Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs

Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB...

Full description

Saved in:
Bibliographic Details
Published inGeomorphology (Amsterdam, Netherlands) Vol. 260; pp. 32 - 50
Main Authors Persendt, F.C., Gomez, C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2016
Subjects
Online AccessGet full text
ISSN0169-555X
1872-695X
DOI10.1016/j.geomorph.2015.06.047

Cover

Abstract Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The ‘maximum gradient deterministic eight (D8)’ GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study area, underestimated total stream lengths for field-mapped channels by −15.3% and −88.5%, respectively. This study also confirmed that DNs can be extracted from complex low-terrain areas with standard GIS algorithms and accurate field data. The results will aid national mapping agencies in data-poor regions to modernize their national hydrography datasets and to account for changing land surface conditions that can affect channel spatial arrangements over time. •Assessment of extractions of digital drainage networks in low-relief landforms from multiple data sources using standard GIS-based flow-accumulation algorithms•Extraction of drainage networks from corrected and uncorrected high resolution LiDAR DEMs using area threshold and curvature/drop analysis methods with different flow accumulation threshold values•Comparison of field-mapped drainage network to the ones modelled and extracted from orthophotographs, topographic maps and other auxiliary data using spatial analyses of geomorphologic indices and parameters.•We found that “hydrologically corrected” LiDAR can produce accurate drainage networks similar to field-mapped networks but more accurate than blue lines derived from the national topographic maps.
AbstractList Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The ‘maximum gradient deterministic eight (D8)’ GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study area, underestimated total stream lengths for field-mapped channels by −15.3% and −88.5%, respectively. This study also confirmed that DNs can be extracted from complex low-terrain areas with standard GIS algorithms and accurate field data. The results will aid national mapping agencies in data-poor regions to modernize their national hydrography datasets and to account for changing land surface conditions that can affect channel spatial arrangements over time. •Assessment of extractions of digital drainage networks in low-relief landforms from multiple data sources using standard GIS-based flow-accumulation algorithms•Extraction of drainage networks from corrected and uncorrected high resolution LiDAR DEMs using area threshold and curvature/drop analysis methods with different flow accumulation threshold values•Comparison of field-mapped drainage network to the ones modelled and extracted from orthophotographs, topographic maps and other auxiliary data using spatial analyses of geomorphologic indices and parameters.•We found that “hydrologically corrected” LiDAR can produce accurate drainage networks similar to field-mapped networks but more accurate than blue lines derived from the national topographic maps.
Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The 'maximum gradient deterministic eight (D8)' GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study area, underestimated total stream lengths for field-mapped channels by -15.3% and -88.5%, respectively. This study also confirmed that DNs can be extracted from complex low-terrain areas with standard GIS algorithms and accurate field data. The results will aid national mapping agencies in data-poor regions to modernize their national hydrography datasets and to account for changing land surface conditions that can affect channel spatial arrangements over time.
Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The ‘maximum gradient deterministic eight (D8)’ GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study area, underestimated total stream lengths for field-mapped channels by −15.3% and −88.5%, respectively. This study also confirmed that DNs can be extracted from complex low-terrain areas with standard GIS algorithms and accurate field data. The results will aid national mapping agencies in data-poor regions to modernize their national hydrography datasets and to account for changing land surface conditions that can affect channel spatial arrangements over time.
Author Gomez, C.
Persendt, F.C.
Author_xml – sequence: 1
  givenname: F.C.
  orcidid: 0000-0001-9948-5308
  surname: Persendt
  fullname: Persendt, F.C.
  email: fpersendt@unam.na
  organization: University of Canterbury, College of Sciences, Department of Geography, Private Bag 4800, 8140 Christchurch, New Zealand
– sequence: 2
  givenname: C.
  orcidid: 0000-0002-1738-2434
  surname: Gomez
  fullname: Gomez, C.
  organization: University of Canterbury, College of Sciences, Department of Geography, Private Bag 4800, 8140 Christchurch, New Zealand
BookMark eNqFkc2O0zAUhSM0SHQGXgF5OUiTYOfHsRELSvmVKpAQSLOzbpzrxiWJg-3OwGvxhLgqbNh0dTbfOYvzXWYXs5sxy54yWjDK-PN9sUM3Ob8MRUlZU1Be0Lp9kK2YaMucy-b2IlslUOZN09w-yi5D2FOaEElX2e91CBjChHMkzpDeg51hh2TGeO_8d4I_owcdrZsDsTMBMrr73ONo0RDwCMdSHJBsDnc4giWvISTs-hNMtrPwjBjvJjIdxmiXEUlwB68xvCBb-2b95YZEt7idh2WwmkywhBsCc096u7MRRgLobQrn4-CWwcUTGh5nDw2MAZ_8zavs27u3Xzcf8u3n9x83620OdVXHvDOs7TpohGCUd6yWPUNWVrI2XAqKnLFeckolGCOkbqGWIDtZGlYDFZSy6iq7Pu0u3v04YIhqskHjOMKM7hBUmd6vmlpU7VmUiTQpeMuq82grmrLmnImE8hOqvQvBo1GLtxP4X4pRdVSv9uqfenVUryhXyWsqvvyvqNOhR4lJph3P11-d6pjevbPoVdAWZ4299aij6p09N_EHtxPTlQ
CitedBy_id crossref_primary_10_1088_1755_1315_1313_1_012024
crossref_primary_10_1016_j_catena_2021_105900
crossref_primary_10_1016_j_ejrh_2018_11_003
crossref_primary_10_1016_j_geomorph_2020_107318
crossref_primary_10_1007_s11707_020_0819_z
crossref_primary_10_1080_15230406_2017_1337524
crossref_primary_10_1029_2017WR021903
crossref_primary_10_3390_ijgi10040254
crossref_primary_10_1016_j_jhydrol_2018_05_018
crossref_primary_10_1007_s12145_017_0287_5
crossref_primary_10_1515_geo_2019_0066
crossref_primary_10_5194_hess_28_1027_2024
crossref_primary_10_3390_w13020177
crossref_primary_10_3390_rs13030463
crossref_primary_10_1007_s12518_023_00547_2
crossref_primary_10_1080_10106049_2020_1852613
crossref_primary_10_1007_s41651_019_0036_z
crossref_primary_10_1088_1755_1315_95_3_032009
crossref_primary_10_1016_j_tecto_2019_228179
crossref_primary_10_1007_s10661_023_11505_1
crossref_primary_10_1016_j_ecolind_2022_109350
crossref_primary_10_1002_esp_6035
crossref_primary_10_1016_j_isprsjprs_2022_07_007
crossref_primary_10_1007_s11707_018_0700_5
crossref_primary_10_1029_2020WR027603
crossref_primary_10_1007_s11269_021_02814_6
crossref_primary_10_1016_j_geomorph_2018_04_011
crossref_primary_10_1016_j_geomorph_2019_04_012
crossref_primary_10_1016_j_jclepro_2021_126520
crossref_primary_10_36659_dae_2022_071
crossref_primary_10_1016_j_cageo_2024_105639
crossref_primary_10_1002_rra_4187
crossref_primary_10_1016_j_jvolgeores_2018_02_007
crossref_primary_10_1144_geochem2016_015
crossref_primary_10_1002_2016GL071844
crossref_primary_10_1002_hyp_14139
crossref_primary_10_1016_j_jhydrol_2023_130591
crossref_primary_10_1016_j_geomorph_2018_03_002
crossref_primary_10_1016_j_geomorph_2022_108138
crossref_primary_10_3390_ijgi10030186
crossref_primary_10_1002_hyp_11262
Cites_doi 10.1038/ngeo1593
10.1002/hyp.9727
10.1016/j.rse.2005.01.012
10.1016/j.rse.2008.01.024
10.1111/j.1752-1688.2008.00175.x
10.1016/j.jhydrol.2006.06.020
10.1029/TR038i006p00913
10.1002/hyp.6770
10.1002/esp.2001
10.1111/0031-868X.00195
10.2113/gssajg.113.3.307
10.1061/(ASCE)1084-0699(2001)6:6(506)
10.1016/j.patrec.2003.12.007
10.1016/S0169-555X(02)00319-7
10.1029/93WR02463
10.1029/2002WR001879
10.1111/jawr.12027
10.1002/hyp.6277
10.5194/adgeo-5-57-2005
10.1111/j.1467-8306.2004.00409.x
10.1029/96WR03137
10.1016/0169-555X(95)00042-4
10.3138/10LM-4435-6310-251R
10.1002/1099-1085(200011/12)14:16/17<2977::AID-HYP130>3.0.CO;2-4
10.1016/0098-3004(92)90007-E
10.1080/01431160500057947
10.1016/j.geomorph.2013.08.034
10.1029/WR022i001p00015
10.1029/2004WR003060
10.1029/2008EO100001
10.1016/j.geomorph.2008.01.011
10.1002/hyp.7582
10.1016/S0098-3004(02)00022-5
10.1016/j.jhydrol.2005.11.041
10.1002/hyp.3360050103
10.1002/hyp.3360050107
10.1126/science.255.5046.826
10.5194/hess-15-667-2011
10.1016/0098-3004(88)90018-0
10.1559/152304005775194692
10.1623/hysj.53.6.1176
10.1016/0169-555X(88)90011-6
10.1029/2003WR002864
10.1177/0309133311414605
10.1016/0146-664X(75)90005-2
10.1016/S0098-3004(99)00018-7
10.1016/0031-8663(71)90006-8
10.1002/esp.1505
10.1016/j.geomorph.2014.03.008
10.14358/PERS.69.12.1367
10.1016/0169-555X(92)90058-V
10.1016/j.jhydrol.2012.08.054
10.1016/S0734-189X(84)80011-0
10.1002/hyp.3360090310
10.1002/hyp.9740
10.1029/WR025i008p01907
10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2
10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
10.14358/PERS.72.2.159
10.2307/1313058
10.1016/j.jhydrol.2006.04.049
10.1111/j.1467-8306.1983.tb01422.x
10.1029/2007WR006133
10.1029/TR038i001p00086
10.1029/2011WR010735
10.1177/0309133310384542
10.1029/2009WR008812
10.1111/j.0033-0124.1993.00001.x
10.1016/j.geomorph.2009.11.018
10.1002/esp.484
10.1080/03736245.1938.105591186
10.1016/j.geomorph.2009.07.005
10.1016/j.cageo.2007.10.009
10.1002/hyp.9224
10.1177/0309133311409086
10.1002/esp.1637
10.1177/0309133309346648
10.1086/648220
10.1016/j.geomorph.2013.04.009
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.geomorph.2015.06.047
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1872-695X
EndPage 50
ExternalDocumentID 10_1016_j_geomorph_2015_06_047
S0169555X15300647
GeographicLocations Namibia
GeographicLocations_xml – name: Namibia
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSZ
T5K
XPP
ZCA
ZMT
~02
~G-
29H
9M8
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABXDB
ACLOT
ACVFH
ADCNI
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
OHT
R2-
SEP
SEW
VH1
WUQ
ZY4
~HD
7UA
ABUFD
C1K
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-a434t-bf17bba588106b149d1e12394f6980e611d96009aff89c7a49a9b92f14a080013
IEDL.DBID .~1
ISSN 0169-555X
IngestDate Sun Sep 28 03:01:33 EDT 2025
Thu Oct 02 10:58:50 EDT 2025
Tue Oct 07 09:21:30 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Wed Oct 01 02:40:06 EDT 2025
Fri Feb 23 02:27:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digital elevation model (DEM)
Cuvelai Basin
D8 algorithm
Namibia
Low relief area
Drainage network extraction
Airborne Light Detection and Ranging (LiDAR)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a434t-bf17bba588106b149d1e12394f6980e611d96009aff89c7a49a9b92f14a080013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9948-5308
0000-0002-1738-2434
PQID 1785246618
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_2101354837
proquest_miscellaneous_1808086713
proquest_miscellaneous_1785246618
crossref_primary_10_1016_j_geomorph_2015_06_047
crossref_citationtrail_10_1016_j_geomorph_2015_06_047
elsevier_sciencedirect_doi_10_1016_j_geomorph_2015_06_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Geomorphology (Amsterdam, Netherlands)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wei, Hao, Li (bb0700) 2004; 22
Benstead, Leigh (bb0045) 2012; 5
Wilk, Kniveton, Andersson, Layberry, Todd, Hughes, Ringrose, Vanderpost (bb0710) 2006; 331
Pirotti, Tarolli (bb0510) 2010; 24
Sharon, Kelly, Daniel (bb0580) 2008; 44
Smith, Pavelsky (bb0590) 2008; 44
Mark (bb0345) 1983; 73
Survey Division Staff (bb0605) 1993
Vaze, Teng (bb0685) 2007
Metz, Mitasova, Harmon (bb0405) 2011; 15
Tarboton (bb0640) 1997; 33
Hellweger (bb0230) 1997
Poppenga, Worstell, Stoker, Greenlee (bb0520) 2010
Tarboton, Bras, Rodriguez-Iturbe (bb0650) 1991; 5
Morris, Heerdegen (bb0455) 1988; 1
BIWAC (bb0070) 2006
Morisawa (bb0450) 1957; 38
Miller, Shrestha, Semmens (bb0420) 2004
Thoma, Gupta, Bauer, Kirchoff (bb0670) 2005; 95
Fezer (bb0160) 1971; 27
Jones (bb0285) 2002; 28
Stanley, Fisher, Grimm (bb0625) 1997; 47
Directorate of Survey and Mapping (DSM) (bb0125) 2007
COWI (bb0110) 2012
Marcus, Fonstad (bb0335) 2008; 33
Nardi, Grimaldi, Santini, Petroselli, Ubertini (bb0465) 2008; 53
Weepener, Spuy, Rademeyer, Berg, Metz, Beukes (bb0695) 2012
Soille, Vogt, Colombo (bb0620) 2003; 39
Saunders, Maidment (bb0570) 1996
Sofia, Fontana, Tarolli (bb0600) 2013; 28
Montgomery, Foufoula-Georgiou (bb0435) 1993; 29
Department of Water Affairs (DWA) (bb1000) 1990
Poppenga, Gesch, Worstell (bb0525) 2013; 49
Liu, Lu (bb0325) 2009; 3
Hipondoka, Mauz, Kempf, Packman, Chiverrell, Bloemendal (bb0245) 2014; 204
Callow, Van Niel, Boggs (bb0075) 2007; 332
Cazorzi, Fontana, Luca, Sofia, Tarolli (bb0080) 2013; 27
Garcia (bb0175) 2004
National Hydrological Services Namibia (NHS) (bb0470) 2008
Van der Waal (bb0680) 1991; 17
McCuen (bb0370) 1998
Lehner, Grill (bb0290) 2013; 27
Soille (bb0615) 2004; 40
Garbrecht, Ogden, DeBarry, Maidment (bb0170) 2001; 6
Bendix, Hupp (bb0040) 2000; 14
Strahler (bb0630) 1957; 38
Ducey, Wickwire, Stevens (bb0145) 2012
COWI (bb0115) 2014
Mendelsohn, Obeid, Roberts (bb0395) 2000
Levick, Fonseca, Goodrich, Hernandez, Semmens, Stromberg, Leidy, Scianni, Guertin, Tluczek, Kepner (bb0305) 2008
Moore (bb0440) 1996
Hohenthal, Alho, Hyyppä, Hyyppä (bb0250) 2011; 35
Cunningham, Hubbard, Kinahan, Kreike, Marsh, Seely, Stuart-Williams, Marsh (bb0120) 1992
Hughes (bb0260) 2006; 327
Poppenga, Worstell, Stoker, Greenlee (bb0535) 2010
Research and Information Services of Namibia (RAISON) (bb0540) 2012
Dobos, Daroussin (bb0140) 2005
Tarboton, Ames (bb0645) 2001
Strohbach (bb0635) 2008; 18
Güntner, Seibert, Uhlenbrook (bb0205) 2004; 40
Pan, Stieglitz, McKane (bb0490) 2012; 48
Chen, Lin, Yang, Chen (bb0085) 2010
Wilson, Lam, Deng (bb0715) 2007; 21
Colson (bb0105) 2006
Gonga-Saholiariliva, Gunnell, Petit, Mering (bb0195) 2011; 35
Paz, Collischonn, Risso, Mendes (bb0500) 2008; 34
Barber, Shortridge (bb0030) 2005; 32
Mendelsohn, Weber (bb0400) 2011
Mendelsohn, Jarvis, Robertson (bb0390) 2013
Hupp, Osterkamp (bb0265) 1996; 14
European Space Agency (ESA) (bb0155) 2015
Miller, Pickford, Senut (bb0415) 2010; 113
Tarolli (bb0660) 2014; 216
Lehner, Verdin, Jarvis (bb0295) 2006
Reuter, Hengl, Soille (bb0545) 2009
French (bb0165) 2003; 28
Hollaus, Wagner, Kraus (bb0255) 2005; 5
Gardner, Sasowsky, Day (bb0180) 1990; 80
Haugerud (bb0220) 2009
Tarboton, Bras, Rodriguez-Iturbe (bb0655) 1992; 5
Gyasi-Agyei, Willgoose, De Troch (bb0210) 1995; 9
Murphy, Ogilvie, Meng, Arp (bb0460) 2008; 22
Roering, Mackey, Marshall, Sweeney, Deligne, Booth, Handwerger, Cerovsld-Darriau (bb0555) 2013; 200
Arnold (bb0015) 2010; 34
Podobnikar (bb0515) 2009; 2
Beyers, Katsiambirtas (bb0050) 1987
Clarke, Archer (bb0090) 2009
Mark (bb0340) 1984; 21
Smith, Pain (bb0595) 2009; 33
Mendelsohn, Jarvis, Roberts, Robertson (bb0385) 2009
Barnard (bb0035) 1997; 21
USACE (U.S. Army Corps of Engineers) (bb0675) 1993
Directorate of Survey and Mapping (DSM) (bb0130) 2007
Liu, Zhang (bb0330) 2011; 43
Haddon (bb0215) 2005
Passalacqua, Tarolli, Foufoula-Georgiou (bb0495) 2010; 46
Moore, Grayson, Ladson (bb0445) 1991; 5
German Space Agency (DLR) — Centre for Satellite Based Crisis Information (CSBCI) (bb0190) 2009
Zaman, Rahman, Haddad (bb0725) 2012; 475
Bittner Water Consultant (bb0065) 2004
Miller (bb0410) 1997
Wellington (bb0705) 1938; 21
Jones, Brewer, Johnstone, Macklin (bb0275) 2007; 32
Lehner, Verdin, Jarvis (bb0300) 2008; 89
WWF (World Wildlife Fund) (bb0720) 2008
Peucker, Douglas (bb0505) 1975; 4
Martz, Garbrecht (bb0360) 1992; 18
Band (bb0025) 1986; 22
Directorate of Survey and Mapping (DSM) (bb0135) 2013
Smith (bb0585) 1997; 11
Engert (bb0150) 1997; 20
Amatya, Trettin, Panda, Ssegane (bb0010) 2013; 5
Baker, Weller, Jordan (bb0020) 2006; 72
Bird, Hogan, Schwab (bb0060) 2010; 35
Ground Water Consulting Services (bb7000) 1993
Vogt, Colombo, Bertolo (bb0690) 2003; 53
Soille (bb0610) 2004; 25
Schumm (bb0575) 1963; 74
Heine, Lant, Sengupta (bb0225) 2004; 94
Jones, Poole, O'Daniel, Mertes, Stanford (bb0280) 2008; 112
Adams, Chandler (bb0005) 2002; 17
Montgomery, Dietrich (bb0430) 1992; 255
Saunders (bb0565) 1999
Dietrich, Wilson, Montgomery, McKean (bb2000) 1993; 101
Tarolli, Arrowsmith, Vivoni (bb0665) 2009; 113
Martz, Jong (bb0355) 1988; 14
Poppenga, Worstell (bb0530) 2008
Mendelsohn (bb0380) 2013
O'Callaghan, Mark (bb0475) 1984; 28
Rodriguez-Iturbe, Rinaldo (bb0550) 1997
Bian, Walsh (bb0055) 1993; 45
Martz, Garbrecht (bb0365) 1999; 25
Coates (bb0100) 1958
Montgomery, Dietrich (bb0425) 1989; 25
Osterkamp, Hupp (bb0485) 2010; 116
Jenson, Domingue (bb0270) 1988; 54
Oksanen, Sarjakoski (bb0480) 2005; 26
Gebremichael, Hossain (bb0185) 2010
Clarke, Burnett (bb0095) 2003; 69
Saadat, Bonnell, Sharifi, Mehuys, Namdar, Ale-Ebrahim (bb0560) 2008; 100
Hipondoka (bb0240) 2005
Paz (10.1016/j.geomorph.2015.06.047_bb0500) 2008; 34
WWF (World Wildlife Fund) (10.1016/j.geomorph.2015.06.047_bb0720)
French (10.1016/j.geomorph.2015.06.047_bb0165) 2003; 28
Nardi (10.1016/j.geomorph.2015.06.047_bb0465) 2008; 53
Pan (10.1016/j.geomorph.2015.06.047_bb0490) 2012; 48
Poppenga (10.1016/j.geomorph.2015.06.047_bb0525) 2013; 49
Tarboton (10.1016/j.geomorph.2015.06.047_bb0645)
Martz (10.1016/j.geomorph.2015.06.047_bb0355) 1988; 14
Benstead (10.1016/j.geomorph.2015.06.047_bb0045) 2012; 5
COWI (10.1016/j.geomorph.2015.06.047_bb0115)
Wellington (10.1016/j.geomorph.2015.06.047_bb0705) 1938; 21
Liu (10.1016/j.geomorph.2015.06.047_bb0325) 2009; 3
Hohenthal (10.1016/j.geomorph.2015.06.047_bb0250) 2011; 35
Osterkamp (10.1016/j.geomorph.2015.06.047_bb0485) 2010; 116
Montgomery (10.1016/j.geomorph.2015.06.047_bb0435) 1993; 29
Levick (10.1016/j.geomorph.2015.06.047_bb0305) 2008
Mendelsohn (10.1016/j.geomorph.2015.06.047_bb0380) 2013
Hipondoka (10.1016/j.geomorph.2015.06.047_bb0245) 2014; 204
BIWAC (10.1016/j.geomorph.2015.06.047_bb0070) 2006
Montgomery (10.1016/j.geomorph.2015.06.047_bb0430) 1992; 255
Band (10.1016/j.geomorph.2015.06.047_bb0025) 1986; 22
Gebremichael (10.1016/j.geomorph.2015.06.047_bb0185) 2010
Schumm (10.1016/j.geomorph.2015.06.047_bb0575) 1963; 74
McCuen (10.1016/j.geomorph.2015.06.047_bb0370) 1998
Tarboton (10.1016/j.geomorph.2015.06.047_bb0640) 1997; 33
Jenson (10.1016/j.geomorph.2015.06.047_bb0270) 1988; 54
Soille (10.1016/j.geomorph.2015.06.047_bb0620) 2003; 39
Directorate of Survey and Mapping (DSM) (10.1016/j.geomorph.2015.06.047_bb0125) 2007
Colson (10.1016/j.geomorph.2015.06.047_bb0105) 2006
Wilk (10.1016/j.geomorph.2015.06.047_bb0710) 2006; 331
Wei (10.1016/j.geomorph.2015.06.047_bb0700) 2004; 22
Clarke (10.1016/j.geomorph.2015.06.047_bb0095) 2003; 69
Mark (10.1016/j.geomorph.2015.06.047_bb0340) 1984; 21
Metz (10.1016/j.geomorph.2015.06.047_bb0405) 2011; 15
Podobnikar (10.1016/j.geomorph.2015.06.047_bb0515) 2009; 2
Liu (10.1016/j.geomorph.2015.06.047_bb0330) 2011; 43
Wilson (10.1016/j.geomorph.2015.06.047_bb0715) 2007; 21
Morris (10.1016/j.geomorph.2015.06.047_bb0455) 1988; 1
Saunders (10.1016/j.geomorph.2015.06.047_bb0565)
Ground Water Consulting Services (10.1016/j.geomorph.2015.06.047_bb7000) 1993
Moore (10.1016/j.geomorph.2015.06.047_bb0445) 1991; 5
Gonga-Saholiariliva (10.1016/j.geomorph.2015.06.047_bb0195) 2011; 35
Garcia (10.1016/j.geomorph.2015.06.047_bb0175) 2004
Vaze (10.1016/j.geomorph.2015.06.047_bb0685) 2007
Arnold (10.1016/j.geomorph.2015.06.047_bb0015) 2010; 34
National Hydrological Services Namibia (NHS) (10.1016/j.geomorph.2015.06.047_bb0470) 2008
Lehner (10.1016/j.geomorph.2015.06.047_bb0300) 2008; 89
Gardner (10.1016/j.geomorph.2015.06.047_bb0180) 1990; 80
Directorate of Survey and Mapping (DSM) (10.1016/j.geomorph.2015.06.047_bb0135)
Poppenga (10.1016/j.geomorph.2015.06.047_bb0520) 2010
Roering (10.1016/j.geomorph.2015.06.047_bb0555) 2013; 200
Fezer (10.1016/j.geomorph.2015.06.047_bb0160) 1971; 27
Murphy (10.1016/j.geomorph.2015.06.047_bb0460) 2008; 22
Montgomery (10.1016/j.geomorph.2015.06.047_bb0425) 1989; 25
Hollaus (10.1016/j.geomorph.2015.06.047_bb0255) 2005; 5
COWI (10.1016/j.geomorph.2015.06.047_bb0110)
Baker (10.1016/j.geomorph.2015.06.047_bb0020) 2006; 72
Callow (10.1016/j.geomorph.2015.06.047_bb0075) 2007; 332
German Space Agency (DLR) — Centre for Satellite Based Crisis Information (CSBCI) (10.1016/j.geomorph.2015.06.047_bb0190)
Pirotti (10.1016/j.geomorph.2015.06.047_bb0510) 2010; 24
Garbrecht (10.1016/j.geomorph.2015.06.047_bb0170) 2001; 6
Tarboton (10.1016/j.geomorph.2015.06.047_bb0650) 1991; 5
Bendix (10.1016/j.geomorph.2015.06.047_bb0040) 2000; 14
Mendelsohn (10.1016/j.geomorph.2015.06.047_bb0400) 2011
Saadat (10.1016/j.geomorph.2015.06.047_bb0560) 2008; 100
Survey Division Staff (10.1016/j.geomorph.2015.06.047_bb0605) 1993
Amatya (10.1016/j.geomorph.2015.06.047_bb0010) 2013; 5
Soille (10.1016/j.geomorph.2015.06.047_bb0615) 2004; 40
Department of Water Affairs (DWA) (10.1016/j.geomorph.2015.06.047_bb1000) 1990
Strahler (10.1016/j.geomorph.2015.06.047_bb0630) 1957; 38
Barber (10.1016/j.geomorph.2015.06.047_bb0030) 2005; 32
Haddon (10.1016/j.geomorph.2015.06.047_bb0215) 2005
Jones (10.1016/j.geomorph.2015.06.047_bb0275) 2007; 32
Weepener (10.1016/j.geomorph.2015.06.047_bb0695) 2012
Vogt (10.1016/j.geomorph.2015.06.047_bb0690) 2003; 53
Mendelsohn (10.1016/j.geomorph.2015.06.047_bb0395) 2000
Bittner Water Consultant (10.1016/j.geomorph.2015.06.047_bb0065) 2004
Adams (10.1016/j.geomorph.2015.06.047_bb0005) 2002; 17
Mendelsohn (10.1016/j.geomorph.2015.06.047_bb0385) 2009
Research and Information Services of Namibia (RAISON) (10.1016/j.geomorph.2015.06.047_bb0540) 2012
Hupp (10.1016/j.geomorph.2015.06.047_bb0265) 1996; 14
Poppenga (10.1016/j.geomorph.2015.06.047_bb0530) 2008
Tarboton (10.1016/j.geomorph.2015.06.047_bb0655) 1992; 5
Chen (10.1016/j.geomorph.2015.06.047_bb0085) 2010
Martz (10.1016/j.geomorph.2015.06.047_bb0360) 1992; 18
Peucker (10.1016/j.geomorph.2015.06.047_bb0505) 1975; 4
Miller (10.1016/j.geomorph.2015.06.047_bb0410) 1997
Heine (10.1016/j.geomorph.2015.06.047_bb0225) 2004; 94
Rodriguez-Iturbe (10.1016/j.geomorph.2015.06.047_bb0550) 1997
Marcus (10.1016/j.geomorph.2015.06.047_bb0335) 2008; 33
Barnard (10.1016/j.geomorph.2015.06.047_bb0035) 1997; 21
Hellweger (10.1016/j.geomorph.2015.06.047_bb0230)
Lehner (10.1016/j.geomorph.2015.06.047_bb0290) 2013; 27
Güntner (10.1016/j.geomorph.2015.06.047_bb0205) 2004; 40
Smith (10.1016/j.geomorph.2015.06.047_bb0590) 2008; 44
Clarke (10.1016/j.geomorph.2015.06.047_bb0090) 2009
Dietrich (10.1016/j.geomorph.2015.06.047_bb2000) 1993; 101
Morisawa (10.1016/j.geomorph.2015.06.047_bb0450) 1957; 38
Directorate of Survey and Mapping (DSM) (10.1016/j.geomorph.2015.06.047_bb0130) 2007
Miller (10.1016/j.geomorph.2015.06.047_bb0415) 2010; 113
European Space Agency (ESA) (10.1016/j.geomorph.2015.06.047_bb0155)
Gyasi-Agyei (10.1016/j.geomorph.2015.06.047_bb0210) 1995; 9
Haugerud (10.1016/j.geomorph.2015.06.047_bb0220) 2009
Hipondoka (10.1016/j.geomorph.2015.06.047_bb0240) 2005
Sharon (10.1016/j.geomorph.2015.06.047_bb0580) 2008; 44
Oksanen (10.1016/j.geomorph.2015.06.047_bb0480) 2005; 26
Van der Waal (10.1016/j.geomorph.2015.06.047_bb0680) 1991; 17
Dobos (10.1016/j.geomorph.2015.06.047_bb0140) 2005
Saunders (10.1016/j.geomorph.2015.06.047_bb0570) 1996
Coates (10.1016/j.geomorph.2015.06.047_bb0100) 1958
Hughes (10.1016/j.geomorph.2015.06.047_bb0260) 2006; 327
Soille (10.1016/j.geomorph.2015.06.047_bb0610) 2004; 25
Lehner (10.1016/j.geomorph.2015.06.047_bb0295)
Moore (10.1016/j.geomorph.2015.06.047_bb0440) 1996
Stanley (10.1016/j.geomorph.2015.06.047_bb0625) 1997; 47
Zaman (10.1016/j.geomorph.2015.06.047_bb0725) 2012; 475
Ducey (10.1016/j.geomorph.2015.06.047_bb0145) 2012
Smith (10.1016/j.geomorph.2015.06.047_bb0595) 2009; 33
Beyers (10.1016/j.geomorph.2015.06.047_bb0050) 1987
Thoma (10.1016/j.geomorph.2015.06.047_bb0670) 2005; 95
Strohbach (10.1016/j.geomorph.2015.06.047_bb0635) 2008; 18
Engert (10.1016/j.geomorph.2015.06.047_bb0150) 1997; 20
Miller (10.1016/j.geomorph.2015.06.047_bb0420) 2004
Mendelsohn (10.1016/j.geomorph.2015.06.047_bb0390) 2013
USACE (U.S. Army Corps of Engineers) (10.1016/j.geomorph.2015.06.047_bb0675) 1993
O'Callaghan (10.1016/j.geomorph.2015.06.047_bb0475) 1984; 28
Smith (10.1016/j.geomorph.2015.06.047_bb0585) 1997; 11
Tarolli (10.1016/j.geomorph.2015.06.047_bb0660) 2014; 216
Passalacqua (10.1016/j.geomorph.2015.06.047_bb0495) 2010; 46
Jones (10.1016/j.geomorph.2015.06.047_bb0285) 2002; 28
Mark (10.1016/j.geomorph.2015.06.047_bb0345) 1983; 73
Tarolli (10.1016/j.geomorph.2015.06.047_bb0665) 2009; 113
Jones (10.1016/j.geomorph.2015.06.047_bb0280) 2008; 112
Cazorzi (10.1016/j.geomorph.2015.06.047_bb0080) 2013; 27
Cunningham (10.1016/j.geomorph.2015.06.047_bb0120) 1992
Bian (10.1016/j.geomorph.2015.06.047_bb0055) 1993; 45
Sofia (10.1016/j.geomorph.2015.06.047_bb0600) 2013; 28
Bird (10.1016/j.geomorph.2015.06.047_bb0060) 2010; 35
Martz (10.1016/j.geomorph.2015.06.047_bb0365) 1999; 25
Reuter (10.1016/j.geomorph.2015.06.047_bb0545) 2009
Poppenga (10.1016/j.geomorph.2015.06.047_bb0535) 2010
References_xml – volume: 6
  start-page: 506
  year: 2001
  end-page: 514
  ident: bb0170
  article-title: GIS and distributed watershed models. I: data coverages and sources
  publication-title: J. Hydrol. Eng.
– volume: 39
  start-page: 1366
  year: 2003
  ident: bb0620
  article-title: Carving and adaptive drainage enforcement of grid digital elevation models
  publication-title: Water Resour. Res.
– volume: 9
  start-page: 363
  year: 1995
  end-page: 382
  ident: bb0210
  article-title: Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology
  publication-title: Hydrol. Process.
– year: 2005
  ident: bb0215
  article-title: The Sub-Kalahari Geology and Tectonic Evolution of the Kalahari Basin, Southern Africa
– year: 1997
  ident: bb0550
  article-title: Fractal River Basins: Chance And Self-Organization
– volume: 22
  start-page: 1
  year: 2004
  end-page: 4
  ident: bb0700
  article-title: Information entropy-based assessment of different resolution DEM and its effects on run-off simulation
  publication-title: Water Resour Power
– volume: 112
  start-page: 4148
  year: 2008
  end-page: 4158
  ident: bb0280
  article-title: Surface hydrology of low-relief landscapes: Assessing surface water flow impedance using LIDAR-derived digital elevation models
  publication-title: Remote Sens. Environ.
– year: 1958
  ident: bb0100
  article-title: Quantitative Geomorphology Of Small Drainage Basins Of Southern Indiana
– year: 2007
  ident: bb0685
  article-title: High-resolution LiDAR DEM — how good is it
  publication-title: Proceedings Of The MODSIM 2007 International Congress On Modelling And Simulation
– volume: 21
  start-page: 21
  year: 1938
  end-page: 32
  ident: bb0705
  article-title: The Kunene River and the Etosha Plain
  publication-title: S. Afr. Geogr. J.
– year: 2004
  ident: bb0175
  article-title: Using GIS And LiDAR To Map Headwaters Stream Networks In The Piedmont Ecoregion Of North Carolina
– volume: 475
  start-page: 74
  year: 2012
  end-page: 83
  ident: bb0725
  article-title: Regional flood frequency analysis in arid regions: a case study for Australia
  publication-title: J. Hydrol.
– volume: 35
  start-page: 782
  year: 2011
  end-page: 809
  ident: bb0250
  article-title: Laser scanning applications in fluvial studies
  publication-title: Prog. Phys. Geogr.
– volume: 73
  start-page: 358
  year: 1983
  end-page: 372
  ident: bb0345
  article-title: Relations between field-surveyed channel networks and map-based geomorphometric measures, Inez, Kentucky
  publication-title: Ann. Assoc. Am. Geogr.
– volume: 4
  start-page: 375
  year: 1975
  end-page: 387
  ident: bb0505
  article-title: Detection of surface-specific points by local parallel processing of discrete terrain elevation data
  publication-title: Comput. Graphics Image Process.
– year: 2000
  ident: bb0395
  article-title: A Profile Of North-Central Namibia
– volume: 5
  start-page: 59
  year: 1992
  end-page: 76
  ident: bb0655
  article-title: A physical basis for drainage density
  publication-title: Geomorphology
– volume: 22
  start-page: 15
  year: 1986
  end-page: 24
  ident: bb0025
  article-title: Topographic partition of watersheds with digital elevation models
  publication-title: Water Resour. Res.
– year: 1993
  ident: bb7000
  article-title: Owambo drought relief report Volume 1 - Report and Appendix A
– year: 2006
  ident: bb0070
  article-title: Cuvelai–Etosha Groundwater Investigation
– volume: 72
  start-page: 159
  year: 2006
  end-page: 168
  ident: bb0020
  article-title: Comparison of automated watershed delineations: effects on land cover areas, percentages, and relationships to nutrient discharge
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 34
  start-page: 1584
  year: 2008
  end-page: 1596
  ident: bb0500
  article-title: Errors in river lengths derived from raster digital elevation models
  publication-title: Comput. Geosci.
– volume: 35
  start-page: 952
  year: 2010
  end-page: 970
  ident: bb0060
  article-title: Photogrammetric monitoring of small streams under a riparian forest canopy
  publication-title: Earth Surf. Process. Landf.
– year: 2004
  ident: bb0065
  article-title: Demarcation Of Water Basins On National Level, Government Of Republic Of Namibia
– start-page: 329
  year: 2010
  end-page: 332
  ident: bb0520
  article-title: Using Selective Drainage Methods to Hydrologically-Condition and Hydrologically-Enforce Lidar-Derived Surface Flow
  publication-title: Remote Sens. Hydrol.
– volume: 327
  start-page: 399
  year: 2006
  end-page: 410
  ident: bb0260
  article-title: Comparison of satellite rainfall data with observations from gauging station networks
  publication-title: J. Hydrol.
– volume: 89
  year: 2008
  ident: bb0300
  article-title: New global hydrography derived from spaceborne elevation data
  publication-title: Eos. Trans. AGU
– year: 2008
  ident: bb0720
  article-title: HydroSHEDS
– volume: 38
  start-page: 86
  year: 1957
  end-page: 88
  ident: bb0450
  article-title: Accuracy of determination of stream lengths from topographic maps
  publication-title: Eos Trans. AGU
– year: 2006
  ident: bb0105
  article-title: Stream Network Delineation From High-Resolution Digital Elevation Models
– year: 2009
  ident: bb0220
  article-title: A bestiary of LiDAR errors
  publication-title: Geological Society of America Annual Meeting, Portland, Oregon
– start-page: 143
  year: 1996
  end-page: 148
  ident: bb0440
  article-title: Hydrologic Modelling and GIS
  publication-title: GIS and Environmental Modelling: Progress and Research Issues
– volume: 100
  start-page: 453
  year: 2008
  end-page: 464
  ident: bb0560
  article-title: Landform classification from a digital elevation model and satellite imagery
  publication-title: Geomorphology
– volume: 40
  start-page: W12509
  year: 2004
  ident: bb0615
  article-title: Optimal removal of spurious pits in grid digital elevation models
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 2171
  year: 2013
  end-page: 2186
  ident: bb0290
  article-title: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems
  publication-title: Hydrol. Process.
– volume: 34
  start-page: 781
  year: 2010
  end-page: 809
  ident: bb0015
  article-title: A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values
  publication-title: Prog. Phys. Geogr.
– volume: 40
  year: 2004
  ident: bb0205
  article-title: Modelling spatial patterns of saturated areas: an evaluation of different terrain indices
  publication-title: Water Resour. Res.
– year: 2014
  ident: bb0115
  article-title: Mapping of Namibia
– year: 2009
  ident: bb0190
  article-title: Severe flooding in northern Namibia
– volume: 38
  start-page: 913
  year: 1957
  end-page: 920
  ident: bb0630
  article-title: Quantitative analysis of watershed geomorphology
  publication-title: Trans. Am. Geophys. Union
– year: 2008
  ident: bb0530
  article-title: Elevation-derived watershed basins and characteristics for major rivers of the conterminous United States
– year: 1999
  ident: bb0565
  article-title: Preparation of DEMs for Use in Environmental modelling Analysis
– volume: 48
  year: 2012
  ident: bb0490
  article-title: An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation
  publication-title: Water Resour. Res.
– volume: 95
  start-page: 493
  year: 2005
  end-page: 501
  ident: bb0670
  article-title: Airborne laser scanning for riverbank erosion assessment
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 405
  year: 2002
  end-page: 418
  ident: bb0005
  article-title: Evaluation of Lidar and medium scale photogrammetry for detecting soft‐cliff coastal change
  publication-title: Photogramm. Rec.
– volume: 33
  start-page: 4
  year: 2008
  end-page: 24
  ident: bb0335
  article-title: Optical remote mapping of rivers at sub‐meter resolutions and watershed extents
  publication-title: Earth Surf. Process. Landf.
– volume: 331
  start-page: 18
  year: 2006
  end-page: 29
  ident: bb0710
  article-title: Estimating rainfall and water balance over the Okavango River Basin for hydrological applications
  publication-title: J. Hydrol.
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: bb0445
  article-title: Digital terrain modelling: A review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
– year: 2013
  ident: bb0135
  article-title: User's Guide for the New Topographic Maps of Namibia
– year: 2015
  ident: bb0155
  article-title: New Flooding Patterns on Namibia's Northern Borders
– volume: 21
  start-page: 1026
  year: 2007
  end-page: 1044
  ident: bb0715
  article-title: Comparison of the performance of flow‐routing algorithms used in GIS‐based hydrologic analysis
  publication-title: Hydrol. Process.
– year: 2005
  ident: bb0140
  article-title: The derivation of the Potential Drainage Density Index (PDD)
  publication-title: An SRTM-Based Procedure To Delineate Soter Terrain Units On 1:1 And 1:5 Million Scales
– year: 2010
  ident: bb0185
  article-title: Satellite Rainfall Applications for Surface Hydrology
– year: 2011
  ident: bb0400
  article-title: CUVELAI: The Cuvelai Basin Its Water And People In Angola And Namibia
  publication-title: CP 3360
– volume: 113
  start-page: 307
  year: 2010
  end-page: 334
  ident: bb0415
  article-title: The geology, paleaontology and evolution of the Etosha Pan, Namibia: implications for terminal Kalahari deposition
  publication-title: S. Afr. J. Geol.
– volume: 5
  start-page: 678
  year: 2012
  end-page: 679
  ident: bb0045
  article-title: An expanded role for river networks
  publication-title: Nat. Geosci.
– volume: 11
  start-page: 1427
  year: 1997
  end-page: 1439
  ident: bb0585
  article-title: Satellite remote sensing of river inundation area, stage, and discharge: a review
  publication-title: Hydrol. Process.
– year: 2012
  ident: bb0695
  article-title: Improving the South African quaternary catchments using the SRTM DEM
  publication-title: 16th SANCIAHS National Hydrology Symposium, University of Pretoria, Pretoria, South Africa
– year: 2012
  ident: bb0540
  article-title: Surface Water of the Cuvelai
– volume: 53
  start-page: 1176
  year: 2008
  end-page: 1193
  ident: bb0465
  article-title: Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue / Propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de modèles numériques de terrain: la question des zones planes
  publication-title: Hydrol. Sci. J.
– volume: 69
  start-page: 1367
  year: 2003
  end-page: 1375
  ident: bb0095
  article-title: Comparison of digital elevation models for aquatic data development
  publication-title: Photogramm. Eng. Remote. Sens.
– year: 2007
  ident: bb0130
  article-title: Regional 50
  publication-title: Ministry Of Lands And Resettlement
– year: 2005
  ident: bb0240
  article-title: The development and evolution of Etosha Pan, Namibia
– volume: 26
  start-page: 3085
  year: 2005
  end-page: 3102
  ident: bb0480
  article-title: Error propagation analysis of DEM-based drainage basin delineation
  publication-title: Int. J. Remote Sens.
– volume: 44
  start-page: W03427
  year: 2008
  ident: bb0590
  article-title: Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia
  publication-title: Water Resour. Res.
– volume: 255
  start-page: 826
  year: 1992
  end-page: 830
  ident: bb0430
  article-title: Channel initiation and the problem of landscape scale
  publication-title: Science
– volume: 18
  start-page: 63
  year: 2008
  end-page: 73
  ident: bb0635
  article-title: Mapping the major catchments of Namibia
  publication-title: Agricola
– volume: 21
  start-page: 137
  year: 1997
  end-page: 144
  ident: bb0035
  article-title: Wellington, J.H. 1955: Southern Africa: a geographical study. Part 1. Physical geography
  publication-title: Prog. Phys. Geogr.
– year: 1987
  ident: bb0050
  article-title: Climate of Owambo, South West Africa/Namibia
– volume: 17
  start-page: 201
  year: 1991
  end-page: 209
  ident: bb0680
  article-title: Fish life of the oshana delta in Owambo, Namibia, and the translocation of Cunene species
  publication-title: Modoqua
– year: 2009
  ident: bb0545
  article-title: Preparation of DEMs for geomorphometric analysis
  publication-title: Geomorphometry: Concepts, Software, Applications
– volume: 1
  start-page: 131
  year: 1988
  end-page: 141
  ident: bb0455
  article-title: Automatically derived catchment boundaries and channel networks and their hydrological applications
  publication-title: Geomorphology
– volume: 49
  start-page: 371
  year: 2013
  end-page: 389
  ident: bb0525
  article-title: Hydrography Change Detection: The Usefulness of Surface Channels Derived From LiDAR DEMs for Updating Mapped Hydrography
  publication-title: J. Am. Water Res. Assoc.
– volume: 28
  start-page: 321
  year: 2003
  end-page: 335
  ident: bb0165
  article-title: Airborne LiDAR in support of geomorphological and hydraulic modelling
  publication-title: Earth Surf. Process. Landf.
– volume: 5
  start-page: 57
  year: 2005
  end-page: 63
  ident: bb0255
  article-title: Airborne laser scanning and usefulness for hydrological models
  publication-title: Adv. Geosci.
– volume: 15
  start-page: 667
  year: 2011
  end-page: 678
  ident: bb0405
  article-title: Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2013
  ident: bb0380
  article-title: Personal Communication
– volume: 53
  start-page: 281
  year: 2003
  end-page: 298
  ident: bb0690
  article-title: Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics
  publication-title: Geomorphology
– volume: 46
  start-page: W11535
  year: 2010
  ident: bb0495
  article-title: Testing space-scale methodologies for automatic geomorphic feature extraction from LiDAR in a complex mountainous landscape
  publication-title: Water Resour. Res.
– start-page: 1
  year: 2010
  end-page: 5
  ident: bb0085
  article-title: The relationship between DEM resolution, accumulation area threshold and drainage network indices
  publication-title: 18th International Conference on Geoinformatics
– volume: 80
  start-page: 57
  year: 1990
  end-page: 68
  ident: bb0180
  article-title: Automated extraction of geomorphometric properties from digital elevation data
  publication-title: Zeitschrift für Geomorphologie Supplementband
– volume: 18
  start-page: 747
  year: 1992
  end-page: 761
  ident: bb0360
  article-title: Numerical definition of drainage network and subcatchment areas from digital elevation models
  publication-title: Comput. Geosci.
– year: 2013
  ident: bb0390
  article-title: A profile and atlas of the Cuvelai–Etosha basin
  publication-title: RAISON & Gondwana for the Sustainable Integrated Water Resources Management Project
– year: 1996
  ident: bb0570
  article-title: A GIS assessment of nonpoint source pollution in the San Antonio — Nueces coastal basin
  publication-title: Centre for Research in Water Resources (CRWR) Online University of Texas at Austin
– volume: 200
  start-page: 172
  year: 2013
  end-page: 183
  ident: bb0555
  article-title: ‘You are HERE’: connecting the dots with airborne lidar for geomorphic fieldwork
  publication-title: Geomorphology
– year: 1993
  ident: bb0675
  article-title: Engineering and design: river hydraulics
  publication-title: Engineering Manual (EM)
– volume: 35
  start-page: 739
  year: 2011
  end-page: 764
  ident: bb0195
  article-title: Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis
  publication-title: Prog. Phys. Geogr.
– volume: 25
  start-page: 835
  year: 1999
  end-page: 844
  ident: bb0365
  article-title: An outlet breaching algorithm for the treatment of closed depressions in a raster DEM
  publication-title: Comput. Geosci.
– volume: 22
  start-page: 1747
  year: 2008
  end-page: 1754
  ident: bb0460
  article-title: Stream network modelling using LiDAR and photogrammetric digital elevation models: a comparison and field verification
  publication-title: Hydrol. Process.
– volume: 14
  year: 1988
  ident: bb0355
  article-title: CATCH: a Fortran program for measuring catchment area from digital elevation models
  publication-title: Comput. Geosci.
– year: 2004
  ident: bb0420
  article-title: Semi-automated extraction and validation of channel morphology from LIDAR and IFSAR terrain data
  publication-title: Proceedings of the ASPRS Annual Conference 2004, Denver, Colorado
– volume: 94
  start-page: 477
  year: 2004
  end-page: 490
  ident: bb0225
  article-title: Development and comparison of approaches for automated mapping of stream channel networks
  publication-title: Ann. Assoc. Am. Geogr.
– year: 2006
  ident: bb0295
  article-title: HydroSHEDS Technical Documentation Version 1.0
– volume: 28
  start-page: 323
  year: 1984
  end-page: 344
  ident: bb0475
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Comput. Vis. Graphics Image Underst.
– volume: 113
  start-page: 1
  year: 2009
  end-page: 3
  ident: bb0665
  article-title: Understanding earth surface processes from remotely sensed digital terrain models
  publication-title: Geomorphology
– volume: 116
  start-page: 274
  year: 2010
  end-page: 285
  ident: bb0485
  article-title: Fluvial processes and vegetation — Glimpses of the past, the present, and perhaps the future
  publication-title: Geomorphology
– year: 2009
  ident: bb0090
  article-title: Terrain feature extraction from variable resolution digital elevation models
  publication-title: Theme 31 In The Proceedings Of The 24th International Cartographic Conference, Santiago, Chile
– volume: 216
  start-page: 295
  year: 2014
  end-page: 312
  ident: bb0660
  article-title: High-resolution topography for understanding Earth surface processes: opportunities and challenges
  publication-title: Geomorphology
– volume: 44
  start-page: 459
  year: 2008
  end-page: 477
  ident: bb0580
  article-title: Modelling streams and hydrogeomorphic attributes in Oregon from digital and field data
  publication-title: J. Am. Water Resour. Assoc.
– volume: 74
  start-page: 1089
  year: 1963
  ident: bb0575
  article-title: Sinuosity of alluvial rivers on the Great Plains
  publication-title: GSA Bull.
– volume: 24
  start-page: 1187
  year: 2010
  end-page: 1197
  ident: bb0510
  article-title: Suitability of LiDAR point density and derived landform curvature maps for channel network extraction
  publication-title: Hydrol. Process.
– volume: 27
  start-page: 7
  year: 1971
  end-page: 53
  ident: bb0160
  article-title: Photo interpretation applied to geomorphology — a review
  publication-title: Photogrammetria
– year: 1990
  ident: bb1000
  article-title: Regional Water Master Plan for the Owambo Region
– volume: 14
  start-page: 277
  year: 1996
  end-page: 295
  ident: bb0265
  article-title: Riparian vegetation and fluvial geomorphic processes
  publication-title: Geomorphology
– volume: 28
  start-page: 1051
  year: 2002
  end-page: 1060
  ident: bb0285
  article-title: Algorithms for using a DEM for mapping catchment areas of stream sediment samples
  publication-title: Comput. Geosci.
– volume: 32
  start-page: 401
  year: 2005
  ident: bb0030
  article-title: LiDAR elevation data for surface hydrologic modelling: resolution and representation issues
  publication-title: Cartogr. Geogr. Inf. Sci.
– start-page: 7
  year: 2012
  ident: bb0145
  article-title: A proposed workflow for delineating stream networks from lidar-derived digital elevation models to update the national hydrography dataset (NHD) in the Pacific Northwest
  publication-title: AWRA's 2012 Spring Specialty Conference — Geographic Information Systems (GIS) And Water Resources VII
– volume: 21
  start-page: 168
  year: 1984
  end-page: 178
  ident: bb0340
  article-title: Automated detection of drainage networks from digital elevation models
  publication-title: Cartographica
– year: 1998
  ident: bb0370
  article-title: Hydrology Analysis and Design
– volume: 33
  start-page: 309
  year: 1997
  end-page: 319
  ident: bb0640
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resour. Res.
– year: 2001
  ident: bb0645
  article-title: Advances in the mapping of flow networks from digital elevation data
– volume: 204
  start-page: 553
  year: 2014
  end-page: 563
  ident: bb0245
  article-title: Chronology of sand ridges and the Late Quaternary evolution of the Etosha Pan, Namibia
  publication-title: Geomorphology
– volume: 43
  start-page: 42
  year: 2011
  end-page: 52
  ident: bb0330
  article-title: Drainage network extraction using LiDAR‐derived DEM in volcanic plains
  publication-title: Area
– volume: 3
  start-page: 7
  year: 2009
  end-page: 9
  ident: bb0325
  article-title: Trend analysis of digital drainage network extraction affected by DEM resolution
  publication-title: China Rural Water Hydropower
– volume: 28
  start-page: 2046
  year: 2013
  end-page: 2061
  ident: bb0600
  article-title: High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains
  publication-title: Hydrol. Process.
– volume: 45
  start-page: 1
  year: 1993
  end-page: 11
  ident: bb0055
  article-title: Scale dependencies of vegetation and topography in a mountainous environment of Montana
  publication-title: Prof. Geogr.
– volume: 332
  start-page: 30
  year: 2007
  end-page: 39
  ident: bb0075
  article-title: How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?
  publication-title: J. Hydrol.
– year: 2010
  ident: bb0535
  article-title: Using Selective Drainage Methods to Extract Continuous Surface Flow from 1-Meter Lidar-Derived Digital Elevation Data
– volume: 54
  start-page: 1593
  year: 1988
  end-page: 1600
  ident: bb0270
  article-title: Extracting topographic structure from digital elevation data for geographical information system analysis
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 33
  start-page: 568
  year: 2009
  end-page: 582
  ident: bb0595
  article-title: Applications of remote sensing in geomorphology
  publication-title: Prog. Phys. Geogr.
– year: 2008
  ident: bb0305
  article-title: The ecological and hydrological significance of ephemeral and intermittent streams in the arid and semi-arid American southwest
– year: 2009
  ident: bb0385
  article-title: Atlas Of Namibia; A Portrait Of The Land And Its People
– volume: 27
  start-page: 541
  year: 2013
  end-page: 553
  ident: bb0080
  article-title: Drainage network detection and assessment of network storage capacity in agrarian landscape
  publication-title: Hydrol. Process.
– volume: 5
  start-page: 81
  year: 1991
  end-page: 100
  ident: bb0650
  article-title: On the extraction of channel networks from digital elevation data
  publication-title: Hydrol. Process.
– volume: 101
  start-page: 259
  year: 1993
  end-page: 278
  ident: bb2000
  article-title: Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model
  publication-title: The J. Geol.
– volume: 20
  start-page: 115
  year: 1997
  end-page: 120
  ident: bb0150
  article-title: Spatial variability and temporal periodicity of rainfall in the Etosha National Park and surrounding areas in northern Namibia
  publication-title: Modoqua
– year: 1992
  ident: bb0120
  article-title: Oshanas — Sustaining People, Environment And Development In Central Owambo, Namibia
– year: 2008
  ident: bb0470
  article-title: LiDAR Project Survey Report - Southern Mapping Company
– volume: 25
  start-page: 1907
  year: 1989
  end-page: 1918
  ident: bb0425
  article-title: Source areas, drainage density, and channel initiation
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 1574
  year: 2007
  end-page: 1592
  ident: bb0275
  article-title: High‐resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data
  publication-title: Earth Surf. Process. Landf.
– year: 2007
  ident: bb0125
  article-title: National Topographic Map Series By COWI Based On 0.50
– volume: 47
  start-page: 427
  year: 1997
  end-page: 435
  ident: bb0625
  article-title: Ecosystem expansion and contraction in streams: desert streams vary in both space and time and fluctuate dramatically in size
  publication-title: Bioscience
– start-page: 237
  year: 1997
  end-page: 268
  ident: bb0410
  article-title: The Owambo Basin of Northern Namibia
  publication-title: African Basins: Sedimentary Basins Of The World
– year: 1993
  ident: bb0605
  article-title: Soil survey manual
  publication-title: Agricultural Handbook 18
– volume: 29
  start-page: 3925
  year: 1993
  ident: bb0435
  article-title: Channel network source representation using digital elevation models
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 543
  year: 2004
  end-page: 550
  ident: bb0610
  article-title: Morphological carving
  publication-title: Pattern Recogn. Lett.
– volume: 2
  year: 2009
  ident: bb0515
  article-title: Methods for visual quality assessment of a digital terrain model
  publication-title: S.A.P.I.EN.S (On-Line)
– volume: 5
  start-page: 175
  year: 2013
  end-page: 191
  ident: bb0010
  article-title: Application of LiDAR data for hydrologic assessments of low-gradient coastal watershed drainage characteristics
  publication-title: J. Geogr. Inf. Syst.
– year: 2012
  ident: bb0110
  article-title: Namibia on the map
– year: 1997
  ident: bb0230
  article-title: AGREE — DEM Surface Reconditioning System
– volume: 14
  start-page: 2977
  year: 2000
  end-page: 2990
  ident: bb0040
  article-title: Hydrological and geomorphological impacts on riparian plant communities
  publication-title: Hydrol. Process.
– volume: 5
  start-page: 678
  issue: 10
  year: 2012
  ident: 10.1016/j.geomorph.2015.06.047_bb0045
  article-title: An expanded role for river networks
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1593
– volume: 28
  start-page: 2046
  issue: 4
  year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0600
  article-title: High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9727
– volume: 95
  start-page: 493
  issue: 4
  year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0670
  article-title: Airborne laser scanning for riverbank erosion assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.01.012
– year: 2007
  ident: 10.1016/j.geomorph.2015.06.047_bb0125
– year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0390
  article-title: A profile and atlas of the Cuvelai–Etosha basin
– year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0530
– ident: 10.1016/j.geomorph.2015.06.047_bb0230
– volume: 112
  start-page: 4148
  issue: 11
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0280
  article-title: Surface hydrology of low-relief landscapes: Assessing surface water flow impedance using LIDAR-derived digital elevation models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.024
– volume: 44
  start-page: 459
  issue: 2
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0580
  article-title: Modelling streams and hydrogeomorphic attributes in Oregon from digital and field data
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2008.00175.x
– volume: 332
  start-page: 30
  issue: 1–2
  year: 2007
  ident: 10.1016/j.geomorph.2015.06.047_bb0075
  article-title: How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.06.020
– ident: 10.1016/j.geomorph.2015.06.047_bb0115
– volume: 38
  start-page: 913
  year: 1957
  ident: 10.1016/j.geomorph.2015.06.047_bb0630
  article-title: Quantitative analysis of watershed geomorphology
  publication-title: Trans. Am. Geophys. Union
  doi: 10.1029/TR038i006p00913
– volume: 22
  start-page: 1747
  issue: 12
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0460
  article-title: Stream network modelling using LiDAR and photogrammetric digital elevation models: a comparison and field verification
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6770
– volume: 35
  start-page: 952
  issue: 8
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0060
  article-title: Photogrammetric monitoring of small streams under a riparian forest canopy
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.2001
– year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0065
– volume: 17
  start-page: 405
  issue: 99
  year: 2002
  ident: 10.1016/j.geomorph.2015.06.047_bb0005
  article-title: Evaluation of Lidar and medium scale photogrammetry for detecting soft‐cliff coastal change
  publication-title: Photogramm. Rec.
  doi: 10.1111/0031-868X.00195
– volume: 113
  start-page: 307
  issue: 3
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0415
  article-title: The geology, paleaontology and evolution of the Etosha Pan, Namibia: implications for terminal Kalahari deposition
  publication-title: S. Afr. J. Geol.
  doi: 10.2113/gssajg.113.3.307
– volume: 6
  start-page: 506
  issue: 6
  year: 2001
  ident: 10.1016/j.geomorph.2015.06.047_bb0170
  article-title: GIS and distributed watershed models. I: data coverages and sources
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2001)6:6(506)
– volume: 25
  start-page: 543
  issue: 5
  year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0610
  article-title: Morphological carving
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2003.12.007
– volume: 53
  start-page: 281
  issue: 3
  year: 2003
  ident: 10.1016/j.geomorph.2015.06.047_bb0690
  article-title: Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(02)00319-7
– volume: 29
  start-page: 3925
  issue: 12
  year: 1993
  ident: 10.1016/j.geomorph.2015.06.047_bb0435
  article-title: Channel network source representation using digital elevation models
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR02463
– year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0090
  article-title: Terrain feature extraction from variable resolution digital elevation models
– year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0420
  article-title: Semi-automated extraction and validation of channel morphology from LIDAR and IFSAR terrain data
– ident: 10.1016/j.geomorph.2015.06.047_bb0155
– volume: 39
  start-page: 1366
  issue: 12
  year: 2003
  ident: 10.1016/j.geomorph.2015.06.047_bb0620
  article-title: Carving and adaptive drainage enforcement of grid digital elevation models
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001879
– volume: 49
  start-page: 371
  issue: 2
  year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0525
  article-title: Hydrography Change Detection: The Usefulness of Surface Channels Derived From LiDAR DEMs for Updating Mapped Hydrography
  publication-title: J. Am. Water Res. Assoc.
  doi: 10.1111/jawr.12027
– volume: 21
  start-page: 1026
  issue: 8
  year: 2007
  ident: 10.1016/j.geomorph.2015.06.047_bb0715
  article-title: Comparison of the performance of flow‐routing algorithms used in GIS‐based hydrologic analysis
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6277
– volume: 5
  start-page: 57
  year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0255
  article-title: Airborne laser scanning and usefulness for hydrological models
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-5-57-2005
– ident: 10.1016/j.geomorph.2015.06.047_bb0295
– start-page: 143
  year: 1996
  ident: 10.1016/j.geomorph.2015.06.047_bb0440
  article-title: Hydrologic Modelling and GIS
– volume: 94
  start-page: 477
  issue: 3
  year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0225
  article-title: Development and comparison of approaches for automated mapping of stream channel networks
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.2004.00409.x
– year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0215
– year: 1996
  ident: 10.1016/j.geomorph.2015.06.047_bb0570
  article-title: A GIS assessment of nonpoint source pollution in the San Antonio — Nueces coastal basin
– ident: 10.1016/j.geomorph.2015.06.047_bb0135
– volume: 33
  start-page: 309
  year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0640
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resour. Res.
  doi: 10.1029/96WR03137
– volume: 14
  start-page: 277
  issue: 4
  year: 1996
  ident: 10.1016/j.geomorph.2015.06.047_bb0265
  article-title: Riparian vegetation and fluvial geomorphic processes
  publication-title: Geomorphology
  doi: 10.1016/0169-555X(95)00042-4
– start-page: 237
  year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0410
  article-title: The Owambo Basin of Northern Namibia
– year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0470
– volume: 21
  start-page: 168
  year: 1984
  ident: 10.1016/j.geomorph.2015.06.047_bb0340
  article-title: Automated detection of drainage networks from digital elevation models
  publication-title: Cartographica
  doi: 10.3138/10LM-4435-6310-251R
– volume: 2
  issue: 2
  year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0515
  article-title: Methods for visual quality assessment of a digital terrain model
  publication-title: S.A.P.I.EN.S (On-Line)
– volume: 14
  start-page: 2977
  issue: 16–17
  year: 2000
  ident: 10.1016/j.geomorph.2015.06.047_bb0040
  article-title: Hydrological and geomorphological impacts on riparian plant communities
  publication-title: Hydrol. Process.
  doi: 10.1002/1099-1085(200011/12)14:16/17<2977::AID-HYP130>3.0.CO;2-4
– volume: 18
  start-page: 747
  issue: 6
  year: 1992
  ident: 10.1016/j.geomorph.2015.06.047_bb0360
  article-title: Numerical definition of drainage network and subcatchment areas from digital elevation models
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(92)90007-E
– year: 2011
  ident: 10.1016/j.geomorph.2015.06.047_bb0400
  article-title: CUVELAI: The Cuvelai Basin Its Water And People In Angola And Namibia
– volume: 26
  start-page: 3085
  issue: 14
  year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0480
  article-title: Error propagation analysis of DEM-based drainage basin delineation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500057947
– start-page: 7
  year: 2012
  ident: 10.1016/j.geomorph.2015.06.047_bb0145
  article-title: A proposed workflow for delineating stream networks from lidar-derived digital elevation models to update the national hydrography dataset (NHD) in the Pacific Northwest
– year: 1992
  ident: 10.1016/j.geomorph.2015.06.047_bb0120
– volume: 204
  start-page: 553
  year: 2014
  ident: 10.1016/j.geomorph.2015.06.047_bb0245
  article-title: Chronology of sand ridges and the Late Quaternary evolution of the Etosha Pan, Namibia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.034
– volume: 22
  start-page: 1
  issue: 4
  year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0700
  article-title: Information entropy-based assessment of different resolution DEM and its effects on run-off simulation
  publication-title: Water Resour Power
– volume: 22
  start-page: 15
  issue: 1
  year: 1986
  ident: 10.1016/j.geomorph.2015.06.047_bb0025
  article-title: Topographic partition of watersheds with digital elevation models
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i001p00015
– volume: 80
  start-page: 57
  year: 1990
  ident: 10.1016/j.geomorph.2015.06.047_bb0180
  article-title: Automated extraction of geomorphometric properties from digital elevation data
  publication-title: Zeitschrift für Geomorphologie Supplementband
– volume: 54
  start-page: 1593
  year: 1988
  ident: 10.1016/j.geomorph.2015.06.047_bb0270
  article-title: Extracting topographic structure from digital elevation data for geographical information system analysis
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 40
  start-page: W12509
  issue: 12
  year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0615
  article-title: Optimal removal of spurious pits in grid digital elevation models
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003060
– volume: 89
  issue: 10
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0300
  article-title: New global hydrography derived from spaceborne elevation data
  publication-title: Eos. Trans. AGU
  doi: 10.1029/2008EO100001
– volume: 5
  start-page: 175
  issue: 2
  year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0010
  article-title: Application of LiDAR data for hydrologic assessments of low-gradient coastal watershed drainage characteristics
  publication-title: J. Geogr. Inf. Syst.
– year: 2006
  ident: 10.1016/j.geomorph.2015.06.047_bb0105
– volume: 20
  start-page: 115
  issue: 1
  year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0150
  article-title: Spatial variability and temporal periodicity of rainfall in the Etosha National Park and surrounding areas in northern Namibia
  publication-title: Modoqua
– volume: 100
  start-page: 453
  issue: 3
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0560
  article-title: Landform classification from a digital elevation model and satellite imagery
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.01.011
– year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0140
  article-title: The derivation of the Potential Drainage Density Index (PDD)
– volume: 18
  start-page: 63
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0635
  article-title: Mapping the major catchments of Namibia
  publication-title: Agricola
– volume: 24
  start-page: 1187
  issue: 9
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0510
  article-title: Suitability of LiDAR point density and derived landform curvature maps for channel network extraction
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7582
– year: 1993
  ident: 10.1016/j.geomorph.2015.06.047_bb0605
  article-title: Soil survey manual
– volume: 28
  start-page: 1051
  year: 2002
  ident: 10.1016/j.geomorph.2015.06.047_bb0285
  article-title: Algorithms for using a DEM for mapping catchment areas of stream sediment samples
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(02)00022-5
– year: 2012
  ident: 10.1016/j.geomorph.2015.06.047_bb0695
  article-title: Improving the South African quaternary catchments using the SRTM DEM
– volume: 327
  start-page: 399
  issue: 3
  year: 2006
  ident: 10.1016/j.geomorph.2015.06.047_bb0260
  article-title: Comparison of satellite rainfall data with observations from gauging station networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.11.041
– year: 2006
  ident: 10.1016/j.geomorph.2015.06.047_bb0070
– year: 1993
  ident: 10.1016/j.geomorph.2015.06.047_bb0675
  article-title: Engineering and design: river hydraulics
– volume: 17
  start-page: 201
  issue: 2
  year: 1991
  ident: 10.1016/j.geomorph.2015.06.047_bb0680
  article-title: Fish life of the oshana delta in Owambo, Namibia, and the translocation of Cunene species
  publication-title: Modoqua
– volume: 21
  start-page: 137
  year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0035
  article-title: Wellington, J.H. 1955: Southern Africa: a geographical study. Part 1. Physical geography
– volume: 5
  start-page: 3
  issue: 1
  year: 1991
  ident: 10.1016/j.geomorph.2015.06.047_bb0445
  article-title: Digital terrain modelling: A review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– volume: 5
  start-page: 81
  issue: 1
  year: 1991
  ident: 10.1016/j.geomorph.2015.06.047_bb0650
  article-title: On the extraction of channel networks from digital elevation data
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050107
– volume: 255
  start-page: 826
  issue: 5046
  year: 1992
  ident: 10.1016/j.geomorph.2015.06.047_bb0430
  article-title: Channel initiation and the problem of landscape scale
  publication-title: Science
  doi: 10.1126/science.255.5046.826
– volume: 15
  start-page: 667
  issue: 2
  year: 2011
  ident: 10.1016/j.geomorph.2015.06.047_bb0405
  article-title: Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-667-2011
– volume: 14
  issue: 5
  year: 1988
  ident: 10.1016/j.geomorph.2015.06.047_bb0355
  article-title: CATCH: a Fortran program for measuring catchment area from digital elevation models
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(88)90018-0
– ident: 10.1016/j.geomorph.2015.06.047_bb0110
– volume: 32
  start-page: 401
  issue: 4
  year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0030
  article-title: LiDAR elevation data for surface hydrologic modelling: resolution and representation issues
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1559/152304005775194692
– ident: 10.1016/j.geomorph.2015.06.047_bb0720
– volume: 53
  start-page: 1176
  issue: 6
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0465
  article-title: Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue / Propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de modèles numériques de terrain: la question des zones planes
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.53.6.1176
– year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0185
– year: 2005
  ident: 10.1016/j.geomorph.2015.06.047_bb0240
– volume: 1
  start-page: 131
  issue: 2
  year: 1988
  ident: 10.1016/j.geomorph.2015.06.047_bb0455
  article-title: Automatically derived catchment boundaries and channel networks and their hydrological applications
  publication-title: Geomorphology
  doi: 10.1016/0169-555X(88)90011-6
– volume: 40
  issue: 5
  year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0205
  article-title: Modelling spatial patterns of saturated areas: an evaluation of different terrain indices
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002864
– volume: 35
  start-page: 782
  issue: 6
  year: 2011
  ident: 10.1016/j.geomorph.2015.06.047_bb0250
  article-title: Laser scanning applications in fluvial studies
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133311414605
– volume: 4
  start-page: 375
  year: 1975
  ident: 10.1016/j.geomorph.2015.06.047_bb0505
  article-title: Detection of surface-specific points by local parallel processing of discrete terrain elevation data
  publication-title: Comput. Graphics Image Process.
  doi: 10.1016/0146-664X(75)90005-2
– year: 2004
  ident: 10.1016/j.geomorph.2015.06.047_bb0175
– volume: 25
  start-page: 835
  issue: 7
  year: 1999
  ident: 10.1016/j.geomorph.2015.06.047_bb0365
  article-title: An outlet breaching algorithm for the treatment of closed depressions in a raster DEM
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(99)00018-7
– year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0545
  article-title: Preparation of DEMs for geomorphometric analysis
– volume: 27
  start-page: 7
  issue: 1
  year: 1971
  ident: 10.1016/j.geomorph.2015.06.047_bb0160
  article-title: Photo interpretation applied to geomorphology — a review
  publication-title: Photogrammetria
  doi: 10.1016/0031-8663(71)90006-8
– year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0220
  article-title: A bestiary of LiDAR errors
– ident: 10.1016/j.geomorph.2015.06.047_bb0190
– year: 2007
  ident: 10.1016/j.geomorph.2015.06.047_bb0130
  article-title: Regional 50m gridded LiDAR data by Swedesurvey
– year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0535
– volume: 32
  start-page: 1574
  issue: 10
  year: 2007
  ident: 10.1016/j.geomorph.2015.06.047_bb0275
  article-title: High‐resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.1505
– volume: 216
  start-page: 295
  year: 2014
  ident: 10.1016/j.geomorph.2015.06.047_bb0660
  article-title: High-resolution topography for understanding Earth surface processes: opportunities and challenges
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.03.008
– volume: 69
  start-page: 1367
  issue: 12
  year: 2003
  ident: 10.1016/j.geomorph.2015.06.047_bb0095
  article-title: Comparison of digital elevation models for aquatic data development
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.69.12.1367
– year: 2007
  ident: 10.1016/j.geomorph.2015.06.047_bb0685
  article-title: High-resolution LiDAR DEM — how good is it
– volume: 5
  start-page: 59
  issue: 1
  year: 1992
  ident: 10.1016/j.geomorph.2015.06.047_bb0655
  article-title: A physical basis for drainage density
  publication-title: Geomorphology
  doi: 10.1016/0169-555X(92)90058-V
– volume: 475
  start-page: 74
  year: 2012
  ident: 10.1016/j.geomorph.2015.06.047_bb0725
  article-title: Regional flood frequency analysis in arid regions: a case study for Australia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.08.054
– volume: 28
  start-page: 323
  issue: 3
  year: 1984
  ident: 10.1016/j.geomorph.2015.06.047_bb0475
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Comput. Vis. Graphics Image Underst.
  doi: 10.1016/S0734-189X(84)80011-0
– volume: 9
  start-page: 363
  issue: 3–4
  year: 1995
  ident: 10.1016/j.geomorph.2015.06.047_bb0210
  article-title: Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360090310
– year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0305
– start-page: 329
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0520
  article-title: Using Selective Drainage Methods to Hydrologically-Condition and Hydrologically-Enforce Lidar-Derived Surface Flow
– ident: 10.1016/j.geomorph.2015.06.047_bb0565
– volume: 3
  start-page: 7
  year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0325
  article-title: Trend analysis of digital drainage network extraction affected by DEM resolution
  publication-title: China Rural Water Hydropower
– volume: 27
  start-page: 2171
  issue: 15
  year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0290
  article-title: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9740
– volume: 25
  start-page: 1907
  issue: 8
  year: 1989
  ident: 10.1016/j.geomorph.2015.06.047_bb0425
  article-title: Source areas, drainage density, and channel initiation
  publication-title: Water Resour. Res.
  doi: 10.1029/WR025i008p01907
– volume: 74
  start-page: 1089
  issue: 9
  year: 1963
  ident: 10.1016/j.geomorph.2015.06.047_bb0575
  article-title: Sinuosity of alluvial rivers on the Great Plains
  publication-title: GSA Bull.
  doi: 10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2
– volume: 11
  start-page: 1427
  issue: 10
  year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0585
  article-title: Satellite remote sensing of river inundation area, stage, and discharge: a review
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
– volume: 72
  start-page: 159
  issue: 2
  year: 2006
  ident: 10.1016/j.geomorph.2015.06.047_bb0020
  article-title: Comparison of automated watershed delineations: effects on land cover areas, percentages, and relationships to nutrient discharge
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.72.2.159
– start-page: 1
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0085
  article-title: The relationship between DEM resolution, accumulation area threshold and drainage network indices
– volume: 47
  start-page: 427
  issue: 7
  year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0625
  article-title: Ecosystem expansion and contraction in streams: desert streams vary in both space and time and fluctuate dramatically in size
  publication-title: Bioscience
  doi: 10.2307/1313058
– year: 1998
  ident: 10.1016/j.geomorph.2015.06.047_bb0370
– ident: 10.1016/j.geomorph.2015.06.047_bb0645
– volume: 331
  start-page: 18
  issue: 1
  year: 2006
  ident: 10.1016/j.geomorph.2015.06.047_bb0710
  article-title: Estimating rainfall and water balance over the Okavango River Basin for hydrological applications
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.04.049
– volume: 73
  start-page: 358
  year: 1983
  ident: 10.1016/j.geomorph.2015.06.047_bb0345
  article-title: Relations between field-surveyed channel networks and map-based geomorphometric measures, Inez, Kentucky
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.1983.tb01422.x
– volume: 44
  start-page: W03427
  issue: 3
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0590
  article-title: Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006133
– year: 1987
  ident: 10.1016/j.geomorph.2015.06.047_bb0050
– year: 1990
  ident: 10.1016/j.geomorph.2015.06.047_bb1000
– volume: 38
  start-page: 86
  issue: 1
  year: 1957
  ident: 10.1016/j.geomorph.2015.06.047_bb0450
  article-title: Accuracy of determination of stream lengths from topographic maps
  publication-title: Eos Trans. AGU
  doi: 10.1029/TR038i001p00086
– volume: 48
  year: 2012
  ident: 10.1016/j.geomorph.2015.06.047_bb0490
  article-title: An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010735
– volume: 34
  start-page: 781
  issue: 6
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0015
  article-title: A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133310384542
– volume: 43
  start-page: 42
  issue: 1
  year: 2011
  ident: 10.1016/j.geomorph.2015.06.047_bb0330
  article-title: Drainage network extraction using LiDAR‐derived DEM in volcanic plains
  publication-title: Area
– year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0385
– volume: 46
  start-page: W11535
  issue: 11
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0495
  article-title: Testing space-scale methodologies for automatic geomorphic feature extraction from LiDAR in a complex mountainous landscape
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008812
– volume: 45
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.geomorph.2015.06.047_bb0055
  article-title: Scale dependencies of vegetation and topography in a mountainous environment of Montana
  publication-title: Prof. Geogr.
  doi: 10.1111/j.0033-0124.1993.00001.x
– year: 1997
  ident: 10.1016/j.geomorph.2015.06.047_bb0550
– year: 1958
  ident: 10.1016/j.geomorph.2015.06.047_bb0100
– volume: 116
  start-page: 274
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geomorph.2015.06.047_bb0485
  article-title: Fluvial processes and vegetation — Glimpses of the past, the present, and perhaps the future
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.11.018
– volume: 28
  start-page: 321
  issue: 3
  year: 2003
  ident: 10.1016/j.geomorph.2015.06.047_bb0165
  article-title: Airborne LiDAR in support of geomorphological and hydraulic modelling
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.484
– volume: 21
  start-page: 21
  year: 1938
  ident: 10.1016/j.geomorph.2015.06.047_bb0705
  article-title: The Kunene River and the Etosha Plain
  publication-title: S. Afr. Geogr. J.
  doi: 10.1080/03736245.1938.105591186
– year: 2012
  ident: 10.1016/j.geomorph.2015.06.047_bb0540
– volume: 113
  start-page: 1
  issue: 1–2
  year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0665
  article-title: Understanding earth surface processes from remotely sensed digital terrain models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.07.005
– year: 2000
  ident: 10.1016/j.geomorph.2015.06.047_bb0395
– year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0380
– volume: 34
  start-page: 1584
  issue: 11
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0500
  article-title: Errors in river lengths derived from raster digital elevation models
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.10.009
– year: 1993
  ident: 10.1016/j.geomorph.2015.06.047_bb7000
– volume: 27
  start-page: 541
  issue: 4
  year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0080
  article-title: Drainage network detection and assessment of network storage capacity in agrarian landscape
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9224
– volume: 35
  start-page: 739
  issue: 6
  year: 2011
  ident: 10.1016/j.geomorph.2015.06.047_bb0195
  article-title: Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133311409086
– volume: 33
  start-page: 4
  issue: 1
  year: 2008
  ident: 10.1016/j.geomorph.2015.06.047_bb0335
  article-title: Optical remote mapping of rivers at sub‐meter resolutions and watershed extents
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.1637
– volume: 33
  start-page: 568
  issue: 4
  year: 2009
  ident: 10.1016/j.geomorph.2015.06.047_bb0595
  article-title: Applications of remote sensing in geomorphology
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133309346648
– volume: 101
  start-page: 259
  issue: 2
  year: 1993
  ident: 10.1016/j.geomorph.2015.06.047_bb2000
  article-title: Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model
  publication-title: The J. Geol.
  doi: 10.1086/648220
– volume: 200
  start-page: 172
  year: 2013
  ident: 10.1016/j.geomorph.2015.06.047_bb0555
  article-title: ‘You are HERE’: connecting the dots with airborne lidar for geomorphic fieldwork
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.04.009
SSID ssj0004790
Score 2.3749118
Snippet Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Airborne Light Detection and Ranging (LiDAR)
Algorithms
basins
Brackish
Channels
Cuvelai Basin
D8 algorithm
data collection
Digital elevation model (DEM)
Digital Elevation Models
drainage
Drainage network extraction
geographic information systems
Geomorphology
Hydrology
landscapes
Lidar
Low relief area
modernization
Namibia
Networks
orthophotography
quantitative analysis
streams
surface roughness
Thresholds
topographic maps
watersheds
Title Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs
URI https://dx.doi.org/10.1016/j.geomorph.2015.06.047
https://www.proquest.com/docview/1785246618
https://www.proquest.com/docview/1808086713
https://www.proquest.com/docview/2101354837
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIgQXBAVEeVSDxAGkhl1v7CTmtiyU5bUHoNLeIieO21TdONpkQb3wo_iFzMRJeQjogWOiGcXJ2OMZZ-b7GHtkIxWaSWgCESaGjm44-sGQgCCtznnOed6h679fRPND8WYpl1tsNvTCUFll7_u9T--8dX9n1H_NUV2Wo4-EIyKlXOKa7VomqYNdxMRi8PTrjzIPfPzY43urgKR_6hI-QRu5lcP3oRIv2eF4Es3Knzeo31x1t_8cXGfX-sARpn5sN9hWUe2wKz2H-fHZDrv8qiPpPbvJvk3P4TbBWTDEAoFuAypf8g3oj9e-n6GBsgINp-5LsC4wGrWgMYgkJYwLYbb5TBCS8Fw3KPZ4oVfUX_IEqCUFhkpE8Mf_zTN4V76YftiH1tV-TGUOK103-6ArA6Y8InoS0N2MB_pb5Opj13rR5hY7PHj5aTYPem6GQItQtEFmeZxlWiYJ5pQZplmGF5xo1tH4ybiIODeYG42VtjZReayF0ipTE8uFphiVh7fZduWq4g4DbWRoskJYmVN2pxKR6Az1Yx1hfBGLXSYHg6R5D1xO_Bmn6VChdpIOhkzJkCmV6ol4l43O9WoP3XGhhhrsnf4yCVPcXy7UfThMkBRXKP120VXhNk3K40ROBMZByT9kCN6ToAbDv8tgcs5DSQwAd_9jnPfYVbyKfM3mfbbdrjfFA4yr2myvWzh77NL09dv54juRKCVN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKESqXCgqIUh6DxAGkhl2v7Ty4LQtlge0eoJX2ZjlxQlN1k2iTBfXCj-IXMhMn5SGgB67JjOJk7PGMM_N9jD3J_EjYkbCeFKGloxuOflAQEGRmEp5wnrTo-odzf3os3y3UYoNN-l4YKqvsfL_z6a237q4Muq85qPJ88JFwRJRSC1yzbcvkFXZVqlFAGdjzrz_qPPD5QwfwHXkk_lOb8CkaqVyW-EJU46VaIE_iWfnzDvWbr243oIMbbLuLHGHsBneTbaTFDtvqSMxPznfYtTctS-_5LfZtfIG3CWUGlmgg0G9A4Wq-AR3yyjU01JAXYOCs_OKtUgxHMzAYRZISBoYwWX8mDEl4aWoUezo3S2oweQbUkwJ9KSK48__6BczyV-MP-9CUlRtTnsDSVPU-mMKCzT8RPwmYdsoD_S4qq5OycaL1bXZ88PpoMvU6cgbPSCEbL854EMdGhSEmlTHmWZannHjW0frhMPU5t5gcDSOTZWGUBEZGJoqjUcaloSCViztssyiL9C4DY5WwcSozlVB6F4UyNDHqB8bHACOQu0z1BtFJh1xOBBpnui9RO9W9ITUZUlOtngx22eBCr3LYHZdqRL299S-zUOMGc6nu436CaFyi9N_FFGm5rjUPQjWSGAiF_5AhfE_CGhR_l8HsnAtFFAD3_mOcj9jW9Ohwpmdv5-_32HW847sCzvtss1mt0wcYZDXxw3YRfQcbcCbi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+drainage+network+extractions+in+a+low-relief+area+of+the+Cuvelai+Basin+%28Namibia%29+from+multiple+sources%3A+LiDAR%2C+topographic+maps%2C+and+digital+aerial+orthophotographs&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Persendt%2C+F.C.&rft.au=Gomez%2C+C.&rft.date=2016-05-01&rft.pub=Elsevier+B.V&rft.issn=0169-555X&rft.eissn=1872-695X&rft.volume=260&rft.spage=32&rft.epage=50&rft_id=info:doi/10.1016%2Fj.geomorph.2015.06.047&rft.externalDocID=S0169555X15300647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon