A new algorithm for the automatic extraction of valley floor width

The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an aut...

Full description

Saved in:
Bibliographic Details
Published inGeomorphology (Amsterdam, Netherlands) Vol. 335; pp. 37 - 47
Main Authors Zhao, Yinjun, Wu, Pengfei, Li, Jiaxu, Lin, Qing, Lu, Yuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2019
Subjects
Online AccessGet full text
ISSN0169-555X
1872-695X
DOI10.1016/j.geomorph.2019.03.015

Cover

Abstract The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an automated algorithm approach to extract the valley floor width of U- and V-shaped valleys by using the breakpoint of the slope between the valley wall and valley floor to support digital elevation models (DEMs) of different resolutions. The algorithm includes five steps: 1) preprocessing data, 2) extracting linear reach, 3) extracting perpendiculars of reaches, 4) delineating the outlines of the valley floor and 5) calculating the width of the valley floor. Eight case studies were used to validate the algorithm. Valley floor outlines and widths were computed and measured, revealing that the algorithm performs well with a high correlation coefficient (CC > 0.88) and coefficient of determination (R2 > 0.77), as well as low relative bias (|RB| < 10%). The algorithm performs better when applied in U-shaped valleys than in V-shaped valleys. The algorithm offers a fast and inexpensive tool with which to obtain valley shape information for research and management. •Proposed an automated algorithm approach to extract the valley floor width by viewing the point slope change.•The algorithm includes five steps.•The algorithm performs better in U-shaped valleys than V-shaped valleys.•The algorithm was programed as an ArcGIS plug-in for free download.
AbstractList The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an automated algorithm approach to extract the valley floor width of U- and V-shaped valleys by using the breakpoint of the slope between the valley wall and valley floor to support digital elevation models (DEMs) of different resolutions. The algorithm includes five steps: 1) preprocessing data, 2) extracting linear reach, 3) extracting perpendiculars of reaches, 4) delineating the outlines of the valley floor and 5) calculating the width of the valley floor. Eight case studies were used to validate the algorithm. Valley floor outlines and widths were computed and measured, revealing that the algorithm performs well with a high correlation coefficient (CC > 0.88) and coefficient of determination (R2 > 0.77), as well as low relative bias (|RB| < 10%). The algorithm performs better when applied in U-shaped valleys than in V-shaped valleys. The algorithm offers a fast and inexpensive tool with which to obtain valley shape information for research and management.
The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an automated algorithm approach to extract the valley floor width of U- and V-shaped valleys by using the breakpoint of the slope between the valley wall and valley floor to support digital elevation models (DEMs) of different resolutions. The algorithm includes five steps: 1) preprocessing data, 2) extracting linear reach, 3) extracting perpendiculars of reaches, 4) delineating the outlines of the valley floor and 5) calculating the width of the valley floor. Eight case studies were used to validate the algorithm. Valley floor outlines and widths were computed and measured, revealing that the algorithm performs well with a high correlation coefficient (CC > 0.88) and coefficient of determination (R2 > 0.77), as well as low relative bias (|RB| < 10%). The algorithm performs better when applied in U-shaped valleys than in V-shaped valleys. The algorithm offers a fast and inexpensive tool with which to obtain valley shape information for research and management. •Proposed an automated algorithm approach to extract the valley floor width by viewing the point slope change.•The algorithm includes five steps.•The algorithm performs better in U-shaped valleys than V-shaped valleys.•The algorithm was programed as an ArcGIS plug-in for free download.
Author Lu, Yuan
Li, Jiaxu
Wu, Pengfei
Lin, Qing
Zhao, Yinjun
Author_xml – sequence: 1
  givenname: Yinjun
  orcidid: 0000-0002-0111-3694
  surname: Zhao
  fullname: Zhao, Yinjun
  email: crpp0104@163.com
  organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China
– sequence: 2
  givenname: Pengfei
  surname: Wu
  fullname: Wu, Pengfei
  organization: School of Geography and Planning, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China
– sequence: 3
  givenname: Jiaxu
  surname: Li
  fullname: Li, Jiaxu
  organization: School of Geography and Planning, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China
– sequence: 4
  givenname: Qing
  surname: Lin
  fullname: Lin, Qing
  organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China
– sequence: 5
  givenname: Yuan
  surname: Lu
  fullname: Lu, Yuan
  organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China
BookMark eNqFkL1OwzAURi1UJNrCKyCPLAl2HCexxECp-JMqsYDUzXKd69ZVEhfbbenbk6qwsDDd5ZxPumeEBp3rAKFrSlJKaHG7TpfgWuc3qzQjVKSEpYTyMzSkVZklheDzARr2oEg45_MLNAphTQjJS0GG6GGCO9hj1Sydt3HVYuM8jivAahtdq6LVGL6iVzpa12Fn8E41DRywaVwP7m0dV5fo3KgmwNXPHaOPp8f36Usye3t-nU5micpZHhNRcl0ZRdhCUMZyTUlpWAFcmQpqqGpeL1QhtDAZaMp1qXPNCs5VzStGoazYGN2cdjfefW4hRNnaoKFpVAduG2SWsZLTjLOsR-9OqPYuBA9GahvV8YX-FdtISuQxnVzL33TymE4SJvt0vV780Tfetsof_hfvTyL0HXYWvAzaQqehth50lLWz_018AxBvkDo
CitedBy_id crossref_primary_10_5194_esurf_10_437_2022
crossref_primary_10_1016_j_geomorph_2021_108081
crossref_primary_10_1016_j_jhydrol_2020_124547
crossref_primary_10_1002_esp_4930
crossref_primary_10_1016_j_enggeo_2019_105428
crossref_primary_10_1016_j_istruc_2022_02_041
crossref_primary_10_1007_s12524_020_01273_7
crossref_primary_10_1080_02723646_2021_2020968
crossref_primary_10_1002_wat2_1716
crossref_primary_10_1061__ASCE_GM_1943_5622_0002501
Cites_doi 10.1016/j.scitotenv.2018.05.252
10.1002/esp.3893
10.1007/s10021-009-9298-5
10.1139/l05-102
10.1007/s12517-018-3488-4
10.1002/esp.3464
10.1016/S0166-2481(08)00014-7
10.1023/A:1006471427421
10.1029/2002WR001426
10.1016/S0143-6228(01)00016-9
10.5194/esurf-5-369-2017
10.1002/esp.3922
10.1130/G33979.1
10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2
10.2166/wst.2016.333
10.1016/j.geomorph.2014.04.018
10.1016/j.enggeo.2016.04.024
10.1016/j.ecss.2013.05.015
10.1016/j.cageo.2014.05.015
10.1016/j.cageo.2016.07.014
10.1127/0372-8854/2013/0110
10.1016/j.jhydrol.2012.09.006
10.4236/gep.2015.38001
10.5194/esurf-2-97-2014
10.1016/j.geomorph.2006.01.017
10.1016/j.geomorph.2009.11.015
10.1002/esp.1505
10.1016/j.geomorph.2015.07.010
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geomorph.2019.03.015
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1872-695X
EndPage 47
ExternalDocumentID 10_1016_j_geomorph_2019_03_015
S0169555X19301096
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSZ
T5K
XPP
ZCA
ZMT
~02
~G-
29H
9M8
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABXDB
ACLOT
ACVFH
ADCNI
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
OHT
R2-
SEP
SEW
VH1
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-a434t-975c8fa03b91334c107f36e5af8ede8d5dba69c9f2ec15c7c4c3655ad5831e783
IEDL.DBID .~1
ISSN 0169-555X
IngestDate Sun Sep 28 10:36:13 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Thu Oct 02 04:32:22 EDT 2025
Fri Feb 23 02:18:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Valley floor width
Geographic information system
DEM
River classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a434t-975c8fa03b91334c107f36e5af8ede8d5dba69c9f2ec15c7c4c3655ad5831e783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0111-3694
PQID 2237512532
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2237512532
crossref_citationtrail_10_1016_j_geomorph_2019_03_015
crossref_primary_10_1016_j_geomorph_2019_03_015
elsevier_sciencedirect_doi_10_1016_j_geomorph_2019_03_015
PublicationCentury 2000
PublicationDate 2019-06-15
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-15
  day: 15
PublicationDecade 2010
PublicationTitle Geomorphology (Amsterdam, Netherlands)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Daxberger, Dalumpines, Scott, Riller (bb0025) 2014; 70
Scorpio, Crema, Marra, Righini, Ciccarese, Borga, Cavalli, Corsini, Marchi, Surian, Comiti (bb0115) 2018; 640
Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A. C., 2012. Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. s470–471, 302–315.
Banerjee, Ghose, Pradhan (bb0005) 2018; 11
Brierley, Fryirs, Outhet, Massey (bb0010) 2002; 22
Kastens (bb0075) 2008
Hopkins, Snyder (bb0065) 2016; 41
Housman, Hamilton, Fisk, Armlovich, Johnston, Abramson (bb1000) 2012
Zhou, Wang (bb0195) 2015; 3
Gilbert, Macfarlane, Wheaton (bb0050) 2016; 97
Stout, Belmont (bb0125) 2014; 39
Montgomery, Buffington (bb0095) 1997; 109
Wang, Tong (bb0160) 2016; 32
May, Roering, Eaton, Burnett (bb0090) 2013; 41
Gallant, Dowling (bb0045) 2003; 39
Roux, Alber, Bertrand, Vaudor, Piégay (bb0110) 2015; 242
Straumann, Purves (bb0130) 2008
Burrough (bb0015) 1986
Clubb, Mudd, Milodowski, Valters, Slater, Hurst, Limaye (bb0020) 2017; 5
Lin, Oguchi (bb0085) 2006; 78
Wood (bb0180) 2009; vol. 33
Thoms, Scown, Flotemersch (bb0145) 2018
Walter, Merritts, Rahnis (bb0155) 2007
Naiman, Bechtold, Beechie, Latterell, Van Pelt (bb0105) 2010; 13
Hergarten, Robl, Stüwe (bb0060) 2014; 2
.
Zhao, Ding (bb0190) 2016; 74
Goudie (bb0055) 2013; 129
Williams, Jensen, Winne, Redmond (bb0170) 2000; 64
Wood, J., 1996. The Geomorphological Characterization of Digital Elevation Models, PhD Thesis. University of Leicester.
Wheaton, Fryirs, Brierley, Bangen, Bouwes, O'Brien (bb0165) 2015; 248
Nagel, Buffington, Parkes, Wenger, Goode (bb0100) 2014; 321
Stefanelli, Segoni, Casagli, Catani (bb0120) 2016; 208
Telbisz, Kovács, Székely, Szabó (bb0140) 2013; 57
Fryirs, Brierley (bb0035) 2010; 117
Fryirs, Wheaton, Brierley (bb0040) 2015; 41
Yang, Townsend, Daneshfar (bb0185) 2006; 33
Tian, Liu (bb0150) 2012; 39
Jones, Brewer, Johnstone, Macklin (bb0070) 2007; 32
Leopold, Maddock (bb0080) 1953; 252
Zhao (10.1016/j.geomorph.2019.03.015_bb0190) 2016; 74
Housman (10.1016/j.geomorph.2019.03.015_bb1000) 2012
Goudie (10.1016/j.geomorph.2019.03.015_bb0055) 2013; 129
Stefanelli (10.1016/j.geomorph.2019.03.015_bb0120) 2016; 208
Hopkins (10.1016/j.geomorph.2019.03.015_bb0065) 2016; 41
May (10.1016/j.geomorph.2019.03.015_bb0090) 2013; 41
Williams (10.1016/j.geomorph.2019.03.015_bb0170) 2000; 64
Fryirs (10.1016/j.geomorph.2019.03.015_bb0040) 2015; 41
Thoms (10.1016/j.geomorph.2019.03.015_bb0145) 2018
Burrough (10.1016/j.geomorph.2019.03.015_bb0015) 1986
Hergarten (10.1016/j.geomorph.2019.03.015_bb0060) 2014; 2
Leopold (10.1016/j.geomorph.2019.03.015_bb0080) 1953; 252
Wood (10.1016/j.geomorph.2019.03.015_bb0180) 2009; vol. 33
Scorpio (10.1016/j.geomorph.2019.03.015_bb0115) 2018; 640
Telbisz (10.1016/j.geomorph.2019.03.015_bb0140) 2013; 57
Naiman (10.1016/j.geomorph.2019.03.015_bb0105) 2010; 13
Walter (10.1016/j.geomorph.2019.03.015_bb0155) 2007
Brierley (10.1016/j.geomorph.2019.03.015_bb0010) 2002; 22
Jones (10.1016/j.geomorph.2019.03.015_bb0070) 2007; 32
Kastens (10.1016/j.geomorph.2019.03.015_bb0075) 2008
Wang (10.1016/j.geomorph.2019.03.015_bb0160) 2016; 32
Montgomery (10.1016/j.geomorph.2019.03.015_bb0095) 1997; 109
Daxberger (10.1016/j.geomorph.2019.03.015_bb0025) 2014; 70
10.1016/j.geomorph.2019.03.015_bb0030
Yang (10.1016/j.geomorph.2019.03.015_bb0185) 2006; 33
Fryirs (10.1016/j.geomorph.2019.03.015_bb0035) 2010; 117
10.1016/j.geomorph.2019.03.015_bb0175
Gilbert (10.1016/j.geomorph.2019.03.015_bb0050) 2016; 97
Roux (10.1016/j.geomorph.2019.03.015_bb0110) 2015; 242
Zhou (10.1016/j.geomorph.2019.03.015_bb0195) 2015; 3
Banerjee (10.1016/j.geomorph.2019.03.015_bb0005) 2018; 11
Gallant (10.1016/j.geomorph.2019.03.015_bb0045) 2003; 39
Nagel (10.1016/j.geomorph.2019.03.015_bb0100) 2014; 321
Clubb (10.1016/j.geomorph.2019.03.015_bb0020) 2017; 5
Lin (10.1016/j.geomorph.2019.03.015_bb0085) 2006; 78
Straumann (10.1016/j.geomorph.2019.03.015_bb0130) 2008
Stout (10.1016/j.geomorph.2019.03.015_bb0125) 2014; 39
Tian (10.1016/j.geomorph.2019.03.015_bb0150) 2012; 39
Wheaton (10.1016/j.geomorph.2019.03.015_bb0165) 2015; 248
References_xml – volume: 252
  year: 1953
  ident: bb0080
  article-title: The hydraulic geometry of stream channels and some physiographic implications
  publication-title: United States Geological Survey.
– volume: 129
  start-page: 112
  year: 2013
  end-page: 123
  ident: bb0055
  article-title: Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth
  publication-title: Estuarine Coastal & Shelf Science
– volume: vol. 33
  start-page: 333
  year: 2009
  end-page: 349
  ident: bb0180
  article-title: Geomorphometry in LandSerf. Developments in Soil Science
– volume: 39
  start-page: 569
  year: 2014
  end-page: 580
  ident: bb0125
  article-title: TerEx Toolbox for semiautomated selection of fluvial terrace and floodplain features from LiDAR
  publication-title: Earth Surf. Proc. Land.
– year: 2007
  ident: bb0155
  article-title: Estimating Volume, Nutrient Content, and Rates of Stream Bank Erosion of Legacy Sediment in the Piedmont and Valley and Ridge Physiographic Provinces, Southeastern and Central PA
– volume: 33
  start-page: 19
  year: 2006
  end-page: 28
  ident: bb0185
  article-title: Applying the HEC-RAS model and GIS techniques in river network floodpl
  publication-title: Can. J. Civ. Eng.
– volume: 74
  start-page: 1539
  year: 2016
  end-page: 1552
  ident: bb0190
  article-title: A decision classifier to classify rivers for river management based on their structure in China: an example from the Yongding River
  publication-title: Water Sci. Technol.
– start-page: 1
  year: 2018
  end-page: 15
  ident: bb0145
  article-title: Characterization of river networks: a GIS approach and its applications
  publication-title: J. Am. Water Resour. Assoc.
– volume: 32
  start-page: 97
  year: 2016
  end-page: 102
  ident: bb0160
  article-title: Susceptibility assessment of landslide-damming based on valley transverse profile morphological characteristics
  publication-title: Geography and Geo-Information Science
– volume: 117
  start-page: 106
  year: 2010
  end-page: 120
  ident: bb0035
  article-title: Antecedent controls on river character and behaviour in partly confined valley settings: Upper Hunter catchment, NSW, Australia
  publication-title: Geomorphology
– volume: 70
  start-page: 154
  year: 2014
  end-page: 163
  ident: bb0025
  article-title: The valleymorph tool: an automated extraction tool for transverse topographic symmetry (t-) factor and valley width to valley height (vf-) ratio
  publication-title: Comput. Geosci.
– volume: 39
  start-page: 482
  year: 2012
  end-page: 484
  ident: bb0150
  article-title: Least squares method piecewise linear fitting
  publication-title: Computer Science
– volume: 57
  start-page: 485
  year: 2013
  end-page: 513
  ident: bb0140
  article-title: Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool
  publication-title: Z. Geomorphol.
– volume: 11
  start-page: 139
  year: 2018
  ident: bb0005
  article-title: Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya
  publication-title: Arab. J. Geosci.
– volume: 5
  start-page: 369
  year: 2017
  end-page: 385
  ident: bb0020
  article-title: Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds
  publication-title: Earth Surf. Dynam.
– volume: 41
  start-page: 1144
  year: 2016
  end-page: 1152
  ident: bb0065
  article-title: Performance evaluation of three DEM-based fluvial terrace mapping methods
  publication-title: Earth Surface Processes & Landforms
– year: 2008
  ident: bb0130
  article-title: Delineation of valleys and valley floors. In: International Conference on Geographic Information Science. Springer, Berlin
  publication-title: Heidelberg (320-336pp)
– volume: 321
  year: 2014
  ident: bb0100
  article-title: A landscape scale valley confinement algorithm: delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications
  publication-title: USDA Forest Service-General Technical Report RMRS-GTR
– volume: 41
  start-page: 503
  year: 2013
  end-page: 506
  ident: bb0090
  article-title: Controls on valley width in mountainous landscapes: the role of landsliding and implications for salmonid habitat
  publication-title: Geology
– volume: 97
  start-page: 1
  year: 2016
  end-page: 14
  ident: bb0050
  article-title: The Valley Bottom Extraction Tool (V-BET): a GIS tool for delineating valley bottoms across entire drainage networks
  publication-title: Comput. Geosci.
– volume: 3
  start-page: 1
  year: 2015
  end-page: 8
  ident: bb0195
  article-title: Application of Google Earth in modern river sedimentology research
  publication-title: Journal of Geoscience and Environment Protection
– reference: Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A. C., 2012. Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. s470–471, 302–315.
– volume: 78
  start-page: 77
  year: 2006
  end-page: 89
  ident: bb0085
  article-title: DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds
  publication-title: Geomorphology
– volume: 22
  start-page: 91
  year: 2002
  end-page: 122
  ident: bb0010
  article-title: Applicationof the river styles framework as a basis for river management in New South Wales, Australia
  publication-title: Appl. Geogr.
– year: 2012
  ident: bb1000
  article-title: Riparian delineation in the Grand Mesa, Uncompahgre and Gunnison National Forests
  publication-title: SAC-10006-RPT1. U.S. Department of Agriculture, Forest Service
– volume: 248
  start-page: 273
  year: 2015
  end-page: 295
  ident: bb0165
  article-title: Geomorphic mapping and taxonomy of fluvial landforms
  publication-title: Geomorphology
– year: 1986
  ident: bb0015
  article-title: Principles of Geographical Information Systems for Land Resources Assessment
– volume: 41
  start-page: 701
  year: 2015
  end-page: 710
  ident: bb0040
  article-title: An approach for measuring confinement and assessing the influence of valley setting on river forms and processes
  publication-title: Earth Surf. Process. Land.
– volume: 208
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0120
  article-title: Geomorphic indexing of landslide dams evolution
  publication-title: Eng. Geol.
– reference: Wood, J., 1996. The Geomorphological Characterization of Digital Elevation Models, PhD Thesis. University of Leicester.
– volume: 109
  start-page: 596
  year: 1997
  end-page: 611
  ident: bb0095
  article-title: Channel reach morphology in mountain drainage basins
  publication-title: Geol. Soc. Am. Bull.
– reference: .
– volume: 13
  start-page: 1
  year: 2010
  end-page: 31
  ident: bb0105
  article-title: A process-based view of floodplain forest patterns in coastal river valleys of the Pacific Northwest
  publication-title: Ecosystems
– volume: 2
  start-page: 97
  year: 2014
  end-page: 104
  ident: bb0060
  article-title: Extracting topographic swath profiles across curved geomorphic features
  publication-title: Earth Surface Dynamics
– volume: 32
  start-page: 1574
  year: 2007
  end-page: 1592
  ident: bb0070
  article-title: High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data
  publication-title: Earth Surface Processes & Landforms
– volume: 39
  start-page: 1347
  year: 2003
  ident: bb0045
  article-title: A multi resolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
– year: 2008
  ident: bb0075
  article-title: Some New Developments on Two Separate Topics: Statistical Cross Validation and Floodplain Mapping
– volume: 64
  start-page: 105
  year: 2000
  end-page: 114
  ident: bb0170
  article-title: An automated technique for delineating and characterizing valley-bottom settings
  publication-title: Environ. Monit. Assess.
– volume: 242
  start-page: 29
  year: 2015
  end-page: 37
  ident: bb0110
  article-title: “Fluvial Corridor”: a new ArcGIS toolbox package for multiscale riverscape exploration
  publication-title: Geomorphology
– volume: 640
  start-page: 337
  year: 2018
  end-page: 351
  ident: bb0115
  article-title: Basin-scale analysis of the geomorphic effectiveness of flash floods: a study in the northern Apennines (Italy)
  publication-title: Sci. Total Environ.
– volume: 640
  start-page: 337
  year: 2018
  ident: 10.1016/j.geomorph.2019.03.015_bb0115
  article-title: Basin-scale analysis of the geomorphic effectiveness of flash floods: a study in the northern Apennines (Italy)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.252
– volume: 41
  start-page: 701
  year: 2015
  ident: 10.1016/j.geomorph.2019.03.015_bb0040
  article-title: An approach for measuring confinement and assessing the influence of valley setting on river forms and processes
  publication-title: Earth Surf. Process. Land.
  doi: 10.1002/esp.3893
– volume: 13
  start-page: 1
  year: 2010
  ident: 10.1016/j.geomorph.2019.03.015_bb0105
  article-title: A process-based view of floodplain forest patterns in coastal river valleys of the Pacific Northwest
  publication-title: Ecosystems
  doi: 10.1007/s10021-009-9298-5
– year: 2008
  ident: 10.1016/j.geomorph.2019.03.015_bb0075
– volume: 33
  start-page: 19
  year: 2006
  ident: 10.1016/j.geomorph.2019.03.015_bb0185
  article-title: Applying the HEC-RAS model and GIS techniques in river network floodpl
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/l05-102
– volume: 32
  start-page: 97
  year: 2016
  ident: 10.1016/j.geomorph.2019.03.015_bb0160
  article-title: Susceptibility assessment of landslide-damming based on valley transverse profile morphological characteristics
  publication-title: Geography and Geo-Information Science
– volume: 11
  start-page: 139
  year: 2018
  ident: 10.1016/j.geomorph.2019.03.015_bb0005
  article-title: Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-3488-4
– year: 2007
  ident: 10.1016/j.geomorph.2019.03.015_bb0155
– volume: 39
  start-page: 569
  year: 2014
  ident: 10.1016/j.geomorph.2019.03.015_bb0125
  article-title: TerEx Toolbox for semiautomated selection of fluvial terrace and floodplain features from LiDAR
  publication-title: Earth Surf. Proc. Land.
  doi: 10.1002/esp.3464
– volume: vol. 33
  start-page: 333
  year: 2009
  ident: 10.1016/j.geomorph.2019.03.015_bb0180
  doi: 10.1016/S0166-2481(08)00014-7
– volume: 64
  start-page: 105
  year: 2000
  ident: 10.1016/j.geomorph.2019.03.015_bb0170
  article-title: An automated technique for delineating and characterizing valley-bottom settings
  publication-title: Environ. Monit. Assess.
  doi: 10.1023/A:1006471427421
– start-page: 1
  year: 2018
  ident: 10.1016/j.geomorph.2019.03.015_bb0145
  article-title: Characterization of river networks: a GIS approach and its applications
  publication-title: J. Am. Water Resour. Assoc.
– volume: 39
  start-page: 1347
  year: 2003
  ident: 10.1016/j.geomorph.2019.03.015_bb0045
  article-title: A multi resolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– volume: 22
  start-page: 91
  year: 2002
  ident: 10.1016/j.geomorph.2019.03.015_bb0010
  article-title: Applicationof the river styles framework as a basis for river management in New South Wales, Australia
  publication-title: Appl. Geogr.
  doi: 10.1016/S0143-6228(01)00016-9
– volume: 5
  start-page: 369
  year: 2017
  ident: 10.1016/j.geomorph.2019.03.015_bb0020
  article-title: Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds
  publication-title: Earth Surf. Dynam.
  doi: 10.5194/esurf-5-369-2017
– volume: 41
  start-page: 1144
  year: 2016
  ident: 10.1016/j.geomorph.2019.03.015_bb0065
  article-title: Performance evaluation of three DEM-based fluvial terrace mapping methods
  publication-title: Earth Surface Processes & Landforms
  doi: 10.1002/esp.3922
– volume: 41
  start-page: 503
  year: 2013
  ident: 10.1016/j.geomorph.2019.03.015_bb0090
  article-title: Controls on valley width in mountainous landscapes: the role of landsliding and implications for salmonid habitat
  publication-title: Geology
  doi: 10.1130/G33979.1
– volume: 109
  start-page: 596
  year: 1997
  ident: 10.1016/j.geomorph.2019.03.015_bb0095
  article-title: Channel reach morphology in mountain drainage basins
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2
– volume: 74
  start-page: 1539
  year: 2016
  ident: 10.1016/j.geomorph.2019.03.015_bb0190
  article-title: A decision classifier to classify rivers for river management based on their structure in China: an example from the Yongding River
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2016.333
– volume: 242
  start-page: 29
  year: 2015
  ident: 10.1016/j.geomorph.2019.03.015_bb0110
  article-title: “Fluvial Corridor”: a new ArcGIS toolbox package for multiscale riverscape exploration
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.04.018
– volume: 208
  start-page: 1
  year: 2016
  ident: 10.1016/j.geomorph.2019.03.015_bb0120
  article-title: Geomorphic indexing of landslide dams evolution
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.04.024
– volume: 252
  year: 1953
  ident: 10.1016/j.geomorph.2019.03.015_bb0080
  article-title: The hydraulic geometry of stream channels and some physiographic implications
  publication-title: United States Geological Survey.
– volume: 129
  start-page: 112
  year: 2013
  ident: 10.1016/j.geomorph.2019.03.015_bb0055
  article-title: Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth
  publication-title: Estuarine Coastal & Shelf Science
  doi: 10.1016/j.ecss.2013.05.015
– volume: 70
  start-page: 154
  year: 2014
  ident: 10.1016/j.geomorph.2019.03.015_bb0025
  article-title: The valleymorph tool: an automated extraction tool for transverse topographic symmetry (t-) factor and valley width to valley height (vf-) ratio
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.05.015
– volume: 39
  start-page: 482
  year: 2012
  ident: 10.1016/j.geomorph.2019.03.015_bb0150
  article-title: Least squares method piecewise linear fitting
  publication-title: Computer Science
– year: 1986
  ident: 10.1016/j.geomorph.2019.03.015_bb0015
– volume: 97
  start-page: 1
  year: 2016
  ident: 10.1016/j.geomorph.2019.03.015_bb0050
  article-title: The Valley Bottom Extraction Tool (V-BET): a GIS tool for delineating valley bottoms across entire drainage networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.07.014
– volume: 57
  start-page: 485
  year: 2013
  ident: 10.1016/j.geomorph.2019.03.015_bb0140
  article-title: Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool
  publication-title: Z. Geomorphol.
  doi: 10.1127/0372-8854/2013/0110
– ident: 10.1016/j.geomorph.2019.03.015_bb0030
  doi: 10.1016/j.jhydrol.2012.09.006
– year: 2012
  ident: 10.1016/j.geomorph.2019.03.015_bb1000
  article-title: Riparian delineation in the Grand Mesa, Uncompahgre and Gunnison National Forests
– volume: 3
  start-page: 1
  year: 2015
  ident: 10.1016/j.geomorph.2019.03.015_bb0195
  article-title: Application of Google Earth in modern river sedimentology research
  publication-title: Journal of Geoscience and Environment Protection
  doi: 10.4236/gep.2015.38001
– ident: 10.1016/j.geomorph.2019.03.015_bb0175
– year: 2008
  ident: 10.1016/j.geomorph.2019.03.015_bb0130
  article-title: Delineation of valleys and valley floors. In: International Conference on Geographic Information Science. Springer, Berlin
– volume: 2
  start-page: 97
  year: 2014
  ident: 10.1016/j.geomorph.2019.03.015_bb0060
  article-title: Extracting topographic swath profiles across curved geomorphic features
  publication-title: Earth Surface Dynamics
  doi: 10.5194/esurf-2-97-2014
– volume: 78
  start-page: 77
  year: 2006
  ident: 10.1016/j.geomorph.2019.03.015_bb0085
  article-title: DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.01.017
– volume: 321
  issue: 321
  year: 2014
  ident: 10.1016/j.geomorph.2019.03.015_bb0100
  article-title: A landscape scale valley confinement algorithm: delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications
  publication-title: USDA Forest Service-General Technical Report RMRS-GTR
– volume: 117
  start-page: 106
  year: 2010
  ident: 10.1016/j.geomorph.2019.03.015_bb0035
  article-title: Antecedent controls on river character and behaviour in partly confined valley settings: Upper Hunter catchment, NSW, Australia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.11.015
– volume: 32
  start-page: 1574
  year: 2007
  ident: 10.1016/j.geomorph.2019.03.015_bb0070
  article-title: High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data
  publication-title: Earth Surface Processes & Landforms
  doi: 10.1002/esp.1505
– volume: 248
  start-page: 273
  year: 2015
  ident: 10.1016/j.geomorph.2019.03.015_bb0165
  article-title: Geomorphic mapping and taxonomy of fluvial landforms
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.07.010
SSID ssj0004790
Score 2.3640337
Snippet The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms algorithms
case studies
DEM
digital elevation models
Geographic information system
River classification
rivers
streams
Valley floor width
valleys
Title A new algorithm for the automatic extraction of valley floor width
URI https://dx.doi.org/10.1016/j.geomorph.2019.03.015
https://www.proquest.com/docview/2237512532
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-695X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  issn: 0169-555X
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQCMEFQQGxy0hcQxNix_GxVEABwQUq9WY5XmirklQlBfXCtzPOwiakHjgmGkfJ2Bm_scfvIXQimZUkltZTcWA8QrjvcV-6LEUnmhMio4Lx5u4-6nTJTY_2FlC7Pgvjyiqr2F_G9CJaV3ealTeb48Gg-eB4RCilPYAgbn_H0W4TwpyKwen7V5kHYeU6Cxh7zvrbKeEh9FH2nMH3uBKvkuzUyeP-PUH9CtXF_HO5jtYq4Ihb5bttoAWTNtBKpWHenzXQ8lUh0jvbROctDGAZy9FTBql__xkDMMUA9LCc5llB0YohJE_KIw04s_jVCarMsB1lYPg20Hl_C3UvLx7bHa_SSvAkCUnucUZVbKUfJhyyTqIgq7NhZKi0sdEm1lQnMuKK2zOjAqqYIiqMKJWaxmFgWBxuo8U0S80OwlJDTmQtp8SR-gZJQmXsg5n2FTOBZLuI1g4SqiISd3oWI1FXjA1F7VjhHCv8UIBjd1Hzs924pNKY24LX_hc_BoWAeD-37XHdYQL-GLcNIlOTTV8EACIGMIeGZ3v_eP4-WnVXrmosoAdoMZ9MzSHgkzw5KgbgEVpqXd927j8AWI_l7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUEUvCGirUl6u1Gu6ycYTx0dAwNICl4K0N8vxo7to2SCaLdoLv51xHtBWSBy4JjNRMnbG39gz3wB81cJrnmsfmTxxEecyjmSsQ5RiCys511nNeHN2ng0u-fchDhfgoKuFCWmVre9vfHrtrdsrvdaavZvxuPcz8Igg4pAgSDjfyd7AEse-CBHYt_unPA8umo0Wko6C-F9lwlc0SOV1SR8UcrwattPQH_f5Feo_X10vQEersNIiR7bXvNwaLLjpOiy3TcxH83V4e1x36Z2_h_09RmiZ6cmvkmL_0TUjZMoI6TE9q8qao5WRT75tahpY6dmf0FFlzvykJMG7sa1GH-Dy6PDiYBC1zRIizVNeRVKgyb2O00JS2MkNhXU-zRxqnzvrcou20Jk00vedSdAIw02aIWqLeZo4kacfYXFaTt0nYNpSUOS9RB5YfZOiQJ3HJGZjI1yixQZgZyBlWibx0NBiorqUsSvVGVYFw6o4VWTYDeg96t00XBovasjO_uqfWaHI4b-o-6UbMEW_TDgH0VNXzn4rQkSCcA6m_c-veP4uLA8uzk7V6cn5j014F-6EFLIEt2Cxup25bQIrVbFTT8YHvJjnhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+algorithm+for+the+automatic+extraction+of+valley+floor+width&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Zhao%2C+Yinjun&rft.au=Wu%2C+Pengfei&rft.au=Li%2C+Jiaxu&rft.au=Lin%2C+Qing&rft.date=2019-06-15&rft.pub=Elsevier+B.V&rft.issn=0169-555X&rft.eissn=1872-695X&rft.volume=335&rft.spage=37&rft.epage=47&rft_id=info:doi/10.1016%2Fj.geomorph.2019.03.015&rft.externalDocID=S0169555X19301096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon