A new algorithm for the automatic extraction of valley floor width
The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an aut...
Saved in:
| Published in | Geomorphology (Amsterdam, Netherlands) Vol. 335; pp. 37 - 47 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.06.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-555X 1872-695X |
| DOI | 10.1016/j.geomorph.2019.03.015 |
Cover
| Abstract | The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an automated algorithm approach to extract the valley floor width of U- and V-shaped valleys by using the breakpoint of the slope between the valley wall and valley floor to support digital elevation models (DEMs) of different resolutions. The algorithm includes five steps: 1) preprocessing data, 2) extracting linear reach, 3) extracting perpendiculars of reaches, 4) delineating the outlines of the valley floor and 5) calculating the width of the valley floor. Eight case studies were used to validate the algorithm. Valley floor outlines and widths were computed and measured, revealing that the algorithm performs well with a high correlation coefficient (CC > 0.88) and coefficient of determination (R2 > 0.77), as well as low relative bias (|RB| < 10%). The algorithm performs better when applied in U-shaped valleys than in V-shaped valleys. The algorithm offers a fast and inexpensive tool with which to obtain valley shape information for research and management.
•Proposed an automated algorithm approach to extract the valley floor width by viewing the point slope change.•The algorithm includes five steps.•The algorithm performs better in U-shaped valleys than V-shaped valleys.•The algorithm was programed as an ArcGIS plug-in for free download. |
|---|---|
| AbstractList | The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an automated algorithm approach to extract the valley floor width of U- and V-shaped valleys by using the breakpoint of the slope between the valley wall and valley floor to support digital elevation models (DEMs) of different resolutions. The algorithm includes five steps: 1) preprocessing data, 2) extracting linear reach, 3) extracting perpendiculars of reaches, 4) delineating the outlines of the valley floor and 5) calculating the width of the valley floor. Eight case studies were used to validate the algorithm. Valley floor outlines and widths were computed and measured, revealing that the algorithm performs well with a high correlation coefficient (CC > 0.88) and coefficient of determination (R2 > 0.77), as well as low relative bias (|RB| < 10%). The algorithm performs better when applied in U-shaped valleys than in V-shaped valleys. The algorithm offers a fast and inexpensive tool with which to obtain valley shape information for research and management. The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is increasingly recognized as a key parameter and has been employed for many applications (e.g., river classification). Here, we propose an automated algorithm approach to extract the valley floor width of U- and V-shaped valleys by using the breakpoint of the slope between the valley wall and valley floor to support digital elevation models (DEMs) of different resolutions. The algorithm includes five steps: 1) preprocessing data, 2) extracting linear reach, 3) extracting perpendiculars of reaches, 4) delineating the outlines of the valley floor and 5) calculating the width of the valley floor. Eight case studies were used to validate the algorithm. Valley floor outlines and widths were computed and measured, revealing that the algorithm performs well with a high correlation coefficient (CC > 0.88) and coefficient of determination (R2 > 0.77), as well as low relative bias (|RB| < 10%). The algorithm performs better when applied in U-shaped valleys than in V-shaped valleys. The algorithm offers a fast and inexpensive tool with which to obtain valley shape information for research and management. •Proposed an automated algorithm approach to extract the valley floor width by viewing the point slope change.•The algorithm includes five steps.•The algorithm performs better in U-shaped valleys than V-shaped valleys.•The algorithm was programed as an ArcGIS plug-in for free download. |
| Author | Lu, Yuan Li, Jiaxu Wu, Pengfei Lin, Qing Zhao, Yinjun |
| Author_xml | – sequence: 1 givenname: Yinjun orcidid: 0000-0002-0111-3694 surname: Zhao fullname: Zhao, Yinjun email: crpp0104@163.com organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China – sequence: 2 givenname: Pengfei surname: Wu fullname: Wu, Pengfei organization: School of Geography and Planning, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China – sequence: 3 givenname: Jiaxu surname: Li fullname: Li, Jiaxu organization: School of Geography and Planning, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China – sequence: 4 givenname: Qing surname: Lin fullname: Lin, Qing organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China – sequence: 5 givenname: Yuan surname: Lu fullname: Lu, Yuan organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning 530001, China |
| BookMark | eNqFkL1OwzAURi1UJNrCKyCPLAl2HCexxECp-JMqsYDUzXKd69ZVEhfbbenbk6qwsDDd5ZxPumeEBp3rAKFrSlJKaHG7TpfgWuc3qzQjVKSEpYTyMzSkVZklheDzARr2oEg45_MLNAphTQjJS0GG6GGCO9hj1Sydt3HVYuM8jivAahtdq6LVGL6iVzpa12Fn8E41DRywaVwP7m0dV5fo3KgmwNXPHaOPp8f36Usye3t-nU5micpZHhNRcl0ZRdhCUMZyTUlpWAFcmQpqqGpeL1QhtDAZaMp1qXPNCs5VzStGoazYGN2cdjfefW4hRNnaoKFpVAduG2SWsZLTjLOsR-9OqPYuBA9GahvV8YX-FdtISuQxnVzL33TymE4SJvt0vV780Tfetsof_hfvTyL0HXYWvAzaQqehth50lLWz_018AxBvkDo |
| CitedBy_id | crossref_primary_10_5194_esurf_10_437_2022 crossref_primary_10_1016_j_geomorph_2021_108081 crossref_primary_10_1016_j_jhydrol_2020_124547 crossref_primary_10_1002_esp_4930 crossref_primary_10_1016_j_enggeo_2019_105428 crossref_primary_10_1016_j_istruc_2022_02_041 crossref_primary_10_1007_s12524_020_01273_7 crossref_primary_10_1080_02723646_2021_2020968 crossref_primary_10_1002_wat2_1716 crossref_primary_10_1061__ASCE_GM_1943_5622_0002501 |
| Cites_doi | 10.1016/j.scitotenv.2018.05.252 10.1002/esp.3893 10.1007/s10021-009-9298-5 10.1139/l05-102 10.1007/s12517-018-3488-4 10.1002/esp.3464 10.1016/S0166-2481(08)00014-7 10.1023/A:1006471427421 10.1029/2002WR001426 10.1016/S0143-6228(01)00016-9 10.5194/esurf-5-369-2017 10.1002/esp.3922 10.1130/G33979.1 10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2 10.2166/wst.2016.333 10.1016/j.geomorph.2014.04.018 10.1016/j.enggeo.2016.04.024 10.1016/j.ecss.2013.05.015 10.1016/j.cageo.2014.05.015 10.1016/j.cageo.2016.07.014 10.1127/0372-8854/2013/0110 10.1016/j.jhydrol.2012.09.006 10.4236/gep.2015.38001 10.5194/esurf-2-97-2014 10.1016/j.geomorph.2006.01.017 10.1016/j.geomorph.2009.11.015 10.1002/esp.1505 10.1016/j.geomorph.2015.07.010 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.geomorph.2019.03.015 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1872-695X |
| EndPage | 47 |
| ExternalDocumentID | 10_1016_j_geomorph_2019_03_015 S0169555X19301096 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSZ T5K XPP ZCA ZMT ~02 ~G- 29H 9M8 AAHBH AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABXDB ACLOT ACVFH ADCNI ADVLN ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 OHT R2- SEP SEW VH1 WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a434t-975c8fa03b91334c107f36e5af8ede8d5dba69c9f2ec15c7c4c3655ad5831e783 |
| IEDL.DBID | .~1 |
| ISSN | 0169-555X |
| IngestDate | Sun Sep 28 10:36:13 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Thu Oct 02 04:32:22 EDT 2025 Fri Feb 23 02:18:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Valley floor width Geographic information system DEM River classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a434t-975c8fa03b91334c107f36e5af8ede8d5dba69c9f2ec15c7c4c3655ad5831e783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0111-3694 |
| PQID | 2237512532 |
| PQPubID | 24069 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2237512532 crossref_citationtrail_10_1016_j_geomorph_2019_03_015 crossref_primary_10_1016_j_geomorph_2019_03_015 elsevier_sciencedirect_doi_10_1016_j_geomorph_2019_03_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-15 |
| PublicationDateYYYYMMDD | 2019-06-15 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Geomorphology (Amsterdam, Netherlands) |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Daxberger, Dalumpines, Scott, Riller (bb0025) 2014; 70 Scorpio, Crema, Marra, Righini, Ciccarese, Borga, Cavalli, Corsini, Marchi, Surian, Comiti (bb0115) 2018; 640 Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A. C., 2012. Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. s470–471, 302–315. Banerjee, Ghose, Pradhan (bb0005) 2018; 11 Brierley, Fryirs, Outhet, Massey (bb0010) 2002; 22 Kastens (bb0075) 2008 Hopkins, Snyder (bb0065) 2016; 41 Housman, Hamilton, Fisk, Armlovich, Johnston, Abramson (bb1000) 2012 Zhou, Wang (bb0195) 2015; 3 Gilbert, Macfarlane, Wheaton (bb0050) 2016; 97 Stout, Belmont (bb0125) 2014; 39 Montgomery, Buffington (bb0095) 1997; 109 Wang, Tong (bb0160) 2016; 32 May, Roering, Eaton, Burnett (bb0090) 2013; 41 Gallant, Dowling (bb0045) 2003; 39 Roux, Alber, Bertrand, Vaudor, Piégay (bb0110) 2015; 242 Straumann, Purves (bb0130) 2008 Burrough (bb0015) 1986 Clubb, Mudd, Milodowski, Valters, Slater, Hurst, Limaye (bb0020) 2017; 5 Lin, Oguchi (bb0085) 2006; 78 Wood (bb0180) 2009; vol. 33 Thoms, Scown, Flotemersch (bb0145) 2018 Walter, Merritts, Rahnis (bb0155) 2007 Naiman, Bechtold, Beechie, Latterell, Van Pelt (bb0105) 2010; 13 Hergarten, Robl, Stüwe (bb0060) 2014; 2 . Zhao, Ding (bb0190) 2016; 74 Goudie (bb0055) 2013; 129 Williams, Jensen, Winne, Redmond (bb0170) 2000; 64 Wood, J., 1996. The Geomorphological Characterization of Digital Elevation Models, PhD Thesis. University of Leicester. Wheaton, Fryirs, Brierley, Bangen, Bouwes, O'Brien (bb0165) 2015; 248 Nagel, Buffington, Parkes, Wenger, Goode (bb0100) 2014; 321 Stefanelli, Segoni, Casagli, Catani (bb0120) 2016; 208 Telbisz, Kovács, Székely, Szabó (bb0140) 2013; 57 Fryirs, Brierley (bb0035) 2010; 117 Fryirs, Wheaton, Brierley (bb0040) 2015; 41 Yang, Townsend, Daneshfar (bb0185) 2006; 33 Tian, Liu (bb0150) 2012; 39 Jones, Brewer, Johnstone, Macklin (bb0070) 2007; 32 Leopold, Maddock (bb0080) 1953; 252 Zhao (10.1016/j.geomorph.2019.03.015_bb0190) 2016; 74 Housman (10.1016/j.geomorph.2019.03.015_bb1000) 2012 Goudie (10.1016/j.geomorph.2019.03.015_bb0055) 2013; 129 Stefanelli (10.1016/j.geomorph.2019.03.015_bb0120) 2016; 208 Hopkins (10.1016/j.geomorph.2019.03.015_bb0065) 2016; 41 May (10.1016/j.geomorph.2019.03.015_bb0090) 2013; 41 Williams (10.1016/j.geomorph.2019.03.015_bb0170) 2000; 64 Fryirs (10.1016/j.geomorph.2019.03.015_bb0040) 2015; 41 Thoms (10.1016/j.geomorph.2019.03.015_bb0145) 2018 Burrough (10.1016/j.geomorph.2019.03.015_bb0015) 1986 Hergarten (10.1016/j.geomorph.2019.03.015_bb0060) 2014; 2 Leopold (10.1016/j.geomorph.2019.03.015_bb0080) 1953; 252 Wood (10.1016/j.geomorph.2019.03.015_bb0180) 2009; vol. 33 Scorpio (10.1016/j.geomorph.2019.03.015_bb0115) 2018; 640 Telbisz (10.1016/j.geomorph.2019.03.015_bb0140) 2013; 57 Naiman (10.1016/j.geomorph.2019.03.015_bb0105) 2010; 13 Walter (10.1016/j.geomorph.2019.03.015_bb0155) 2007 Brierley (10.1016/j.geomorph.2019.03.015_bb0010) 2002; 22 Jones (10.1016/j.geomorph.2019.03.015_bb0070) 2007; 32 Kastens (10.1016/j.geomorph.2019.03.015_bb0075) 2008 Wang (10.1016/j.geomorph.2019.03.015_bb0160) 2016; 32 Montgomery (10.1016/j.geomorph.2019.03.015_bb0095) 1997; 109 Daxberger (10.1016/j.geomorph.2019.03.015_bb0025) 2014; 70 10.1016/j.geomorph.2019.03.015_bb0030 Yang (10.1016/j.geomorph.2019.03.015_bb0185) 2006; 33 Fryirs (10.1016/j.geomorph.2019.03.015_bb0035) 2010; 117 10.1016/j.geomorph.2019.03.015_bb0175 Gilbert (10.1016/j.geomorph.2019.03.015_bb0050) 2016; 97 Roux (10.1016/j.geomorph.2019.03.015_bb0110) 2015; 242 Zhou (10.1016/j.geomorph.2019.03.015_bb0195) 2015; 3 Banerjee (10.1016/j.geomorph.2019.03.015_bb0005) 2018; 11 Gallant (10.1016/j.geomorph.2019.03.015_bb0045) 2003; 39 Nagel (10.1016/j.geomorph.2019.03.015_bb0100) 2014; 321 Clubb (10.1016/j.geomorph.2019.03.015_bb0020) 2017; 5 Lin (10.1016/j.geomorph.2019.03.015_bb0085) 2006; 78 Straumann (10.1016/j.geomorph.2019.03.015_bb0130) 2008 Stout (10.1016/j.geomorph.2019.03.015_bb0125) 2014; 39 Tian (10.1016/j.geomorph.2019.03.015_bb0150) 2012; 39 Wheaton (10.1016/j.geomorph.2019.03.015_bb0165) 2015; 248 |
| References_xml | – volume: 252 year: 1953 ident: bb0080 article-title: The hydraulic geometry of stream channels and some physiographic implications publication-title: United States Geological Survey. – volume: 129 start-page: 112 year: 2013 end-page: 123 ident: bb0055 article-title: Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth publication-title: Estuarine Coastal & Shelf Science – volume: vol. 33 start-page: 333 year: 2009 end-page: 349 ident: bb0180 article-title: Geomorphometry in LandSerf. Developments in Soil Science – volume: 39 start-page: 569 year: 2014 end-page: 580 ident: bb0125 article-title: TerEx Toolbox for semiautomated selection of fluvial terrace and floodplain features from LiDAR publication-title: Earth Surf. Proc. Land. – year: 2007 ident: bb0155 article-title: Estimating Volume, Nutrient Content, and Rates of Stream Bank Erosion of Legacy Sediment in the Piedmont and Valley and Ridge Physiographic Provinces, Southeastern and Central PA – volume: 33 start-page: 19 year: 2006 end-page: 28 ident: bb0185 article-title: Applying the HEC-RAS model and GIS techniques in river network floodpl publication-title: Can. J. Civ. Eng. – volume: 74 start-page: 1539 year: 2016 end-page: 1552 ident: bb0190 article-title: A decision classifier to classify rivers for river management based on their structure in China: an example from the Yongding River publication-title: Water Sci. Technol. – start-page: 1 year: 2018 end-page: 15 ident: bb0145 article-title: Characterization of river networks: a GIS approach and its applications publication-title: J. Am. Water Resour. Assoc. – volume: 32 start-page: 97 year: 2016 end-page: 102 ident: bb0160 article-title: Susceptibility assessment of landslide-damming based on valley transverse profile morphological characteristics publication-title: Geography and Geo-Information Science – volume: 117 start-page: 106 year: 2010 end-page: 120 ident: bb0035 article-title: Antecedent controls on river character and behaviour in partly confined valley settings: Upper Hunter catchment, NSW, Australia publication-title: Geomorphology – volume: 70 start-page: 154 year: 2014 end-page: 163 ident: bb0025 article-title: The valleymorph tool: an automated extraction tool for transverse topographic symmetry (t-) factor and valley width to valley height (vf-) ratio publication-title: Comput. Geosci. – volume: 39 start-page: 482 year: 2012 end-page: 484 ident: bb0150 article-title: Least squares method piecewise linear fitting publication-title: Computer Science – volume: 57 start-page: 485 year: 2013 end-page: 513 ident: bb0140 article-title: Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool publication-title: Z. Geomorphol. – volume: 11 start-page: 139 year: 2018 ident: bb0005 article-title: Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya publication-title: Arab. J. Geosci. – volume: 5 start-page: 369 year: 2017 end-page: 385 ident: bb0020 article-title: Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds publication-title: Earth Surf. Dynam. – volume: 41 start-page: 1144 year: 2016 end-page: 1152 ident: bb0065 article-title: Performance evaluation of three DEM-based fluvial terrace mapping methods publication-title: Earth Surface Processes & Landforms – year: 2008 ident: bb0130 article-title: Delineation of valleys and valley floors. In: International Conference on Geographic Information Science. Springer, Berlin publication-title: Heidelberg (320-336pp) – volume: 321 year: 2014 ident: bb0100 article-title: A landscape scale valley confinement algorithm: delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications publication-title: USDA Forest Service-General Technical Report RMRS-GTR – volume: 41 start-page: 503 year: 2013 end-page: 506 ident: bb0090 article-title: Controls on valley width in mountainous landscapes: the role of landsliding and implications for salmonid habitat publication-title: Geology – volume: 97 start-page: 1 year: 2016 end-page: 14 ident: bb0050 article-title: The Valley Bottom Extraction Tool (V-BET): a GIS tool for delineating valley bottoms across entire drainage networks publication-title: Comput. Geosci. – volume: 3 start-page: 1 year: 2015 end-page: 8 ident: bb0195 article-title: Application of Google Earth in modern river sedimentology research publication-title: Journal of Geoscience and Environment Protection – reference: Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A. C., 2012. Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. s470–471, 302–315. – volume: 78 start-page: 77 year: 2006 end-page: 89 ident: bb0085 article-title: DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds publication-title: Geomorphology – volume: 22 start-page: 91 year: 2002 end-page: 122 ident: bb0010 article-title: Applicationof the river styles framework as a basis for river management in New South Wales, Australia publication-title: Appl. Geogr. – year: 2012 ident: bb1000 article-title: Riparian delineation in the Grand Mesa, Uncompahgre and Gunnison National Forests publication-title: SAC-10006-RPT1. U.S. Department of Agriculture, Forest Service – volume: 248 start-page: 273 year: 2015 end-page: 295 ident: bb0165 article-title: Geomorphic mapping and taxonomy of fluvial landforms publication-title: Geomorphology – year: 1986 ident: bb0015 article-title: Principles of Geographical Information Systems for Land Resources Assessment – volume: 41 start-page: 701 year: 2015 end-page: 710 ident: bb0040 article-title: An approach for measuring confinement and assessing the influence of valley setting on river forms and processes publication-title: Earth Surf. Process. Land. – volume: 208 start-page: 1 year: 2016 end-page: 10 ident: bb0120 article-title: Geomorphic indexing of landslide dams evolution publication-title: Eng. Geol. – reference: Wood, J., 1996. The Geomorphological Characterization of Digital Elevation Models, PhD Thesis. University of Leicester. – volume: 109 start-page: 596 year: 1997 end-page: 611 ident: bb0095 article-title: Channel reach morphology in mountain drainage basins publication-title: Geol. Soc. Am. Bull. – reference: . – volume: 13 start-page: 1 year: 2010 end-page: 31 ident: bb0105 article-title: A process-based view of floodplain forest patterns in coastal river valleys of the Pacific Northwest publication-title: Ecosystems – volume: 2 start-page: 97 year: 2014 end-page: 104 ident: bb0060 article-title: Extracting topographic swath profiles across curved geomorphic features publication-title: Earth Surface Dynamics – volume: 32 start-page: 1574 year: 2007 end-page: 1592 ident: bb0070 article-title: High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data publication-title: Earth Surface Processes & Landforms – volume: 39 start-page: 1347 year: 2003 ident: bb0045 article-title: A multi resolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. – year: 2008 ident: bb0075 article-title: Some New Developments on Two Separate Topics: Statistical Cross Validation and Floodplain Mapping – volume: 64 start-page: 105 year: 2000 end-page: 114 ident: bb0170 article-title: An automated technique for delineating and characterizing valley-bottom settings publication-title: Environ. Monit. Assess. – volume: 242 start-page: 29 year: 2015 end-page: 37 ident: bb0110 article-title: “Fluvial Corridor”: a new ArcGIS toolbox package for multiscale riverscape exploration publication-title: Geomorphology – volume: 640 start-page: 337 year: 2018 end-page: 351 ident: bb0115 article-title: Basin-scale analysis of the geomorphic effectiveness of flash floods: a study in the northern Apennines (Italy) publication-title: Sci. Total Environ. – volume: 640 start-page: 337 year: 2018 ident: 10.1016/j.geomorph.2019.03.015_bb0115 article-title: Basin-scale analysis of the geomorphic effectiveness of flash floods: a study in the northern Apennines (Italy) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.252 – volume: 41 start-page: 701 year: 2015 ident: 10.1016/j.geomorph.2019.03.015_bb0040 article-title: An approach for measuring confinement and assessing the influence of valley setting on river forms and processes publication-title: Earth Surf. Process. Land. doi: 10.1002/esp.3893 – volume: 13 start-page: 1 year: 2010 ident: 10.1016/j.geomorph.2019.03.015_bb0105 article-title: A process-based view of floodplain forest patterns in coastal river valleys of the Pacific Northwest publication-title: Ecosystems doi: 10.1007/s10021-009-9298-5 – year: 2008 ident: 10.1016/j.geomorph.2019.03.015_bb0075 – volume: 33 start-page: 19 year: 2006 ident: 10.1016/j.geomorph.2019.03.015_bb0185 article-title: Applying the HEC-RAS model and GIS techniques in river network floodpl publication-title: Can. J. Civ. Eng. doi: 10.1139/l05-102 – volume: 32 start-page: 97 year: 2016 ident: 10.1016/j.geomorph.2019.03.015_bb0160 article-title: Susceptibility assessment of landslide-damming based on valley transverse profile morphological characteristics publication-title: Geography and Geo-Information Science – volume: 11 start-page: 139 year: 2018 ident: 10.1016/j.geomorph.2019.03.015_bb0005 article-title: Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-3488-4 – year: 2007 ident: 10.1016/j.geomorph.2019.03.015_bb0155 – volume: 39 start-page: 569 year: 2014 ident: 10.1016/j.geomorph.2019.03.015_bb0125 article-title: TerEx Toolbox for semiautomated selection of fluvial terrace and floodplain features from LiDAR publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.3464 – volume: vol. 33 start-page: 333 year: 2009 ident: 10.1016/j.geomorph.2019.03.015_bb0180 doi: 10.1016/S0166-2481(08)00014-7 – volume: 64 start-page: 105 year: 2000 ident: 10.1016/j.geomorph.2019.03.015_bb0170 article-title: An automated technique for delineating and characterizing valley-bottom settings publication-title: Environ. Monit. Assess. doi: 10.1023/A:1006471427421 – start-page: 1 year: 2018 ident: 10.1016/j.geomorph.2019.03.015_bb0145 article-title: Characterization of river networks: a GIS approach and its applications publication-title: J. Am. Water Resour. Assoc. – volume: 39 start-page: 1347 year: 2003 ident: 10.1016/j.geomorph.2019.03.015_bb0045 article-title: A multi resolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – volume: 22 start-page: 91 year: 2002 ident: 10.1016/j.geomorph.2019.03.015_bb0010 article-title: Applicationof the river styles framework as a basis for river management in New South Wales, Australia publication-title: Appl. Geogr. doi: 10.1016/S0143-6228(01)00016-9 – volume: 5 start-page: 369 year: 2017 ident: 10.1016/j.geomorph.2019.03.015_bb0020 article-title: Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds publication-title: Earth Surf. Dynam. doi: 10.5194/esurf-5-369-2017 – volume: 41 start-page: 1144 year: 2016 ident: 10.1016/j.geomorph.2019.03.015_bb0065 article-title: Performance evaluation of three DEM-based fluvial terrace mapping methods publication-title: Earth Surface Processes & Landforms doi: 10.1002/esp.3922 – volume: 41 start-page: 503 year: 2013 ident: 10.1016/j.geomorph.2019.03.015_bb0090 article-title: Controls on valley width in mountainous landscapes: the role of landsliding and implications for salmonid habitat publication-title: Geology doi: 10.1130/G33979.1 – volume: 109 start-page: 596 year: 1997 ident: 10.1016/j.geomorph.2019.03.015_bb0095 article-title: Channel reach morphology in mountain drainage basins publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2 – volume: 74 start-page: 1539 year: 2016 ident: 10.1016/j.geomorph.2019.03.015_bb0190 article-title: A decision classifier to classify rivers for river management based on their structure in China: an example from the Yongding River publication-title: Water Sci. Technol. doi: 10.2166/wst.2016.333 – volume: 242 start-page: 29 year: 2015 ident: 10.1016/j.geomorph.2019.03.015_bb0110 article-title: “Fluvial Corridor”: a new ArcGIS toolbox package for multiscale riverscape exploration publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.04.018 – volume: 208 start-page: 1 year: 2016 ident: 10.1016/j.geomorph.2019.03.015_bb0120 article-title: Geomorphic indexing of landslide dams evolution publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.04.024 – volume: 252 year: 1953 ident: 10.1016/j.geomorph.2019.03.015_bb0080 article-title: The hydraulic geometry of stream channels and some physiographic implications publication-title: United States Geological Survey. – volume: 129 start-page: 112 year: 2013 ident: 10.1016/j.geomorph.2019.03.015_bb0055 article-title: Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth publication-title: Estuarine Coastal & Shelf Science doi: 10.1016/j.ecss.2013.05.015 – volume: 70 start-page: 154 year: 2014 ident: 10.1016/j.geomorph.2019.03.015_bb0025 article-title: The valleymorph tool: an automated extraction tool for transverse topographic symmetry (t-) factor and valley width to valley height (vf-) ratio publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.05.015 – volume: 39 start-page: 482 year: 2012 ident: 10.1016/j.geomorph.2019.03.015_bb0150 article-title: Least squares method piecewise linear fitting publication-title: Computer Science – year: 1986 ident: 10.1016/j.geomorph.2019.03.015_bb0015 – volume: 97 start-page: 1 year: 2016 ident: 10.1016/j.geomorph.2019.03.015_bb0050 article-title: The Valley Bottom Extraction Tool (V-BET): a GIS tool for delineating valley bottoms across entire drainage networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.07.014 – volume: 57 start-page: 485 year: 2013 ident: 10.1016/j.geomorph.2019.03.015_bb0140 article-title: Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool publication-title: Z. Geomorphol. doi: 10.1127/0372-8854/2013/0110 – ident: 10.1016/j.geomorph.2019.03.015_bb0030 doi: 10.1016/j.jhydrol.2012.09.006 – year: 2012 ident: 10.1016/j.geomorph.2019.03.015_bb1000 article-title: Riparian delineation in the Grand Mesa, Uncompahgre and Gunnison National Forests – volume: 3 start-page: 1 year: 2015 ident: 10.1016/j.geomorph.2019.03.015_bb0195 article-title: Application of Google Earth in modern river sedimentology research publication-title: Journal of Geoscience and Environment Protection doi: 10.4236/gep.2015.38001 – ident: 10.1016/j.geomorph.2019.03.015_bb0175 – year: 2008 ident: 10.1016/j.geomorph.2019.03.015_bb0130 article-title: Delineation of valleys and valley floors. In: International Conference on Geographic Information Science. Springer, Berlin – volume: 2 start-page: 97 year: 2014 ident: 10.1016/j.geomorph.2019.03.015_bb0060 article-title: Extracting topographic swath profiles across curved geomorphic features publication-title: Earth Surface Dynamics doi: 10.5194/esurf-2-97-2014 – volume: 78 start-page: 77 year: 2006 ident: 10.1016/j.geomorph.2019.03.015_bb0085 article-title: DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.01.017 – volume: 321 issue: 321 year: 2014 ident: 10.1016/j.geomorph.2019.03.015_bb0100 article-title: A landscape scale valley confinement algorithm: delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications publication-title: USDA Forest Service-General Technical Report RMRS-GTR – volume: 117 start-page: 106 year: 2010 ident: 10.1016/j.geomorph.2019.03.015_bb0035 article-title: Antecedent controls on river character and behaviour in partly confined valley settings: Upper Hunter catchment, NSW, Australia publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.11.015 – volume: 32 start-page: 1574 year: 2007 ident: 10.1016/j.geomorph.2019.03.015_bb0070 article-title: High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data publication-title: Earth Surface Processes & Landforms doi: 10.1002/esp.1505 – volume: 248 start-page: 273 year: 2015 ident: 10.1016/j.geomorph.2019.03.015_bb0165 article-title: Geomorphic mapping and taxonomy of fluvial landforms publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.07.010 |
| SSID | ssj0004790 |
| Score | 2.3640337 |
| Snippet | The width of the valley floor dictates the structure and function of the associated river or stream at the macro level. Consequently, the valley floor width is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 37 |
| SubjectTerms | algorithms case studies DEM digital elevation models Geographic information system River classification rivers streams Valley floor width valleys |
| Title | A new algorithm for the automatic extraction of valley floor width |
| URI | https://dx.doi.org/10.1016/j.geomorph.2019.03.015 https://www.proquest.com/docview/2237512532 |
| Volume | 335 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-695X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004790 issn: 0169-555X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-695X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004790 issn: 0169-555X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-695X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004790 issn: 0169-555X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-695X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004790 issn: 0169-555X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-695X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004790 issn: 0169-555X databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQCMEFQQGxy0hcQxNix_GxVEABwQUq9WY5XmirklQlBfXCtzPOwiakHjgmGkfJ2Bm_scfvIXQimZUkltZTcWA8QrjvcV-6LEUnmhMio4Lx5u4-6nTJTY_2FlC7Pgvjyiqr2F_G9CJaV3ealTeb48Gg-eB4RCilPYAgbn_H0W4TwpyKwen7V5kHYeU6Cxh7zvrbKeEh9FH2nMH3uBKvkuzUyeP-PUH9CtXF_HO5jtYq4Ihb5bttoAWTNtBKpWHenzXQ8lUh0jvbROctDGAZy9FTBql__xkDMMUA9LCc5llB0YohJE_KIw04s_jVCarMsB1lYPg20Hl_C3UvLx7bHa_SSvAkCUnucUZVbKUfJhyyTqIgq7NhZKi0sdEm1lQnMuKK2zOjAqqYIiqMKJWaxmFgWBxuo8U0S80OwlJDTmQtp8SR-gZJQmXsg5n2FTOBZLuI1g4SqiISd3oWI1FXjA1F7VjhHCv8UIBjd1Hzs924pNKY24LX_hc_BoWAeD-37XHdYQL-GLcNIlOTTV8EACIGMIeGZ3v_eP4-WnVXrmosoAdoMZ9MzSHgkzw5KgbgEVpqXd927j8AWI_l7w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUEUvCGirUl6u1Gu6ycYTx0dAwNICl4K0N8vxo7to2SCaLdoLv51xHtBWSBy4JjNRMnbG39gz3wB81cJrnmsfmTxxEecyjmSsQ5RiCys511nNeHN2ng0u-fchDhfgoKuFCWmVre9vfHrtrdsrvdaavZvxuPcz8Igg4pAgSDjfyd7AEse-CBHYt_unPA8umo0Wko6C-F9lwlc0SOV1SR8UcrwattPQH_f5Feo_X10vQEersNIiR7bXvNwaLLjpOiy3TcxH83V4e1x36Z2_h_09RmiZ6cmvkmL_0TUjZMoI6TE9q8qao5WRT75tahpY6dmf0FFlzvykJMG7sa1GH-Dy6PDiYBC1zRIizVNeRVKgyb2O00JS2MkNhXU-zRxqnzvrcou20Jk00vedSdAIw02aIWqLeZo4kacfYXFaTt0nYNpSUOS9RB5YfZOiQJ3HJGZjI1yixQZgZyBlWibx0NBiorqUsSvVGVYFw6o4VWTYDeg96t00XBovasjO_uqfWaHI4b-o-6UbMEW_TDgH0VNXzn4rQkSCcA6m_c-veP4uLA8uzk7V6cn5j014F-6EFLIEt2Cxup25bQIrVbFTT8YHvJjnhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+algorithm+for+the+automatic+extraction+of+valley+floor+width&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Zhao%2C+Yinjun&rft.au=Wu%2C+Pengfei&rft.au=Li%2C+Jiaxu&rft.au=Lin%2C+Qing&rft.date=2019-06-15&rft.pub=Elsevier+B.V&rft.issn=0169-555X&rft.eissn=1872-695X&rft.volume=335&rft.spage=37&rft.epage=47&rft_id=info:doi/10.1016%2Fj.geomorph.2019.03.015&rft.externalDocID=S0169555X19301096 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon |