x 10.1190/1.1487104 10.3997/1365-2397.2009010 10.1190/1.1443514 10.1190/1.9781560801900 10.1190/1.1441157 10.1144/GSL.QJEG.1980.013.03.01 10.1190/1.1439464 10.1016/0016-7142(79)90036-X 10.1007/s00024-004-2615-1 10.1071/EG01307 10.1111/j.1365-2478.2005.00478.x 10.1109/TGRS.1984.6499187 10.1111/j.1365-2478.1959.tb01460.x 10.1201/NOE0415364409 10.1190/1.1438961 10.1071/EG08019 10.1007/s00024-004-2616-0 10.1111/j.1365-2478.1956.tb01401.x 10.1130/G20190.2 10.1071/ASEG2003ab123 10.1111/j.1365-2478.2006.00567.x 10.3138/9781442652668 10.1190/1.9781560802426 10.1071/EG08119  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 European Association of Geoscientists & Engineers 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2010 European Association of Geoscientists & Engineers – notice: 2015 INIST-CNRS  | 
    
| DBID | BSCLL AAYXX CITATION IQODW 7SM 8FD FR3 KR7  | 
    
| DOI | 10.1111/j.1365-2478.2009.00855.x | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Earthquake Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Earthquake Engineering Abstracts Civil Engineering Abstracts Engineering Research Database Technology Research Database  | 
    
| DatabaseTitleList | CrossRef Earthquake Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology Engineering  | 
    
| EISSN | 1365-2478 | 
    
| EndPage | 575 | 
    
| ExternalDocumentID | 22811918 10_1111_j_1365_2478_2009_00855_x GPR855 ark_67375_WNG_MTRVG010_Z  | 
    
| Genre | article | 
    
| GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM BSCLL DDYGU FZ0 PALCI AAYXX CITATION IQODW 7SM 8FD FR3 KR7  | 
    
| ID | FETCH-LOGICAL-a4355-5330113b3b8337f2475db44e4d73d43a7dbdb28b0f75ac38370cf5e45adcc2623 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0016-8025 | 
    
| IngestDate | Thu Oct 02 05:45:05 EDT 2025 Mon Jul 21 09:11:59 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Tue Jul 01 01:43:22 EDT 2025 Sat Aug 24 01:10:11 EDT 2024 Sun Sep 21 06:18:52 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | reversals waves algorithms models inverse problem computer programs geologic sections spectral analysis accuracy weathering velocity seismic profiles velocity analysis lateral variations boreholes amplitude tomography shear zones travel time reduction  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a4355-5330113b3b8337f2475db44e4d73d43a7dbdb28b0f75ac38370cf5e45adcc2623 | 
    
| Notes | ark:/67375/WNG-MTRVG010-Z ArticleID:GPR855 istex:0684436E8918737A2A81AABBC10B7E82F42D7597 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 753763969 | 
    
| PQPubID | 23500 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_753763969 pascalfrancis_primary_22811918 crossref_citationtrail_10_1111_j_1365_2478_2009_00855_x crossref_primary_10_1111_j_1365_2478_2009_00855_x wiley_primary_10_1111_j_1365_2478_2009_00855_x_GPR855 istex_primary_ark_67375_WNG_MTRVG010_Z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2010 | 
    
| PublicationDateYYYYMMDD | 2010-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2010 text: July 2010  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford, UK | 
    
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford  | 
    
| PublicationTitle | Geophysical Prospecting | 
    
| PublicationYear | 2010 | 
    
| Publisher | Blackwell Publishing Ltd Blackwell  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell  | 
    
| References | Palmer D. 2010. Non-uniqueness with refraction inversion - A synclinal model study. Geophysical Prospecting. doi:10.1111/j.1365-2478.2009.00818.x Simpson G. 2004. Role of river incision in enhancing deformation. Geology 32, 341-344. doi:10.1130/G20190.2 De Franco R. 2005. Multi-refractor imaging with stacked refraction convolution section. Geophysical Prospecting 53, 335-348. Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26(8), 69-77. Fell R., MacGregor P. and Stapledon D. 2005. Geotechnical Engineering of Dams. CRC Press. ISBN 9780415364409. Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147. Palmer D. 2009a. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40/Butsuri-Tansa62/Mulli-Tamsa12, 85-98. Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141 Červený V. and Ravindra R. 1971. Theory of Seismic Head Waves. University of Toronto Press. Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060. Palmer D. 1986. Refraction Seismic: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press. Oldenburg D.W. 1984. An introduction to linear inverse theory. Trans IEEE Geoscience and Remote Sensing GE-22, 665-674. Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323. Palmer D. 2001a. Imaging refractors with the convolution section. Geophysics 66, 1582-1589. Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182. Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137. Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604. Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518. Palmer D. 2009b. Integrating long and short wavelength time and amplitude statics. First Break 27(6), 57-65. Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166. Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477. Palmer D. 2001c. Measurement of rock fabric in shallow refraction seismology. Exploration Geophysics 32, 907-914. Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I: Types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459. Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt). The Leading Edge 7, 32-35. Palmer D. 1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation. SEG. Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819. Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17. Chopra S. and Marfurt K.J. 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG. Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203. Nichols T.C. 1980. Rebound -Its nature and effect on engineering works. Quarterly Journal of Engineering Geology 13, 133-152. Palmer D. 2001b. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593. Palmer D. and Jones L. 2005. A simple approach to refraction statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 36, 18-25. 2009b; 27 1979; 17 1991; 39 2001c; 32 2006; 54 2010 2008; 39 1981; 46 2007 2005 1971 2001b; 66 2003 2001a; 66 2003; 51 1939; 17 1959; 7 1956 2004; 32 1993; 58 1984; GE‐22 1980; 13 2009a 2005a; 162 1988; 7 2005b; 162 1986 2008; 26 2005; 53 1980 1961; 26 1956; 4 2005; 36 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 Hagiwara T. (e_1_2_6_9_1) 1939; 17 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Palmer D. (e_1_2_6_17_1) 1986 Palmer D. (e_1_2_6_24_1) 2008; 26 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 Palmer D. (e_1_2_6_26_1) 2009; 27 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1  | 
    
| References_xml | – reference: Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt). The Leading Edge 7, 32-35. – reference: Palmer D. 2010. Non-uniqueness with refraction inversion - A synclinal model study. Geophysical Prospecting. doi:10.1111/j.1365-2478.2009.00818.x – reference: Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137. – reference: Palmer D. 2001c. Measurement of rock fabric in shallow refraction seismology. Exploration Geophysics 32, 907-914. – reference: Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17. – reference: Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518. – reference: Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147. – reference: Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141 – reference: Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323. – reference: Červený V. and Ravindra R. 1971. Theory of Seismic Head Waves. University of Toronto Press. – reference: Palmer D. 2001a. Imaging refractors with the convolution section. Geophysics 66, 1582-1589. – reference: Palmer D. 2001b. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593. – reference: Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604. – reference: Nichols T.C. 1980. Rebound -Its nature and effect on engineering works. Quarterly Journal of Engineering Geology 13, 133-152. – reference: Palmer D. 2009b. Integrating long and short wavelength time and amplitude statics. First Break 27(6), 57-65. – reference: Chopra S. and Marfurt K.J. 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG. – reference: Simpson G. 2004. Role of river incision in enhancing deformation. Geology 32, 341-344. doi:10.1130/G20190.2 – reference: Palmer D. 1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation. SEG. – reference: Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I: Types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459. – reference: Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060. – reference: Fell R., MacGregor P. and Stapledon D. 2005. Geotechnical Engineering of Dams. CRC Press. ISBN 9780415364409. – reference: Palmer D. and Jones L. 2005. A simple approach to refraction statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 36, 18-25. – reference: Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166. – reference: Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182. – reference: Palmer D. 1986. Refraction Seismic: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press. – reference: Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477. – reference: Oldenburg D.W. 1984. An introduction to linear inverse theory. Trans IEEE Geoscience and Remote Sensing GE-22, 665-674. – reference: Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203. – reference: De Franco R. 2005. Multi-refractor imaging with stacked refraction convolution section. Geophysical Prospecting 53, 335-348. – reference: Palmer D. 2009a. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40/Butsuri-Tansa62/Mulli-Tamsa12, 85-98. – reference: Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819. – reference: Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26(8), 69-77. – volume: 66 start-page: 1582 year: 2001a end-page: 1589 article-title: Imaging refractors with the convolution section publication-title: Geophysics – year: 2005 – volume: 53 start-page: 335 year: 2005 end-page: 348 article-title: Multi‐refractor imaging with stacked refraction convolution section publication-title: Geophysical Prospecting – volume: 26 start-page: 69 issue: 8 year: 2008 end-page: 77 article-title: Is it time to re‐engineer geotechnical seismic refraction methods? publication-title: First Break – volume: 32 start-page: 907 year: 2001c end-page: 914 article-title: Measurement of rock fabric in shallow refraction seismology publication-title: Exploration Geophysics – year: 2007 – volume: 7 start-page: 158 year: 1959 end-page: 182 article-title: The plus‐minus method of interpreting seismic refraction sections publication-title: Geophysical Prospecting – year: 2003 – volume: 39 start-page: 139 year: 2008 end-page: 147 article-title: Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section publication-title: Exploration Geophysics – year: 1971 – volume: 39 start-page: 1031 year: 1991 end-page: 1060 article-title: The resolution of narrow low‐velocity zones with the generalized reciprocal method publication-title: Geophysical Prospecting – volume: 17 start-page: 125 year: 1979 end-page: 141 article-title: Velocity inversion and the shallow seismic refraction method publication-title: Geoexploration – volume: 26 start-page: 806 year: 1961 end-page: 819 article-title: The reciprocal method of routine shallow seismic refraction investigations publication-title: Geophysics – volume: 66 start-page: 1590 year: 2001b end-page: 1593 article-title: Resolving refractor ambiguities with amplitudes publication-title: Geophysics – volume: 58 start-page: 1314 year: 1993 end-page: 1323 article-title: Wavepath eikonal traveltime inversion: Theory publication-title: Geophysics – volume: 162 start-page: 461 year: 2005b end-page: 477 article-title: The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three‐layer model publication-title: Pure and Applied Geophysics – volume: 7 start-page: 32 year: 1988 end-page: 35 article-title: Geophysical examples of inversion (with a grain of salt) publication-title: The Leading Edge – volume: 17 start-page: 118 year: 1939 end-page: 137 article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting) publication-title: Tokyo University Earthquake Research Institute Bulletin – year: 1986 – volume: 13 start-page: 133 year: 1980 end-page: 152 article-title: Rebound –Its nature and effect on engineering works publication-title: Quarterly Journal of Engineering Geology – volume: 162 start-page: 447 year: 2005a end-page: 459 article-title: The inverse problem of refraction travel times, part I: Types of geophysical nonuniqueness through minimization publication-title: Pure and Applied Geophysics – year: 1980 – volume: 36 start-page: 7 year: 2005 end-page: 17 article-title: Statics corrections for shallow seismic refraction data publication-title: Exploration Geophysics – volume: 4 start-page: 140 year: 1956 end-page: 166 article-title: Some problems of shallow refraction investigations publication-title: Geophysical Prospecting – start-page: 85 year: 2009a end-page: 98 article-title: Maximising the lateral resolution of near‐surface seismic refraction methods publication-title: Exploration Geophysics – volume: 27 start-page: 57 issue: 6 year: 2009b end-page: 65 article-title: Integrating long and short wavelength time and amplitude statics publication-title: First Break – volume: 51 start-page: 195 year: 2003 end-page: 203 article-title: Velocity imaging by tau‐p transformation of refracted traveltimes publication-title: Geophysical Prospecting – year: 2010 article-title: Non‐uniqueness with refraction inversion – A synclinal model study publication-title: Geophysical Prospecting – volume: 46 start-page: 1508 year: 1981 end-page: 1518 article-title: An introduction to the generalized reciprocal method of seismic refraction interpretation publication-title: Geophysics – volume: 36 start-page: 18 year: 2005 end-page: 25 article-title: A simple approach to refraction statics with the generalized reciprocal method and the refraction convolution section publication-title: Exploration Geophysics – volume: 32 start-page: 341 year: 2004 end-page: 344 article-title: Role of river incision in enhancing deformation publication-title: Geology – volume: 54 start-page: 589 year: 2006 end-page: 604 article-title: Refraction traveltime and amplitude corrections for very near‐surface inhomogeneities publication-title: Geophysical Prospecting – volume: GE‐22 start-page: 665 year: 1984 end-page: 674 article-title: An introduction to linear inverse theory publication-title: Trans IEEE Geoscience and Remote Sensing – start-page: 509 year: 1956 end-page: 515 – ident: e_1_2_6_2_1 doi: 10.1046/j.1365-2478.2003.00365.x – ident: e_1_2_6_18_1 doi: 10.1111/j.1365-2478.1991.tb00358.x – ident: e_1_2_6_28_1 doi: 10.1071/EG05018 – volume: 26 start-page: 69 issue: 8 year: 2008 ident: e_1_2_6_24_1 article-title: Is it time to re‐engineer geotechnical seismic refraction methods? publication-title: First Break doi: 10.3997/1365-2397.26.8.28507 – ident: e_1_2_6_29_1 doi: 10.1071/EG05007 – ident: e_1_2_6_19_1 doi: 10.1190/1.1487103 – volume-title: Refraction Seismic: The Lateral Resolution of Structure and Seismic Velocity year: 1986 ident: e_1_2_6_17_1 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2478.2009.00818.x – ident: e_1_2_6_20_1 doi: 10.1190/1.1487104 – volume: 27 start-page: 57 issue: 6 year: 2009 ident: e_1_2_6_26_1 article-title: Integrating long and short wavelength time and amplitude statics publication-title: First Break doi: 10.3997/1365-2397.2009010 – ident: e_1_2_6_31_1 doi: 10.1190/1.1443514 – ident: e_1_2_6_4_1 doi: 10.1190/1.9781560801900 – ident: e_1_2_6_16_1 doi: 10.1190/1.1441157 – ident: e_1_2_6_13_1 doi: 10.1144/GSL.QJEG.1980.013.03.01 – ident: e_1_2_6_33_1 doi: 10.1190/1.1439464 – ident: e_1_2_6_34_1 doi: 10.1016/0016-7142(79)90036-X – ident: e_1_2_6_11_1 doi: 10.1007/s00024-004-2615-1 – ident: e_1_2_6_21_1 doi: 10.1071/EG01307 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-2478.2005.00478.x – ident: e_1_2_6_14_1 doi: 10.1109/TGRS.1984.6499187 – ident: e_1_2_6_8_1 doi: 10.1111/j.1365-2478.1959.tb01460.x – ident: e_1_2_6_6_1 doi: 10.1201/NOE0415364409 – ident: e_1_2_6_10_1 doi: 10.1190/1.1438961 – ident: e_1_2_6_30_1 doi: 10.1071/EG08019 – ident: e_1_2_6_12_1 doi: 10.1007/s00024-004-2616-0 – ident: e_1_2_6_5_1 doi: 10.1111/j.1365-2478.1956.tb01401.x – ident: e_1_2_6_35_1 – ident: e_1_2_6_32_1 doi: 10.1130/G20190.2 – ident: e_1_2_6_22_1 doi: 10.1071/ASEG2003ab123 – volume: 17 start-page: 118 year: 1939 ident: e_1_2_6_9_1 article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting) publication-title: Tokyo University Earthquake Research Institute Bulletin – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2478.2006.00567.x – ident: e_1_2_6_3_1 doi: 10.3138/9781442652668 – ident: e_1_2_6_15_1 doi: 10.1190/1.9781560802426 – ident: e_1_2_6_25_1 doi: 10.1071/EG08119  | 
    
| SSID | ssj0030554 ssj0017384  | 
    
| Score | 1.937529 | 
    
| Snippet | ABSTRACT
The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography.... The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this... The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this...  | 
    
| SourceID | proquest pascalfrancis crossref wiley istex  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 561 | 
    
| SubjectTerms | Algorithms Applied geophysics Computer programs Data processing Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics Inversion Inversions Mathematical models Prospecting Refraction Seismic phenomena Seismics Shear zone Tomography Velocity analysis  | 
    
| Title | Non-uniqueness with refraction inversion - the Mt Bulga shear zone | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-MTRVG010-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2478.2009.00855.x https://www.proquest.com/docview/753763969  | 
    
| Volume | 58 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0016-8025 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2478 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017384 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RaxQxEB6kIuhDq1XxrJY8iG97dDdJk33U4l0R7pCj1eJLSHazIlf2yt2t1D71Jwj-w_6SziR3y634UMS3XZYJyWRmMsl--QbgTU5l3mzhEusqkYjK-iR3kie6VFYL7iz3dHd4ND48PhUfz-TZCv9Ed2EiP0R74EaeEeI1Obh1i66TB4SWUHpNO6ml7FM-iR_C7mrSMkmlitN9zPhCJFeRnTklMt5MdhE-f221s2zdpxm4JBilXaAmq1gCo5Ojbma6Yaka7MB0PciIUJn2m6XrF1d_8D_-Hy08hu1VRsveRRN8Avd8vQuPNngOd-HBMNQP_vkUBuNZfXP9qwm0sRRlGR0EMxzvPN6wYN_rH_EIj91c_2aYnrLRkr1vzr9ZtqDq2-xqVvtncDr4cHJ0nKxKOSQW8zGZEIY1TbnjTnOuKuyuLJ0QXpSKl4JbVbrSZdodVEragnbNB0UlvZC2LIoMU7TnsFVj8y-AeUGEOxiVK1cI6YRDqRwjk3ZCZ8LmPVDrmTLFiuecym2cm439DurMkM6oCmdugs7MZQ_SVvIicn3cQeZtMIZWwM6nhJVT0nwZD83oZPJ5iFte87UH-x1raQWyTBPJnu4BW5uPQRen_za29rNmYRRR7vD8EIcmgy3cuXdm-GmCDy__UW4PHkawBKGTX8HWct7415iDLd1-8K5bNEwhOg | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB6hXSHgwM_CivKz-IC4pdrEdu0cAdEW2Fao6sKKi2UnDkJbpaht0LKnfQQk3nCfhJm4jRrEYYW4JYex7PGM881k_A3A85TavNnMRdYVIhKF9VHqJI90rqwW3Fnu6e7waNwbHot3J_Jk3Q6I7sIEfogm4UaeUZ_X5OCUkG57eV2iJZTe8E5qKbsIKHdFD8MWQkiThksqVpxuZIYXorkK_Mwx0fEmsl3j89dhWx-uXdqDMyqktEvUZRGaYLRQ6jbWrT9W_Tsw2ywz1KicdquV62bnfzBA_ic93IXba1DLXgYrvAfXfLkHt7aoDvfg-qBuIfzjPvTH8_Ly4mdVM8fSQcsoF8xwwYtwyYJ9Lb-HLB67vPjFEKGy0Yq9qmZfLFtSA252Pi_9Azjuv5m-Hkbrbg6RRUgmIypjjWPuuNOcqwKnK3MnhBe54rngVuUud4l2h4WSNqPA-TArpBfS5lmWIErbh50Sh38IzAvi3MGDuXCZkE44lErxcNJO6ETYtANqs1UmW1OdU8eNmdkKeVBnhnRGjThTU-vMnHUgbiS_BbqPK8i8qK2hEbCLUyqXU9J8Gg_MaDr5OMCo13zuwEHLXBqBJNHEs6c7wDb2Y9DL6deNLf28WhpFrDs87eHSZG0MV56dGXyY4MOjf5R7BjeG09GROXo7fv8YbobaCSpWfgI7q0XlnyIkW7mD2tV-A1_zJVs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hVq3gQH8AsVCKD4hbVk1s186xUHYLdFfVqoWKi2UnDkJdZavdDWp76iMg9Q37JPXYu9Gm4lAhbslhLHs8Mxk733wD8C7FNm86M5E2BYtYoW2UGk4jmQstGTWaWqwd7vV3D07Yl1N-OmsHhLUwgR-ivnBDz_DxGh3cnudF08s9RIsJOeedlJy3XUK5zHgqEd-3P6i5pGJBsSIzvCDNVeBnjpGON-FNjM9fh218uJZxDy4QSKknTpdFaILRyFIXc13_seqswXC-zIBROWtXU9POru4xQP4nPazD01lSS_aCFW7AI1tuwpMFqsNNWOn6FsKXz6DTH5W3138qzxyLgZbgXTBxCx6HIgvyq_wdbvHI7fUNcRkq6U3Jh2r4U5MJNuAmV6PSPoeTzqfjjwfRrJtDpF1KxiOEscYxNdRISkXhpstzw5hluaA5o1rkJjeJNDuF4DrDg_NOVnDLuM6zLHFZ2gtYKt3wL4FYhpw7LjAXJmPcMOOkUhecpGEyYTptgZhvlcpmVOfYcWOoFo48TmcKdYaNOFPldaYuWhDXkueB7uMBMu-9NdQCenyGcDnB1fd-V_WOB9-67tSrfrRgu2EutUCSSOTZky0gc_tRzsvx140u7aiaKIGsOzTddUvj3hgePDvVPRq4h1f_KPcWVo_2O-rwc__ra3gcoBOIVd6Cpem4sm9cRjY1297T7gDUoiTf | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-uniqueness+with+refraction+inversion+-+the+Mt+Bulga+shear+zone&rft.jtitle=Geophysical+prospecting&rft.au=PALMER%2C+Derecke&rft.date=2010-07-01&rft.pub=Blackwell&rft.issn=0016-8025&rft.volume=58&rft.issue=4&rft.spage=561&rft.epage=575&rft_id=info:doi/10.1111%2Fj.1365-2478.2009.00855.x&rft.externalDBID=n%2Fa&rft.externalDocID=22811918 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |