Enhanced Rigidification within a Double Mutant of Soybean Lipoxygenase Provides Experimental Support for Vibronically Nonadiabatic Proton-Coupled Electron Transfer Models
Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mu...
Saved in:
Published in | ACS catalysis Vol. 7; no. 5; pp. 3569 - 3574 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2155-5435 2155-5435 |
DOI | 10.1021/acscatal.7b00688 |
Cover
Abstract | Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature–pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor. |
---|---|
AbstractList | Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor. Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor. Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature–pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor. |
Author | Klinman, Judith P Soudackov, Alexander V Hu, Shenshen Hammes-Schiffer, Sharon |
AuthorAffiliation | Department of Chemistry California Institute for Quantitative Biosciences University of Illinois at Urbana−Champaign University of California Department of Molecular and Cell Biology |
AuthorAffiliation_xml | – name: California Institute for Quantitative Biosciences – name: University of California – name: Department of Chemistry – name: Department of Molecular and Cell Biology – name: University of Illinois at Urbana−Champaign |
Author_xml | – sequence: 1 givenname: Shenshen surname: Hu fullname: Hu, Shenshen – sequence: 2 givenname: Alexander V surname: Soudackov fullname: Soudackov, Alexander V organization: University of Illinois at Urbana−Champaign – sequence: 3 givenname: Sharon orcidid: 0000-0002-3782-6995 surname: Hammes-Schiffer fullname: Hammes-Schiffer, Sharon email: shs3@illinois.edu organization: University of Illinois at Urbana−Champaign – sequence: 4 givenname: Judith P orcidid: 0000-0001-5734-2843 surname: Klinman fullname: Klinman, Judith P email: klinman@berkeley.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29250456$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQjVARLaV3TshHDmyxkzgfFyS0LB_SFhAtXK2JM9515bWD7bTNX-JX4mW3UJBA-OKx5r03b2b8MDuwzmKWPWb0lNGcPQcZJEQwp3VHadU097KjnHE-42XBD-7Eh9lJCJc0nZJXTU0fZId5m_Pt6yj7trBrsBJ78kmvdK-VTpraWXKt41pbAuSVGzuD5GyMYCNxipy7qUOwZKkHdzOt0EJA8tG7K91jIIubAb3eoE3OyPk4DM5HopwnX3TnnU3yxkzkvbPQa-hSLbnlRmdnczcOJhlZGJQxQcmFBxsUenLmejThUXZfgQl4sr-Ps8-vFxfzt7Plhzfv5i-XMyiLIs5U3XCsWVvQilWU51J1vCplC4oyWTeslCmGqi8VNjkiV8hb7BSjEuqOQ1UcZ2ynO9oBpuvkVwypI_CTYFRsRy9uRy_2o0-cFzvOMHYb7GVq38MvngMtfs9YvRYrdyV4nZc8b5PA072Ad19HDFFsdJBoDFh0YxCsrZuCVW3BE_TJ3Vo_i9wuNQHoDiC9C8Gj-h__1R8UqeOPj5DcavMv4rMdMWXEpRu9Tav5O_w799zfRA |
CitedBy_id | crossref_primary_10_1039_D3OB00718A crossref_primary_10_1002_ange_202206314 crossref_primary_10_1002_poc_70002 crossref_primary_10_1021_acs_biochem_9b00467 crossref_primary_10_1002_bkcs_12417 crossref_primary_10_1021_acs_biochem_9b00861 crossref_primary_10_3390_quantum3010006 crossref_primary_10_1134_S0036024424030208 crossref_primary_10_1098_rsta_2020_0377 crossref_primary_10_1021_jacs_0c09106 crossref_primary_10_1126_science_abq5173 crossref_primary_10_1021_acs_jpcb_7b06892 crossref_primary_10_1039_D0CP00131G crossref_primary_10_1039_C9FD00071B crossref_primary_10_1021_acs_joc_4c03080 crossref_primary_10_1021_acs_biochem_3c00119 crossref_primary_10_1021_acs_joc_3c02562 crossref_primary_10_1021_jacs_7b11300 crossref_primary_10_1021_acs_inorgchem_7b01459 crossref_primary_10_1002_1873_3468_14515 crossref_primary_10_1021_jacs_7b13642 crossref_primary_10_1021_jacs_7b08418 crossref_primary_10_1021_acs_jpclett_8b02945 crossref_primary_10_1063_1_4998941 crossref_primary_10_1134_S1990793122010031 crossref_primary_10_3390_molecules25153374 crossref_primary_10_1021_acsomega_4c02383 crossref_primary_10_3390_physchem2030018 crossref_primary_10_1021_acs_orglett_0c02049 crossref_primary_10_1002_anie_202206314 crossref_primary_10_1021_acs_biochem_9b00574 crossref_primary_10_1021_acs_jpca_2c06065 crossref_primary_10_1146_annurev_physchem_091422_102619 crossref_primary_10_1074_jbc_RA119_010826 crossref_primary_10_1021_jacs_8b10992 crossref_primary_10_1146_annurev_biochem_013118_111217 crossref_primary_10_1021_acs_joc_1c00497 crossref_primary_10_1038_s42005_022_00881_8 crossref_primary_10_1016_j_chemphys_2019_03_003 crossref_primary_10_1021_acs_accounts_8b00226 crossref_primary_10_1063_1_4991745 crossref_primary_10_1134_S199079311904002X crossref_primary_10_3390_molecules25061443 crossref_primary_10_1039_D0CP05265E crossref_primary_10_1021_acs_jpcb_9b07228 |
Cites_doi | 10.1021/ja012205t 10.1021/ja061585l 10.1021/ja0653977 10.1126/science.2646716 10.1021/jz501655v 10.1038/nchembio.204 10.1021/cr050308e 10.1016/j.ccr.2007.07.019 10.1021/cr400400p 10.1021/ja502726s 10.1139/v99-099 10.1002/anie.201603592 10.1021/bi800049z 10.1021/ja026383d 10.1038/nchem.1244 10.1021/jp066263i 10.1021/jp805876e 10.1073/pnas.0710643105 10.1073/pnas.0702188104 10.1063/1.1814635 10.1146/annurev-physchem-040412-110122 10.1021/jp040497p 10.1021/acs.biochem.5b00374 10.1126/science.1126002 10.1039/C6FD00122J 10.1021/j100849a019 10.1021/ja037233l 10.1021/ja0667211 10.1021/ja209425w 10.1063/1.1690239 10.1002/poc.1676 10.1021/ja00081a060 10.1021/jp100133p 10.1021/jacs.5b07327 10.1126/science.1085515 10.1021/cr1001436 10.1021/ja806354w 10.1021/ja9831655 10.1021/ja039606o 10.1021/jacs.6b11856 10.1021/ja001476l 10.1063/1.4935045 10.1073/pnas.1104989108 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.1021/acscatal.7b00688 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 3574 |
ExternalDocumentID | 10.1021/acscatal.7b00688 PMC5724529 29250456 10_1021_acscatal_7b00688 c696429449 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM056207 – fundername: NIGMS NIH HHS grantid: R35 GM118117 – fundername: NIGMS NIH HHS grantid: R01 GM056207 |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 5PM 4.4 ADTOC UNPAY |
ID | FETCH-LOGICAL-a433t-f785e71930616052cfb564c9af01c7814cc9aa6d4fe82ee5fe59ebf10ca7b5a63 |
IEDL.DBID | UNPAY |
ISSN | 2155-5435 |
IngestDate | Tue Aug 19 23:55:06 EDT 2025 Tue Sep 30 16:54:53 EDT 2025 Fri Jul 11 16:50:49 EDT 2025 Thu Jan 02 22:31:52 EST 2025 Tue Jul 01 01:34:58 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | nonadiabatic hydrogen tunneling proton-coupled electron transfer conformational sampling protein motions soybean lipoxygenase kinetic isotope effects biocatalysis |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. publisher-specific-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a433t-f785e71930616052cfb564c9af01c7814cc9aa6d4fe82ee5fe59ebf10ca7b5a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3782-6995 0000-0001-5734-2843 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/acscatal.7b00688 |
PMID | 29250456 |
PQID | 1978316935 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | unpaywall_primary_10_1021_acscatal_7b00688 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5724529 proquest_miscellaneous_1978316935 pubmed_primary_29250456 crossref_primary_10_1021_acscatal_7b00688 crossref_citationtrail_10_1021_acscatal_7b00688 acs_journals_10_1021_acscatal_7b00688 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-05 |
PublicationDateYYYYMMDD | 2017-05-05 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Warshel A. (ref13/cit13) 1991 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1021/ja012205t – ident: ref41/cit41 doi: 10.1021/ja061585l – ident: ref6/cit6 doi: 10.1021/ja0653977 – ident: ref1/cit1 doi: 10.1126/science.2646716 – ident: ref37/cit37 doi: 10.1021/jz501655v – ident: ref11/cit11 doi: 10.1038/nchembio.204 – ident: ref15/cit15 doi: 10.1021/cr050308e – ident: ref35/cit35 doi: 10.1016/j.ccr.2007.07.019 – ident: ref10/cit10 doi: 10.1021/cr400400p – ident: ref45/cit45 doi: 10.1021/ja502726s – ident: ref14/cit14 doi: 10.1139/v99-099 – ident: ref31/cit31 doi: 10.1002/anie.201603592 – ident: ref42/cit42 doi: 10.1021/bi800049z – ident: ref4/cit4 doi: 10.1021/ja026383d – ident: ref17/cit17 doi: 10.1038/nchem.1244 – ident: ref24/cit24 doi: 10.1021/jp066263i – ident: ref33/cit33 – ident: ref16/cit16 doi: 10.1021/jp805876e – volume-title: Computer Modeling of Chemical Reactions in Enzymes and Solutions year: 1991 ident: ref13/cit13 – ident: ref43/cit43 doi: 10.1073/pnas.0710643105 – ident: ref7/cit7 doi: 10.1073/pnas.0702188104 – ident: ref34/cit34 doi: 10.1063/1.1814635 – ident: ref18/cit18 doi: 10.1146/annurev-physchem-040412-110122 – ident: ref20/cit20 doi: 10.1021/jp040497p – ident: ref46/cit46 doi: 10.1021/acs.biochem.5b00374 – ident: ref28/cit28 – ident: ref5/cit5 doi: 10.1126/science.1126002 – ident: ref27/cit27 doi: 10.1039/C6FD00122J – ident: ref39/cit39 doi: 10.1021/j100849a019 – ident: ref23/cit23 doi: 10.1021/ja037233l – ident: ref25/cit25 doi: 10.1021/ja0667211 – ident: ref9/cit9 doi: 10.1021/ja209425w – ident: ref21/cit21 doi: 10.1063/1.1690239 – ident: ref8/cit8 doi: 10.1002/poc.1676 – ident: ref30/cit30 doi: 10.1021/ja00081a060 – ident: ref44/cit44 doi: 10.1021/jp100133p – ident: ref38/cit38 doi: 10.1021/jacs.5b07327 – ident: ref12/cit12 doi: 10.1126/science.1085515 – ident: ref26/cit26 doi: 10.1021/cr1001436 – ident: ref47/cit47 doi: 10.1021/ja806354w – ident: ref2/cit2 doi: 10.1021/ja9831655 – ident: ref22/cit22 doi: 10.1021/ja039606o – ident: ref32/cit32 doi: 10.1021/jacs.6b11856 – ident: ref3/cit3 doi: 10.1021/ja001476l – ident: ref36/cit36 doi: 10.1063/1.4935045 – ident: ref40/cit40 doi: 10.1021/cr050308e – ident: ref48/cit48 doi: 10.1073/pnas.1104989108 |
SSID | ssj0000456870 |
Score | 2.392274 |
Snippet | Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical... Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3569 |
SubjectTerms | Letter |
SummonAdditionalLinks | – databaseName: American Chemical Society Journals (2020 Collection) dbid: ACS link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHMqF74_wJSPBAaRsd7NxnByr1VYVohWiFPUWjR2bRkTOqtkILT-JX8mMkw1dFpXeIiWOHPtF8-wZv8fYG7AqJpm9UCiLCxQhxyHIsQhBZanF-C5B0OHko-Pk8DT-cCbO_sjk_J3BjyZ7oBu_kzGShJA0vcluRUk6oYXW_uxk2E8hapJ6bzgMYiIUSAP6rOS_XkKxSDebsWiLYG7XSe62bgGrH1BVl4LQwd3Ozajx2oVUe_J91C7VSP_cVna8xvfdY3d6Lsr3O_DcZzeMe8B2Z2sLuIfs19yd-woB_rn8VhZUVeQnktPubek4cOTfqjL8qCUzYl5bflKvlAHHP5YL7COiE6Mk_9Qd92v4_JKfACdDUST_HGkz_4qr9tof0axW_Lj2igmKxGSpLbkcz-p2UWFH5r1tD_dB1poLTm5uVfOInR7Mv8wOw97cIYR4Ol2GVqbCSKSPSChwSRVpq0QS6wzseKJJh0vjNSRFbE0aGSOsEZlBPI01SCUgmT5mO6525injiUxUAcgMrY1jYy1kskDmJQup0ymkELC3OMh5_3M2uc-7R5N8PfJ5P_IB21vDIde9QjoZdVRXtHg3tFh06iBXPPt6jbAcp5HyMuBM3WJ_aPuNRHFEwJ50iBveFmWkMSeSgMkNLA4PkDz45h1XnnuZcCF9Vj1g7wfU_reTz645VM_Z7Yj4DVV-ihdsZ3nRmpfIzpbqlf8tfwOJcDwx priority: 102 providerName: American Chemical Society |
Title | Enhanced Rigidification within a Double Mutant of Soybean Lipoxygenase Provides Experimental Support for Vibronically Nonadiabatic Proton-Coupled Electron Transfer Models |
URI | http://dx.doi.org/10.1021/acscatal.7b00688 https://www.ncbi.nlm.nih.gov/pubmed/29250456 https://www.proquest.com/docview/1978316935 https://pubmed.ncbi.nlm.nih.gov/PMC5724529 https://pubs.acs.org/doi/pdf/10.1021/acscatal.7b00688 |
UnpaywallVersion | publishedVersion |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals (2020 Collection) customDbUrl: eissn: 2155-5435 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456870 issn: 2155-5435 databaseCode: ACS dateStart: 20110107 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED669KF72e8f7raiwfawgdPEsSz7sYSUMtZQ1qV0T0aypdbM2KaOKdmftL9yd4ptmnV09C0kkrnIJ-473en7AD5Io3yi2XO5MpigcDFypRhxV6ooNBjfheR0Ofl4Hhwt_C_n_HwLeHcXBo2o8Um1LeLTrq5S0zIMjPfxe3uoMRTkLGH4ALYDqisNYHsxPzn4QUJyGB9djhigLUn-axoFoqTeDES30OXtJsmdpqjk6lrm-Y0IdPgYznrbbePJz2GzVMPk11-0jvf-c0_gUYtJ2cHaiZ7Cli6ewc60k4J7Dr9nxaXtFGDfsosspe4i-0IZneJmBZMMcbjKNTtuSJSYlYadliulZcG-ZhWai16K0ZKdrK_91Wx2Q1eAkbAoJgEM4TM7w-y9tFc18xWbl5Y5QRGpLM0lteNp2VQ5GjJr5XuYDbZGXzFSdcvrF7A4nH2fHrmtyIMr_clk6RoRci0QRiKwwNTKS4zigZ9E0ozGCfFxJfhZBqlvdOhpzY3mkUa_GiVSKC6DyUsYFGWhXwMLRKBSiQjRGN_XxshIpIjARCqScCJD6cBHXOS43aR1bOvv3jjuVj5uV96B_c4z4qRlSifBjvyOGZ_6GdWaJeSOse87Z4vxNVJ9Rha6bNAeOoYjchzuwKu18_VP8yLimuOBA2LDLfsBRBO--UuRXVq6cC5sdd2Bz70D_9fI3fsMfgMPPQI71AbK38JgedXodwjVlmoPU5Xp6V67Pf8A8kpFxg |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4ty6FceD-yvIwEB5DSbdM4To6o6qpAW6F9oL1FdmKz0UZJtWmEyk_iVzLjJmHLogVuURJbE3ui-ewZfx_Aa2mUTzR7LlcGFyhcDFwpBtyVKgoNxnchOR1Oni-C6Yn_8ZSf7sCwPQuDRlTYU2WT-L_YBYb7eM9uaPQFOUoY3oCblgiF0ND4qNtWIYQSWok4jGXc5YgGmuTknzqhkJRU2yHpCs68Wi7Zq4ulXH-TeX4pFh3cgcPuK2wJynm_Xql-8v03gsf_-sy7cLtBpuz9xpXuwY4u7kNv3ArCPYAfk-LM1guww-xrllKNkZ1WRnu5WcEkQzSucs3mNUkTs9Kwo3KttCzYLFuiqeirGDPZ583hv4pNLqkLMJIXxaUAQxDNvuAavrQHNvM1W5SWP0ERtSy1Jc3jcVkvczRk0oj4MBtyjb5gpO2WVw_h5GByPJ66jdSDK_3RaOUaEXItEEwivMAFlpcYhbObRNIMhgmxciV4LYPUNzr0tOZG80ijdw0SKRSXwegR7BZloZ8AC0SgUok40Rjf18bISKSIw0QqknAkQ-nAGxzkuPlVq9hm4b1h3I583Iy8A_utV8RJw5dOsh35NS3edi2WG66Qa9591TpajNNIWRpZ6LJGe2gzjihyuAOPN47X9eZFxDjHAwfElkt2LxBZ-PaTIjuzpOFc2By7A-865_2rkXv_OFQvoTc9ns_i2YfFp6dwyyPkQzWh_Bnsri5q_Rxx20q9sH_qT8xORJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIlEu5bM0fBoJDiBlu5uN4-SIll0VaFcVpVVvkZ3YNCJKomYjtPwkfiUz3iTqUlTgFiWxNXHGmmfP-D2AV9Ion2j2XK4MLlC4GLpSDLkrVRQajO9CcjqcfDgP9k_8j2f8bAN4dxYGjaixp9om8WlWV6lpGQZGe3jfbmoMBDlLGN6Am5wY4AgRTY77rRVCKaGVicN4xl2OiKBNUP6pEwpLSb0elq5gzaslk1tNUcnld5nnl-LR7A6c9l9iy1C-DZqFGiQ_fiN5_O9PvQvbLUJl71YudQ82dHEftiadMNwD-Dktzm3dAPucfc1SqjWyv5fRnm5WMMkQlatcs8OGJIpZadhxuVRaFuwgq9Bc9FmMnexodQiwZtNLKgOMZEZxScAQTLNTXMuX9uBmvmTz0vIoKKKYpbakfTwpmypHQ6atmA-zodfoC0Yab3n9EE5m0y-TfbeVfHClPx4vXCNCrgWCSoQZuNDyEqN44CeRNMNRQuxcCV7LIPWNDj2tudE80uhlw0QKxWUw3oHNoiz0LrBABCqViBeN8X1tjIxEinhMpCIJxzKUDrzGQY7bKVvHNhvvjeJu5ON25B3Y6zwjTlredJLvyK9p8aZvUa04Q65592XnbDH-RsrWyEKXDdpDm3JElcMdeLRyvr43LyLmOR44INbcsn-BSMPXnxTZuSUP58Lm2h142zvwX418_I9D9QJuHb2fxQcf5p-ewG2PABCVhvKnsLm4aPQzhG8L9dxO1l-9zUcW |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5swED516UP3snW_2dbJk7aHTSJNCMbwWEWpqmmNqm2puidkg92iIUAlaMr-pP2Vu3MANW3VqW8IbHSYs-6z7_x9AB-kUT7R7LlcGVygcDFypRhxV6ooNBjfheR0OPl4Hhwt_C9n_GwLeHcWBo2o8U21TeLTrK5S0zIMjPfxvt3UGApyljB8ANsB5ZUGsL2Ynxz8JCE5jI8uRwzQpiRv60aBKKk3A9ENdHmzSHKnKSq5-i3z_EoEOnwMp73ttvDk17BZqmHy5xqt470_bhcetZiUHayd6Als6eIp7Ew7Kbhn8HdWXNhKAfYtO89Sqi6yP5TRLm5WMMkQh6tcs-OGRIlZadj3cqW0LNjXrEJz0UsxWrKT9bG_ms2u6AowEhbFRQBD-MxOcfVe2qOa-YrNS8ucoIhUlvqS2vG0bKocDZm18j3MBlujLxmpuuX1c1gczn5Mj9xW5MGV_mSydI0IuRYIIxFY4NLKS4zigZ9E0ozGCfFxJXgtg9Q3OvS05kbzSKNfjRIpFJfB5AUMirLQr4AFIlCpRIRojO9rY2QkUkRgIhVJOJGhdOAjDnLcTtI6tvl3bxx3Ix-3I-_AfucZcdIypZNgR35Hj099j2rNEnJH2_eds8X4Gyk_IwtdNmgPbcMROQ534OXa-fq3eRFxzfHAAbHhln0DognffFJkF5YunAubXXfgc-_A_zXy9X0av4GHHoEdKgPlb2GwvGz0HkK1pXrXTsx_VWtEzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Rigidification+within+a+Double+Mutant+of+Soybean+Lipoxygenase+Provides+Experimental+Support+for+Vibronically+Nonadiabatic+Proton-Coupled+Electron+Transfer+Models&rft.jtitle=ACS+catalysis&rft.au=Hu%2C+Shenshen&rft.au=Soudackov%2C+Alexander+V&rft.au=Hammes-Schiffer%2C+Sharon&rft.au=Klinman%2C+Judith+P&rft.date=2017-05-05&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=5&rft.spage=3569&rft_id=info:doi/10.1021%2Facscatal.7b00688&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |