Enhanced Rigidification within a Double Mutant of Soybean Lipoxygenase Provides Experimental Support for Vibronically Nonadiabatic Proton-Coupled Electron Transfer Models

Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mu...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 7; no. 5; pp. 3569 - 3574
Main Authors Hu, Shenshen, Soudackov, Alexander V, Hammes-Schiffer, Sharon, Klinman, Judith P
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.05.2017
Subjects
Online AccessGet full text
ISSN2155-5435
2155-5435
DOI10.1021/acscatal.7b00688

Cover

Abstract Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature–pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.
AbstractList Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.
Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.
Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature–pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.
Author Klinman, Judith P
Soudackov, Alexander V
Hu, Shenshen
Hammes-Schiffer, Sharon
AuthorAffiliation Department of Chemistry
California Institute for Quantitative Biosciences
University of Illinois at Urbana−Champaign
University of California
Department of Molecular and Cell Biology
AuthorAffiliation_xml – name: California Institute for Quantitative Biosciences
– name: University of California
– name: Department of Chemistry
– name: Department of Molecular and Cell Biology
– name: University of Illinois at Urbana−Champaign
Author_xml – sequence: 1
  givenname: Shenshen
  surname: Hu
  fullname: Hu, Shenshen
– sequence: 2
  givenname: Alexander V
  surname: Soudackov
  fullname: Soudackov, Alexander V
  organization: University of Illinois at Urbana−Champaign
– sequence: 3
  givenname: Sharon
  orcidid: 0000-0002-3782-6995
  surname: Hammes-Schiffer
  fullname: Hammes-Schiffer, Sharon
  email: shs3@illinois.edu
  organization: University of Illinois at Urbana−Champaign
– sequence: 4
  givenname: Judith P
  orcidid: 0000-0001-5734-2843
  surname: Klinman
  fullname: Klinman, Judith P
  email: klinman@berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29250456$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaV3TshHDmyxkzgfFyS0LB_SFhAtXK2JM9515bWD7bTNX-JX4mW3UJBA-OKx5r03b2b8MDuwzmKWPWb0lNGcPQcZJEQwp3VHadU097KjnHE-42XBD-7Eh9lJCJc0nZJXTU0fZId5m_Pt6yj7trBrsBJ78kmvdK-VTpraWXKt41pbAuSVGzuD5GyMYCNxipy7qUOwZKkHdzOt0EJA8tG7K91jIIubAb3eoE3OyPk4DM5HopwnX3TnnU3yxkzkvbPQa-hSLbnlRmdnczcOJhlZGJQxQcmFBxsUenLmejThUXZfgQl4sr-Ps8-vFxfzt7Plhzfv5i-XMyiLIs5U3XCsWVvQilWU51J1vCplC4oyWTeslCmGqi8VNjkiV8hb7BSjEuqOQ1UcZ2ynO9oBpuvkVwypI_CTYFRsRy9uRy_2o0-cFzvOMHYb7GVq38MvngMtfs9YvRYrdyV4nZc8b5PA072Ad19HDFFsdJBoDFh0YxCsrZuCVW3BE_TJ3Vo_i9wuNQHoDiC9C8Gj-h__1R8UqeOPj5DcavMv4rMdMWXEpRu9Tav5O_w799zfRA
CitedBy_id crossref_primary_10_1039_D3OB00718A
crossref_primary_10_1002_ange_202206314
crossref_primary_10_1002_poc_70002
crossref_primary_10_1021_acs_biochem_9b00467
crossref_primary_10_1002_bkcs_12417
crossref_primary_10_1021_acs_biochem_9b00861
crossref_primary_10_3390_quantum3010006
crossref_primary_10_1134_S0036024424030208
crossref_primary_10_1098_rsta_2020_0377
crossref_primary_10_1021_jacs_0c09106
crossref_primary_10_1126_science_abq5173
crossref_primary_10_1021_acs_jpcb_7b06892
crossref_primary_10_1039_D0CP00131G
crossref_primary_10_1039_C9FD00071B
crossref_primary_10_1021_acs_joc_4c03080
crossref_primary_10_1021_acs_biochem_3c00119
crossref_primary_10_1021_acs_joc_3c02562
crossref_primary_10_1021_jacs_7b11300
crossref_primary_10_1021_acs_inorgchem_7b01459
crossref_primary_10_1002_1873_3468_14515
crossref_primary_10_1021_jacs_7b13642
crossref_primary_10_1021_jacs_7b08418
crossref_primary_10_1021_acs_jpclett_8b02945
crossref_primary_10_1063_1_4998941
crossref_primary_10_1134_S1990793122010031
crossref_primary_10_3390_molecules25153374
crossref_primary_10_1021_acsomega_4c02383
crossref_primary_10_3390_physchem2030018
crossref_primary_10_1021_acs_orglett_0c02049
crossref_primary_10_1002_anie_202206314
crossref_primary_10_1021_acs_biochem_9b00574
crossref_primary_10_1021_acs_jpca_2c06065
crossref_primary_10_1146_annurev_physchem_091422_102619
crossref_primary_10_1074_jbc_RA119_010826
crossref_primary_10_1021_jacs_8b10992
crossref_primary_10_1146_annurev_biochem_013118_111217
crossref_primary_10_1021_acs_joc_1c00497
crossref_primary_10_1038_s42005_022_00881_8
crossref_primary_10_1016_j_chemphys_2019_03_003
crossref_primary_10_1021_acs_accounts_8b00226
crossref_primary_10_1063_1_4991745
crossref_primary_10_1134_S199079311904002X
crossref_primary_10_3390_molecules25061443
crossref_primary_10_1039_D0CP05265E
crossref_primary_10_1021_acs_jpcb_9b07228
Cites_doi 10.1021/ja012205t
10.1021/ja061585l
10.1021/ja0653977
10.1126/science.2646716
10.1021/jz501655v
10.1038/nchembio.204
10.1021/cr050308e
10.1016/j.ccr.2007.07.019
10.1021/cr400400p
10.1021/ja502726s
10.1139/v99-099
10.1002/anie.201603592
10.1021/bi800049z
10.1021/ja026383d
10.1038/nchem.1244
10.1021/jp066263i
10.1021/jp805876e
10.1073/pnas.0710643105
10.1073/pnas.0702188104
10.1063/1.1814635
10.1146/annurev-physchem-040412-110122
10.1021/jp040497p
10.1021/acs.biochem.5b00374
10.1126/science.1126002
10.1039/C6FD00122J
10.1021/j100849a019
10.1021/ja037233l
10.1021/ja0667211
10.1021/ja209425w
10.1063/1.1690239
10.1002/poc.1676
10.1021/ja00081a060
10.1021/jp100133p
10.1021/jacs.5b07327
10.1126/science.1085515
10.1021/cr1001436
10.1021/ja806354w
10.1021/ja9831655
10.1021/ja039606o
10.1021/jacs.6b11856
10.1021/ja001476l
10.1063/1.4935045
10.1073/pnas.1104989108
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acscatal.7b00688
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 3574
ExternalDocumentID 10.1021/acscatal.7b00688
PMC5724529
29250456
10_1021_acscatal_7b00688
c696429449
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM056207
– fundername: NIGMS NIH HHS
  grantid: R35 GM118117
– fundername: NIGMS NIH HHS
  grantid: R01 GM056207
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
5PM
4.4
ADTOC
UNPAY
ID FETCH-LOGICAL-a433t-f785e71930616052cfb564c9af01c7814cc9aa6d4fe82ee5fe59ebf10ca7b5a63
IEDL.DBID UNPAY
ISSN 2155-5435
IngestDate Tue Aug 19 23:55:06 EDT 2025
Tue Sep 30 16:54:53 EDT 2025
Fri Jul 11 16:50:49 EDT 2025
Thu Jan 02 22:31:52 EST 2025
Tue Jul 01 01:34:58 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords nonadiabatic
hydrogen tunneling
proton-coupled electron transfer
conformational sampling
protein motions
soybean lipoxygenase
kinetic isotope effects
biocatalysis
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
publisher-specific-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-f785e71930616052cfb564c9af01c7814cc9aa6d4fe82ee5fe59ebf10ca7b5a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3782-6995
0000-0001-5734-2843
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/acscatal.7b00688
PMID 29250456
PQID 1978316935
PQPubID 23479
PageCount 6
ParticipantIDs unpaywall_primary_10_1021_acscatal_7b00688
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5724529
proquest_miscellaneous_1978316935
pubmed_primary_29250456
crossref_primary_10_1021_acscatal_7b00688
crossref_citationtrail_10_1021_acscatal_7b00688
acs_journals_10_1021_acscatal_7b00688
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-05
PublicationDateYYYYMMDD 2017-05-05
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Warshel A. (ref13/cit13) 1991
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1021/ja012205t
– ident: ref41/cit41
  doi: 10.1021/ja061585l
– ident: ref6/cit6
  doi: 10.1021/ja0653977
– ident: ref1/cit1
  doi: 10.1126/science.2646716
– ident: ref37/cit37
  doi: 10.1021/jz501655v
– ident: ref11/cit11
  doi: 10.1038/nchembio.204
– ident: ref15/cit15
  doi: 10.1021/cr050308e
– ident: ref35/cit35
  doi: 10.1016/j.ccr.2007.07.019
– ident: ref10/cit10
  doi: 10.1021/cr400400p
– ident: ref45/cit45
  doi: 10.1021/ja502726s
– ident: ref14/cit14
  doi: 10.1139/v99-099
– ident: ref31/cit31
  doi: 10.1002/anie.201603592
– ident: ref42/cit42
  doi: 10.1021/bi800049z
– ident: ref4/cit4
  doi: 10.1021/ja026383d
– ident: ref17/cit17
  doi: 10.1038/nchem.1244
– ident: ref24/cit24
  doi: 10.1021/jp066263i
– ident: ref33/cit33
– ident: ref16/cit16
  doi: 10.1021/jp805876e
– volume-title: Computer Modeling of Chemical Reactions in Enzymes and Solutions
  year: 1991
  ident: ref13/cit13
– ident: ref43/cit43
  doi: 10.1073/pnas.0710643105
– ident: ref7/cit7
  doi: 10.1073/pnas.0702188104
– ident: ref34/cit34
  doi: 10.1063/1.1814635
– ident: ref18/cit18
  doi: 10.1146/annurev-physchem-040412-110122
– ident: ref20/cit20
  doi: 10.1021/jp040497p
– ident: ref46/cit46
  doi: 10.1021/acs.biochem.5b00374
– ident: ref28/cit28
– ident: ref5/cit5
  doi: 10.1126/science.1126002
– ident: ref27/cit27
  doi: 10.1039/C6FD00122J
– ident: ref39/cit39
  doi: 10.1021/j100849a019
– ident: ref23/cit23
  doi: 10.1021/ja037233l
– ident: ref25/cit25
  doi: 10.1021/ja0667211
– ident: ref9/cit9
  doi: 10.1021/ja209425w
– ident: ref21/cit21
  doi: 10.1063/1.1690239
– ident: ref8/cit8
  doi: 10.1002/poc.1676
– ident: ref30/cit30
  doi: 10.1021/ja00081a060
– ident: ref44/cit44
  doi: 10.1021/jp100133p
– ident: ref38/cit38
  doi: 10.1021/jacs.5b07327
– ident: ref12/cit12
  doi: 10.1126/science.1085515
– ident: ref26/cit26
  doi: 10.1021/cr1001436
– ident: ref47/cit47
  doi: 10.1021/ja806354w
– ident: ref2/cit2
  doi: 10.1021/ja9831655
– ident: ref22/cit22
  doi: 10.1021/ja039606o
– ident: ref32/cit32
  doi: 10.1021/jacs.6b11856
– ident: ref3/cit3
  doi: 10.1021/ja001476l
– ident: ref36/cit36
  doi: 10.1063/1.4935045
– ident: ref40/cit40
  doi: 10.1021/cr050308e
– ident: ref48/cit48
  doi: 10.1073/pnas.1104989108
SSID ssj0000456870
Score 2.392274
Snippet Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical...
Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3569
SubjectTerms Letter
SummonAdditionalLinks – databaseName: American Chemical Society Journals (2020 Collection)
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHMqF74_wJSPBAaRsd7NxnByr1VYVohWiFPUWjR2bRkTOqtkILT-JX8mMkw1dFpXeIiWOHPtF8-wZv8fYG7AqJpm9UCiLCxQhxyHIsQhBZanF-C5B0OHko-Pk8DT-cCbO_sjk_J3BjyZ7oBu_kzGShJA0vcluRUk6oYXW_uxk2E8hapJ6bzgMYiIUSAP6rOS_XkKxSDebsWiLYG7XSe62bgGrH1BVl4LQwd3Ozajx2oVUe_J91C7VSP_cVna8xvfdY3d6Lsr3O_DcZzeMe8B2Z2sLuIfs19yd-woB_rn8VhZUVeQnktPubek4cOTfqjL8qCUzYl5bflKvlAHHP5YL7COiE6Mk_9Qd92v4_JKfACdDUST_HGkz_4qr9tof0axW_Lj2igmKxGSpLbkcz-p2UWFH5r1tD_dB1poLTm5uVfOInR7Mv8wOw97cIYR4Ol2GVqbCSKSPSChwSRVpq0QS6wzseKJJh0vjNSRFbE0aGSOsEZlBPI01SCUgmT5mO6525injiUxUAcgMrY1jYy1kskDmJQup0ymkELC3OMh5_3M2uc-7R5N8PfJ5P_IB21vDIde9QjoZdVRXtHg3tFh06iBXPPt6jbAcp5HyMuBM3WJ_aPuNRHFEwJ50iBveFmWkMSeSgMkNLA4PkDz45h1XnnuZcCF9Vj1g7wfU_reTz645VM_Z7Yj4DVV-ihdsZ3nRmpfIzpbqlf8tfwOJcDwx
  priority: 102
  providerName: American Chemical Society
Title Enhanced Rigidification within a Double Mutant of Soybean Lipoxygenase Provides Experimental Support for Vibronically Nonadiabatic Proton-Coupled Electron Transfer Models
URI http://dx.doi.org/10.1021/acscatal.7b00688
https://www.ncbi.nlm.nih.gov/pubmed/29250456
https://www.proquest.com/docview/1978316935
https://pubmed.ncbi.nlm.nih.gov/PMC5724529
https://pubs.acs.org/doi/pdf/10.1021/acscatal.7b00688
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals (2020 Collection)
  customDbUrl:
  eissn: 2155-5435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456870
  issn: 2155-5435
  databaseCode: ACS
  dateStart: 20110107
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED669KF72e8f7raiwfawgdPEsSz7sYSUMtZQ1qV0T0aypdbM2KaOKdmftL9yd4ptmnV09C0kkrnIJ-473en7AD5Io3yi2XO5MpigcDFypRhxV6ooNBjfheR0Ofl4Hhwt_C_n_HwLeHcXBo2o8Um1LeLTrq5S0zIMjPfxe3uoMRTkLGH4ALYDqisNYHsxPzn4QUJyGB9djhigLUn-axoFoqTeDES30OXtJsmdpqjk6lrm-Y0IdPgYznrbbePJz2GzVMPk11-0jvf-c0_gUYtJ2cHaiZ7Cli6ewc60k4J7Dr9nxaXtFGDfsosspe4i-0IZneJmBZMMcbjKNTtuSJSYlYadliulZcG-ZhWai16K0ZKdrK_91Wx2Q1eAkbAoJgEM4TM7w-y9tFc18xWbl5Y5QRGpLM0lteNp2VQ5GjJr5XuYDbZGXzFSdcvrF7A4nH2fHrmtyIMr_clk6RoRci0QRiKwwNTKS4zigZ9E0ozGCfFxJfhZBqlvdOhpzY3mkUa_GiVSKC6DyUsYFGWhXwMLRKBSiQjRGN_XxshIpIjARCqScCJD6cBHXOS43aR1bOvv3jjuVj5uV96B_c4z4qRlSifBjvyOGZ_6GdWaJeSOse87Z4vxNVJ9Rha6bNAeOoYjchzuwKu18_VP8yLimuOBA2LDLfsBRBO--UuRXVq6cC5sdd2Bz70D_9fI3fsMfgMPPQI71AbK38JgedXodwjVlmoPU5Xp6V67Pf8A8kpFxg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4ty6FceD-yvIwEB5DSbdM4To6o6qpAW6F9oL1FdmKz0UZJtWmEyk_iVzLjJmHLogVuURJbE3ui-ewZfx_Aa2mUTzR7LlcGFyhcDFwpBtyVKgoNxnchOR1Oni-C6Yn_8ZSf7sCwPQuDRlTYU2WT-L_YBYb7eM9uaPQFOUoY3oCblgiF0ND4qNtWIYQSWok4jGXc5YgGmuTknzqhkJRU2yHpCs68Wi7Zq4ulXH-TeX4pFh3cgcPuK2wJynm_Xql-8v03gsf_-sy7cLtBpuz9xpXuwY4u7kNv3ArCPYAfk-LM1guww-xrllKNkZ1WRnu5WcEkQzSucs3mNUkTs9Kwo3KttCzYLFuiqeirGDPZ583hv4pNLqkLMJIXxaUAQxDNvuAavrQHNvM1W5SWP0ERtSy1Jc3jcVkvczRk0oj4MBtyjb5gpO2WVw_h5GByPJ66jdSDK_3RaOUaEXItEEwivMAFlpcYhbObRNIMhgmxciV4LYPUNzr0tOZG80ijdw0SKRSXwegR7BZloZ8AC0SgUok40Rjf18bISKSIw0QqknAkQ-nAGxzkuPlVq9hm4b1h3I583Iy8A_utV8RJw5dOsh35NS3edi2WG66Qa9591TpajNNIWRpZ6LJGe2gzjihyuAOPN47X9eZFxDjHAwfElkt2LxBZ-PaTIjuzpOFc2By7A-865_2rkXv_OFQvoTc9ns_i2YfFp6dwyyPkQzWh_Bnsri5q_Rxx20q9sH_qT8xORJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIlEu5bM0fBoJDiBlu5uN4-SIll0VaFcVpVVvkZ3YNCJKomYjtPwkfiUz3iTqUlTgFiWxNXHGmmfP-D2AV9Ion2j2XK4MLlC4GLpSDLkrVRQajO9CcjqcfDgP9k_8j2f8bAN4dxYGjaixp9om8WlWV6lpGQZGe3jfbmoMBDlLGN6Am5wY4AgRTY77rRVCKaGVicN4xl2OiKBNUP6pEwpLSb0elq5gzaslk1tNUcnld5nnl-LR7A6c9l9iy1C-DZqFGiQ_fiN5_O9PvQvbLUJl71YudQ82dHEftiadMNwD-Dktzm3dAPucfc1SqjWyv5fRnm5WMMkQlatcs8OGJIpZadhxuVRaFuwgq9Bc9FmMnexodQiwZtNLKgOMZEZxScAQTLNTXMuX9uBmvmTz0vIoKKKYpbakfTwpmypHQ6atmA-zodfoC0Yab3n9EE5m0y-TfbeVfHClPx4vXCNCrgWCSoQZuNDyEqN44CeRNMNRQuxcCV7LIPWNDj2tudE80uhlw0QKxWUw3oHNoiz0LrBABCqViBeN8X1tjIxEinhMpCIJxzKUDrzGQY7bKVvHNhvvjeJu5ON25B3Y6zwjTlredJLvyK9p8aZvUa04Q65592XnbDH-RsrWyEKXDdpDm3JElcMdeLRyvr43LyLmOR44INbcsn-BSMPXnxTZuSUP58Lm2h142zvwX418_I9D9QJuHb2fxQcf5p-ewG2PABCVhvKnsLm4aPQzhG8L9dxO1l-9zUcW
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5swED516UP3snW_2dbJk7aHTSJNCMbwWEWpqmmNqm2puidkg92iIUAlaMr-pP2Vu3MANW3VqW8IbHSYs-6z7_x9AB-kUT7R7LlcGVygcDFypRhxV6ooNBjfheR0OPl4Hhwt_C9n_GwLeHcWBo2o8U21TeLTrK5S0zIMjPfxvt3UGApyljB8ANsB5ZUGsL2Ynxz8JCE5jI8uRwzQpiRv60aBKKk3A9ENdHmzSHKnKSq5-i3z_EoEOnwMp73ttvDk17BZqmHy5xqt470_bhcetZiUHayd6Als6eIp7Ew7Kbhn8HdWXNhKAfYtO89Sqi6yP5TRLm5WMMkQh6tcs-OGRIlZadj3cqW0LNjXrEJz0UsxWrKT9bG_ms2u6AowEhbFRQBD-MxOcfVe2qOa-YrNS8ucoIhUlvqS2vG0bKocDZm18j3MBlujLxmpuuX1c1gczn5Mj9xW5MGV_mSydI0IuRYIIxFY4NLKS4zigZ9E0ozGCfFxJXgtg9Q3OvS05kbzSKNfjRIpFJfB5AUMirLQr4AFIlCpRIRojO9rY2QkUkRgIhVJOJGhdOAjDnLcTtI6tvl3bxx3Ix-3I-_AfucZcdIypZNgR35Hj099j2rNEnJH2_eds8X4Gyk_IwtdNmgPbcMROQ534OXa-fq3eRFxzfHAAbHhln0DognffFJkF5YunAubXXfgc-_A_zXy9X0av4GHHoEdKgPlb2GwvGz0HkK1pXrXTsx_VWtEzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Rigidification+within+a+Double+Mutant+of+Soybean+Lipoxygenase+Provides+Experimental+Support+for+Vibronically+Nonadiabatic+Proton-Coupled+Electron+Transfer+Models&rft.jtitle=ACS+catalysis&rft.au=Hu%2C+Shenshen&rft.au=Soudackov%2C+Alexander+V&rft.au=Hammes-Schiffer%2C+Sharon&rft.au=Klinman%2C+Judith+P&rft.date=2017-05-05&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=5&rft.spage=3569&rft_id=info:doi/10.1021%2Facscatal.7b00688&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon