Improved Bathymetric Prediction Using Geological Information: SYNBATH
To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will n...
Saved in:
| Published in | Earth and space science (Hoboken, N.J.) Vol. 9; no. 2 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
John Wiley & Sons, Inc
01.02.2022
American Geophysical Union (AGU) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2333-5084 2333-5084 |
| DOI | 10.1029/2021EA002069 |
Cover
| Abstract | To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape.
Plain Language Summary
The floor of the deep ocean remains as the last uncharted frontier in the inner solar system. The deep seawater (>1,000 m) prevent any type of exploration from conventional satellite remote sensing. Echosounders aboard large vessels have mapped about 20% of the seafloor, however, vast areas in the southern hemisphere will not be mapped in our lifetimes. The deep ocean floor has more than 90% of the active volcanoes; hydrothermal circulation of seawater through the crust of the seafloor spreading ridges replenishes the nutrients needed for life on Earth. This study is an effort to fill the large gaps in seafloor coverage by creating a synthetic abyssal hill fabric using geological information such as the age of the seafloor, the spreading rate and direction when it formed, and the thickness of the sediments covering the original topography. In addition, we use the latest satellite‐derived gravity to estimate the locations and shapes of about 20,000 uncharted seamounts. The combination of mapped (20%) and synthetic (80%) topography is useful for modeling ocean circulation and ocean tides although it may give a false impression that 100% of the seafloor has been mapped.
Key Points
∼20% of the ocean floor topography has been surveyed by ships, the remaining 80% is predicted by satellite altimetry
We increased the resolution of the predicted depth using spectral properties of abyssal hills and the characteristic shapes of seamounts
We estimate the height and radius of 19,000 uncharted seamounts |
|---|---|
| AbstractList | To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape.
The floor of the deep ocean remains as the last uncharted frontier in the inner solar system. The deep seawater (>1,000 m) prevent any type of exploration from conventional satellite remote sensing. Echosounders aboard large vessels have mapped about 20% of the seafloor, however, vast areas in the southern hemisphere will not be mapped in our lifetimes. The deep ocean floor has more than 90% of the active volcanoes; hydrothermal circulation of seawater through the crust of the seafloor spreading ridges replenishes the nutrients needed for life on Earth. This study is an effort to fill the large gaps in seafloor coverage by creating a synthetic abyssal hill fabric using geological information such as the age of the seafloor, the spreading rate and direction when it formed, and the thickness of the sediments covering the original topography. In addition, we use the latest satellite‐derived gravity to estimate the locations and shapes of about 20,000 uncharted seamounts. The combination of mapped (20%) and synthetic (80%) topography is useful for modeling ocean circulation and ocean tides although it may give a false impression that 100% of the seafloor has been mapped.
∼20% of the ocean floor topography has been surveyed by ships, the remaining 80% is predicted by satellite altimetry
We increased the resolution of the predicted depth using spectral properties of abyssal hills and the characteristic shapes of seamounts
We estimate the height and radius of 19,000 uncharted seamounts To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape. Plain Language Summary The floor of the deep ocean remains as the last uncharted frontier in the inner solar system. The deep seawater (>1,000 m) prevent any type of exploration from conventional satellite remote sensing. Echosounders aboard large vessels have mapped about 20% of the seafloor, however, vast areas in the southern hemisphere will not be mapped in our lifetimes. The deep ocean floor has more than 90% of the active volcanoes; hydrothermal circulation of seawater through the crust of the seafloor spreading ridges replenishes the nutrients needed for life on Earth. This study is an effort to fill the large gaps in seafloor coverage by creating a synthetic abyssal hill fabric using geological information such as the age of the seafloor, the spreading rate and direction when it formed, and the thickness of the sediments covering the original topography. In addition, we use the latest satellite‐derived gravity to estimate the locations and shapes of about 20,000 uncharted seamounts. The combination of mapped (20%) and synthetic (80%) topography is useful for modeling ocean circulation and ocean tides although it may give a false impression that 100% of the seafloor has been mapped. Key Points ∼20% of the ocean floor topography has been surveyed by ships, the remaining 80% is predicted by satellite altimetry We increased the resolution of the predicted depth using spectral properties of abyssal hills and the characteristic shapes of seamounts We estimate the height and radius of 19,000 uncharted seamounts To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape. Abstract To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape. |
| Author | Sandwell, David T. Smith, Walter H. F. Tozer, Brook Gevorgian, Julie Yu, Yao Wessel, Paul Kim, Seung‐Sep Harper, Hugh Goff, John A. |
| Author_xml | – sequence: 1 givenname: David T. orcidid: 0000-0001-5657-8707 surname: Sandwell fullname: Sandwell, David T. email: dsandwell@ucsd.edu organization: University of California San Diego – sequence: 2 givenname: John A. orcidid: 0000-0001-9246-5048 surname: Goff fullname: Goff, John A. organization: University of Texas at Austin – sequence: 3 givenname: Julie surname: Gevorgian fullname: Gevorgian, Julie organization: University of California San Diego – sequence: 4 givenname: Hugh orcidid: 0000-0003-1624-9751 surname: Harper fullname: Harper, Hugh organization: University of California San Diego – sequence: 5 givenname: Seung‐Sep orcidid: 0000-0001-8963-1332 surname: Kim fullname: Kim, Seung‐Sep organization: Chungnam National University – sequence: 6 givenname: Yao surname: Yu fullname: Yu, Yao organization: University of California San Diego – sequence: 7 givenname: Brook surname: Tozer fullname: Tozer, Brook organization: GNS Science – sequence: 8 givenname: Paul orcidid: 0000-0001-5708-7336 surname: Wessel fullname: Wessel, Paul organization: University of Hawaii at Manoa – sequence: 9 givenname: Walter H. F. orcidid: 0000-0002-8814-015X surname: Smith fullname: Smith, Walter H. F. organization: NOAA |
| BookMark | eNqFkU1P3DAQhq0KpFLg1h8QiWsD9tj5cG8L2sJKqCAtHDhZE2eyeJWNt062aP89XkKrqkJw8sh-_Izn9Re21_mOGPsq-KngoM-Ag5hOOAee60_sAKSUacZLtfdP_Zkd9_2Scy4gyzmoAzadrdbB_6Y6OcfhcbuiITib3AaqnR2c75L73nWL5JJ86xfOYpvMusaHFe4Ovyfzh5_nk7urI7bfYNvT8et6yO5_TO8urtLrm8vZxeQ6RSVlkRKSVnljS1Q5QqyaAqCyItOishmXpZLcloBSk64IM9BUVxUUKqtlkddCHrLZ6K09Ls06uBWGrfHozMuGDwuDYXC2JaNkFFipFHKtQBcaMbeaLErMG17a6EpH16Zb4_YJ2_avUHCzi9TsIiUcI438ycjHvH5tqB_M0m9CF8c1kEuI4xRyR30bKRt83wdq3pT--aeIw3-4dcNLtkNA135w6cm1tH23gZnO5yB4fNozkGKhWw |
| CitedBy_id | crossref_primary_10_1038_s43247_024_01480_x crossref_primary_10_1080_17538947_2024_2430679 crossref_primary_10_1038_s41597_022_01366_7 crossref_primary_10_5194_essd_17_165_2025 crossref_primary_10_1029_2023GL102801 crossref_primary_10_1029_2023MS003806 crossref_primary_10_1126_science_ads4472 crossref_primary_10_3390_rs16010166 crossref_primary_10_3389_fmars_2023_1259262 crossref_primary_10_1080_17538947_2024_2393255 crossref_primary_10_1080_01490419_2023_2179140 crossref_primary_10_1080_01490419_2024_2401332 crossref_primary_10_1109_LGRS_2023_3302992 crossref_primary_10_1016_j_pocean_2022_102824 crossref_primary_10_1029_2022EA002331 crossref_primary_10_3390_rs16173154 crossref_primary_10_1029_2024JH000205 crossref_primary_10_1038_s43017_025_00647_0 crossref_primary_10_1093_gji_ggaf075 crossref_primary_10_3390_s23125445 crossref_primary_10_1016_j_geog_2023_12_006 crossref_primary_10_1016_j_pce_2022_103341 crossref_primary_10_3390_rs16142656 crossref_primary_10_3389_fmars_2023_1266364 crossref_primary_10_1007_s13131_023_2203_9 crossref_primary_10_1016_j_engappai_2024_109567 crossref_primary_10_3390_jmse13030507 crossref_primary_10_1016_j_heliyon_2024_e26644 crossref_primary_10_1093_gji_ggae138 crossref_primary_10_1016_j_jsames_2023_104435 crossref_primary_10_1038_s43247_023_00928_w crossref_primary_10_1111_tgis_13178 crossref_primary_10_1029_2022JB025692 |
| Cites_doi | 10.1126/science.276.5309.93 10.1029/94JB00988 10.1126/science.277.5327.802 10.1016/j.jmarsys.2005.09.016 10.1029/2020JB019735 10.1016/j.dsr.2011.02.004 10.1007/s00190-004-0430-1 10.1111/j.1365-246X.2011.05076.x 10.1029/JB093iB04p02899 10.1029/2000JB900098 10.1016/j.asr.2019.09.011 10.1016/0012-821X(88)90143-4 10.1029/2018GC008115 10.1029/2003GL017676 10.3390/geosciences8020063 10.1029/2019GC008515 10.1029/JB093iB09p10408 10.1121/1.1908482 10.1029/2000JB000083 10.1130/SPE65-p1 10.1016/j.margeo.2011.06.011 10.5670/oceanog.2010.85 10.1029/2019EA000658 10.1029/2020GL088162 10.1126/science.1258213 10.1111/j.1365-246X.1973.tb06513.x 10.1029/2000GL012044 10.1029/1999GL007003 10.1016/j.ocemod.2009.10.001 10.1029/2005JB004083 10.1016/j.ocemod.2017.02.005 10.1190/1.1442837 10.1007/s11001-006-8181-4 10.1029/GL016i001p00045 10.1029/JB093iB11p13589 10.5670/oceanog.2010.60 10.1029/2020GC009214 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.1029/2021EA002069 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central (New) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2333-5084 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_43ea5c344a0942979aa6c9eca3a6f08c 10.1029/2021ea002069 10_1029_2021EA002069 ESS21067 |
| Genre | article |
| GrantInformation_xml | – fundername: DOD | US Navy | Office of Naval Research (ONR) funderid: N00014‐17‐1‐2866 – fundername: Nippon Foundation funderid: SeaBed2030 – fundername: NASA SWOT funderid: NNX16AH64 G, 80NSSC20K1138 |
| GroupedDBID | 0R~ 1OC 24P 5VS AAFWJ AAHHS AAZKR ABDBF ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EJD GODZA GROUPED_DOAJ HCIFZ IAO IGS ITC KQ8 M~E O9- OK1 PCBAR PIMPY WIN AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IEP PHGZM PHGZT PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-a4337-eae946fc8a46a246ff722bc1591bc5038430c82a39e9bea529edbb2745d376d13 |
| IEDL.DBID | BENPR |
| ISSN | 2333-5084 |
| IngestDate | Tue Oct 14 18:01:49 EDT 2025 Sun Oct 26 02:00:49 EDT 2025 Mon Jul 14 07:22:45 EDT 2025 Wed Oct 01 01:52:12 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Wed Jan 22 16:27:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4337-eae946fc8a46a246ff722bc1591bc5038430c82a39e9bea529edbb2745d376d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5657-8707 0000-0001-5708-7336 0000-0001-8963-1332 0000-0002-8814-015X 0000-0003-1624-9751 0000-0001-9246-5048 |
| OpenAccessLink | https://www.proquest.com/docview/2632246739?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2632246739 |
| PQPubID | 4368366 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_43ea5c344a0942979aa6c9eca3a6f08c unpaywall_primary_10_1029_2021ea002069 proquest_journals_2632246739 crossref_primary_10_1029_2021EA002069 crossref_citationtrail_10_1029_2021EA002069 wiley_primary_10_1029_2021EA002069_ESS21067 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Earth and space science (Hoboken, N.J.) |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
| References | 2011; 116 2021; 68 2010; 32 1990; 55 2000; 27 1973; 31 2019; 6 1997; 276 1997; 277 2008 1994; 2234 1988; 94 2004 2001; 28 2020; 125 2011; 58 1961; 33 1988; 90 2017; 112 1988; 93 2003; 30 1959; 65 2009; 114 2006; 111 2001; 106 2010; 23 2018; 8 2019; 20 2000 2021 2020 2019b 2000; 105 2006; 27 2019a 2010; 115 1964 1994; 99 2020; 47 2015 2008; 113 2020; 21 2007; 65 1989; 16 2011; 288 2014; 346 2005; 78 2011; 186 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_56_1 Scott R. B. (e_1_2_9_39_1) 2011; 116 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Loubrieu B. (e_1_2_9_26_1) 2020 GEBCO Bathymetric Compilation Group (e_1_2_9_10_1) 2020 Menard H. W. (e_1_2_9_30_1) 1964 Sauter D. (e_1_2_9_38_1) 2000 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 Loubrieu B. (e_1_2_9_25_1) 2019 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_4_1 e_1_2_9_49_1 Gevorgian J. (e_1_2_9_11_1) 2021 e_1_2_9_47_1 Adcroft A. (e_1_2_9_2_1) 2004 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_32_1 e_1_2_9_55_1 Goff J. A. (e_1_2_9_13_1) 2010; 115 Chin‐Bing S. A. (e_1_2_9_6_1) 1994 e_1_2_9_15_1 e_1_2_9_17_1 Matthews K. J. (e_1_2_9_28_1) 2011; 116 e_1_2_9_36_1 e_1_2_9_59_1 Wölfl A.‐C. (e_1_2_9_58_1) 2020 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 Becker J. J. (e_1_2_9_3_1) 2008; 113 Hébert H. (e_1_2_9_19_1) 2001; 106 Loubrieu B. (e_1_2_9_24_1) 2019 e_1_2_9_5_1 Devey (e_1_2_9_8_1) 2020 Sandwell D. T. (e_1_2_9_37_1) 2009; 114 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Kim S. S. (e_1_2_9_23_1) 2015 |
| References_xml | – volume: 113 issue: C5 year: 2008 article-title: Global estimates of seafloor slope from single‐beam ship soundings publication-title: Journal of Geophysical Research: Oceans – volume: 276 start-page: 93 issue: 5309 year: 1997 end-page: 96 article-title: Spatial variability of turbulent mixing in the abyssal ocean publication-title: Science – volume: 6 start-page: 1847 issue: 10 year: 2019 end-page: 1864 article-title: Global bathymetry and topography at 15 arc sec: SRTM15+ publication-title: Earth and Space Science – volume: 186 start-page: 615 year: 2011 end-page: 631 article-title: New global seamount census from altimetry‐derived gravity data publication-title: Geophysical Journal International – volume: 346 start-page: 65 issue: 6205 year: 2014 end-page: 67 article-title: New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure publication-title: Science – volume: 30 issue: 17 year: 2003 article-title: Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry publication-title: Geophysical Research Letters – volume: 90 start-page: 457 year: 1988 end-page: 466 article-title: Shape analysis of Pacific seamounts publication-title: Earth and Planetary Science Letters – year: 2021 – volume: 99 start-page: 21803 issue: B11 year: 1994 end-page: 21824 article-title: Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry publication-title: Journal of Geophysical Research: Solid Earth – volume: 27 start-page: 1 issue: 1 year: 2006 end-page: 5 article-title: GEBCO centennial special issue–charting the secret world of the ocean floor: The GEBCO project 1903–2003 publication-title: Marine Geophysical Researches – volume: 8 issue: 2 year: 2018 article-title: The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030 publication-title: Geosciences – volume: 112 start-page: 1 year: 2017 end-page: 16 article-title: Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models publication-title: Ocean Modelling – volume: 111 issue: B8 year: 2006 article-title: Global gravity, bathymetry, and the distribution of submarine volcanism through space and time publication-title: Journal of Geophysical Research – year: 2019a – volume: 16 start-page: 45 issue: 1 year: 1989 end-page: 48 article-title: Stochastic modeling of seafloor morphology: A parameterized Gaussian model publication-title: Geophysical Research Letters – volume: 106 start-page: 345363 issue: B1126 year: 2001 end-page: 345426 article-title: Lithospheric structure of a nascent spreading ridge inferred from gravity data: The western Gulf of Aden publication-title: Journal of Geophysical Research – volume: 33 start-page: 1498 issue: 11 year: 1961 end-page: 1504 article-title: Bottom reverberation for 530‐and 1030‐cps sound in deep water publication-title: Journal of the Acoustical Society of America – volume: 125 issue: 9 year: 2020 article-title: Modeling uncertainties of bathymetry predicted with satellite altimetry data and application to tsunami hazard assessments publication-title: Journal of Geophysical Research: Solid Earth – volume: 27 start-page: 1251 issue: 9 year: 2000 end-page: 1254 article-title: Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry publication-title: Geophysical Research Letters – volume: 94 start-page: 2899 issue: B4 year: 1988 end-page: 2918 article-title: Seamount statistics in the Pacific ocean publication-title: Journal of Geophysical Research – volume: 20 start-page: 5556 issue: 11 year: 2019 end-page: 5564 article-title: The generic mapping tools version 6 publication-title: Geochemistry, Geophysics, Geosystems – year: 2008 – volume: 23 start-page: 20 issue: No 1 year: 2010 end-page: 21 article-title: Defining the word “seamount” publication-title: Oceanography – volume: 20 start-page: 1756 issue: 4 year: 2019 end-page: 1772 article-title: GlobSed: Updated total sediment thickness in the world's oceans publication-title: Geochemistry, Geophysics, Geosystems – year: 2019b – volume: 65 start-page: 60 issue: 1–4 year: 2007 end-page: 83 article-title: The HYCOM (hybrid coordinate ocean model) data assimilative system publication-title: Journal of Marine Systems – volume: 2234 start-page: 188 year: 1994 end-page: 194 article-title: Long‐range cw and time‐domain simulations of ocean acoustic scatter from Mid‐Atlantic Ridge corners – volume: 58 start-page: 442 issue: 4 year: 2011 end-page: 453 article-title: The global distribution of seamounts based on 30 arc seconds bathymetry data publication-title: Deep Sea Research Part I: Oceanographic Research Papers – volume: 31 start-page: 447 issue: 4 year: 1973 end-page: 455 article-title: The rapid calculation of potential anomalies publication-title: Geophysical Journal International – volume: 28 start-page: 811 issue: 5 year: 2001 end-page: 814 article-title: Parameterizing tidal dissipation over rough topography publication-title: Geophysical Research Letters – volume: 21 issue: 10 year: 2020 article-title: A global data set of present‐day oceanic crustal age and seafloor spreading parameters publication-title: Geochemistry, Geophysics, Geosystems – year: 1964 – volume: 116 issue: C9 year: 2011 article-title: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography publication-title: Journal of Geophysical Research: Oceans – volume: 68 start-page: 1059 issue: 2 year: 2021 end-page: 1072 article-title: Gravity field recovery from geodetic altimeter missions publication-title: Advances in Space Research – start-page: 1 year: 2015 end-page: 6 – volume: 114 issue: B1 year: 2009 article-title: Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate publication-title: Journal of Geophysical Research: Solid Earth – volume: 93 start-page: 10408 issue: B9 year: 1988 end-page: 10420 article-title: Global distribution of seamounts from Seasat profiles publication-title: Journal of Geophysical Research: Solid Earth – year: 2000 – volume: 47 issue: 11 year: 2020 article-title: Identifying characteristic and anomalous mantle from the complex relationship between abyssal hill roughness and spreading rates publication-title: Geophysical Research Letters – volume: 32 start-page: 36 issue: 1–2 year: 2010 end-page: 43 article-title: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo‐spreading rate, paleo‐ridge orientation, and sediment thickness publication-title: Ocean Modelling – volume: 23 start-page: 24 issue: 1 year: 2010 end-page: 33 article-title: The global seamount census. special issue on mountains in The sea publication-title: Oceanography – volume: 78 start-page: 645 issue: 11–12 year: 2005 end-page: 653 article-title: A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling publication-title: Journal of Geodesy – volume: 115 issue: B12 year: 2010 article-title: Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability publication-title: Journal of Geophysical Research: Solid Earth – volume: 55 start-page: 293 issue: 3 year: 1990 end-page: 305 article-title: Gridding with continuous curvature splines in tension publication-title: Geophysics – volume: 288 start-page: 1 issue: 1–4 year: 2011 end-page: 17 article-title: Morphology and sedimentary architecture of a modern volcaniclastic turbidite system: The Cilaos fan, offshore La Réunion Island publication-title: Marine Geology – volume: 277 start-page: 802 year: 1997 end-page: 805 article-title: Sizes and ages of seamounts using remote sensing: Implications for intraplate volcanism publication-title: Science – volume: 105 start-page: 16563 year: 2000 end-page: 16575 article-title: Relationship of the Central Indian Ridge segmentation with the evolution of the Rodrigues triple junction for the past 8 Ma publication-title: Journal of Geophysical Research – start-page: 139 year: 2004 end-page: 149 – year: 2020 – volume: 116 issue: B12 year: 2011 article-title: The tectonic fabric of the ocean basins publication-title: Journal of Geophysical Research: Solid Earth – volume: 106 start-page: 19431 issue: B9 year: 2001 end-page: 19441 article-title: Global distribution of seamounts inferred from gridded Geosat/ERS‐1 altimetry publication-title: Journal of Geophysical Research: Solid Earth – volume: 93 start-page: 13589 issue: B11 year: 1988 end-page: 13608 article-title: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second‐order statistics publication-title: Journal of Geophysical Research: Solid Earth – volume: 65 year: 1959 – ident: e_1_2_9_33_1 doi: 10.1126/science.276.5309.93 – ident: e_1_2_9_46_1 doi: 10.1029/94JB00988 – ident: e_1_2_9_54_1 doi: 10.1126/science.277.5327.802 – ident: e_1_2_9_5_1 doi: 10.1016/j.jmarsys.2005.09.016 – start-page: 1 volume-title: OCEANS 2015‐MTS/IEEE Washington year: 2015 ident: e_1_2_9_23_1 – volume-title: Multibeam bathymetry raw data (Kongsberg EM 122 entire dataset) of RV MARIA S. MERIAN during cruise MSM88/1 year: 2020 ident: e_1_2_9_8_1 – ident: e_1_2_9_40_1 doi: 10.1029/2020JB019735 – volume-title: Marine geology of the Pacific year: 1964 ident: e_1_2_9_30_1 – ident: e_1_2_9_59_1 doi: 10.1016/j.dsr.2011.02.004 – volume: 116 issue: 12 year: 2011 ident: e_1_2_9_28_1 article-title: The tectonic fabric of the ocean basins publication-title: Journal of Geophysical Research: Solid Earth – volume: 114 issue: 1 year: 2009 ident: e_1_2_9_37_1 article-title: Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate publication-title: Journal of Geophysical Research: Solid Earth – ident: e_1_2_9_43_1 doi: 10.1007/s00190-004-0430-1 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-246X.2011.05076.x – ident: e_1_2_9_45_1 doi: 10.1029/JB093iB04p02899 – ident: e_1_2_9_4_1 – start-page: 188 year: 1994 ident: e_1_2_9_6_1 – ident: e_1_2_9_31_1 doi: 10.1029/2000JB900098 – ident: e_1_2_9_35_1 doi: 10.1016/j.asr.2019.09.011 – ident: e_1_2_9_44_1 doi: 10.1016/0012-821X(88)90143-4 – volume: 116 issue: 9 year: 2011 ident: e_1_2_9_39_1 article-title: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography publication-title: Journal of Geophysical Research: Oceans – volume: 106 start-page: 345363 issue: 1126 year: 2001 ident: e_1_2_9_19_1 article-title: Lithospheric structure of a nascent spreading ridge inferred from gravity data: The western Gulf of Aden publication-title: Journal of Geophysical Research – ident: e_1_2_9_49_1 doi: 10.1029/2018GC008115 – volume-title: Multibeam bathymetry raw data (Kongsberg EM 122 entire dataset) of RV MARIA S. MERIAN during cruise MSM88/2 year: 2020 ident: e_1_2_9_58_1 – volume-title: The Southwest Indian ridge between 65°E and 68°E‐120m year: 2000 ident: e_1_2_9_38_1 – ident: e_1_2_9_9_1 doi: 10.1029/2003GL017676 – volume-title: Global distribution and morphology of seamounts, T45D‐0273, presented at Fall Meeting year: 2021 ident: e_1_2_9_11_1 – ident: e_1_2_9_29_1 doi: 10.3390/geosciences8020063 – ident: e_1_2_9_56_1 doi: 10.1029/2019GC008515 – ident: e_1_2_9_7_1 doi: 10.1029/JB093iB09p10408 – ident: e_1_2_9_27_1 doi: 10.1121/1.1908482 – ident: e_1_2_9_55_1 doi: 10.1029/2000JB000083 – ident: e_1_2_9_20_1 doi: 10.1130/SPE65-p1 – ident: e_1_2_9_42_1 doi: 10.1016/j.margeo.2011.06.011 – ident: e_1_2_9_48_1 doi: 10.5670/oceanog.2010.85 – volume-title: Bathymetry around Saint‐Paul and Amsterdam islands/data compilation 2020 year: 2020 ident: e_1_2_9_26_1 – ident: e_1_2_9_52_1 doi: 10.1029/2019EA000658 – ident: e_1_2_9_14_1 doi: 10.1029/2020GL088162 – ident: e_1_2_9_36_1 doi: 10.1126/science.1258213 – volume-title: Bathymetry of the French Guiana margin and Demerara plateau/data compilation year: 2019 ident: e_1_2_9_25_1 – volume: 115 issue: 12 year: 2010 ident: e_1_2_9_13_1 article-title: Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability publication-title: Journal of Geophysical Research: Solid Earth – ident: e_1_2_9_32_1 doi: 10.1111/j.1365-246X.1973.tb06513.x – volume: 113 issue: 5 year: 2008 ident: e_1_2_9_3_1 article-title: Global estimates of seafloor slope from single‐beam ship soundings publication-title: Journal of Geophysical Research: Oceans – ident: e_1_2_9_21_1 doi: 10.1029/2000GL012044 – ident: e_1_2_9_12_1 doi: 10.1029/1999GL007003 – ident: e_1_2_9_15_1 doi: 10.1016/j.ocemod.2009.10.001 – ident: e_1_2_9_53_1 doi: 10.1029/2005JB004083 – volume-title: Bathymetry ‐ Kerguelen Islands (synthesis, 2019) cell size 200 m year: 2019 ident: e_1_2_9_24_1 – ident: e_1_2_9_51_1 doi: 10.1016/j.ocemod.2017.02.005 – ident: e_1_2_9_47_1 doi: 10.1190/1.1442837 – ident: e_1_2_9_18_1 doi: 10.1007/s11001-006-8181-4 – volume-title: The GEBCO_2020 Grid ‐ a continuous terrain model of the global oceans and land year: 2020 ident: e_1_2_9_10_1 – ident: e_1_2_9_17_1 doi: 10.1029/GL016i001p00045 – start-page: 139 volume-title: Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling year: 2004 ident: e_1_2_9_2_1 – ident: e_1_2_9_16_1 doi: 10.1029/JB093iB11p13589 – ident: e_1_2_9_57_1 doi: 10.5670/oceanog.2010.60 – ident: e_1_2_9_34_1 – ident: e_1_2_9_50_1 – ident: e_1_2_9_41_1 doi: 10.1029/2020GC009214 |
| SSID | ssj0001256024 |
| Score | 2.4168205 |
| Snippet | To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite... To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite... Abstract To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Abyssal hills Bathymetry global bathymetry Gravity Hills Ocean circulation Ocean floor Seamounts Sediments Ships uncharted seamounts |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iiF7EJ1ar7EG9lMVskn3EWyutxUMRbKGelsljT7WW2iL992ay29KCj4u3ZXdgh5kk800y-YaQa5OlwsFUGlJjVShiG4UyjVXoYpOMpMEQ6wtke0l3IJ6G8XCt1RfWhJX0wKXh7gS3EGsuBLhEhMlUAiRaWg0ckoJmGldfmsm1ZKrcXXGRnImq0p0yiUl-1G4iOsLa5rUY5Kn6N_Dl7nw8gcUnjEabiNWHnM4B2a-wYtAsdTwkW3Z8RHYefS_exTFplxsC1gQtB-MWb9gbSwfPUzx6QXMHvhwgKOXRF0F19wg_3gcvr71Ws989IYNOu__QDauuCCEIztPQgpUiKXQGIgHmnoqUMaUdLImURnIXwanOGHBppXK2Y9IapVzyGRu3mJiIn5Lt8fvYnpGAiohaJU0sGRWKCkgzEwuTgREKTJHUSGNpp1xXlOHYuWKU-6NrJvN1q9bIzUp6UlJl_CDXQpOvZJDg2r9wbs8rt-d_ub1G6kuH5dWs-8iRe95ZJOXuH7crJ36rjIWlMg3v4V81zt1cYMi1d_4fql-QPYZ3KHzpd51sz6Zze-mQzUxd-UH8BQDb7qg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aIp58ixWVPagX2bKbZB_x1kpr8VAKWrCnZfJYD9ZaaovUX2-SzZZWVARvy26ymWRmki-vbxA6l2lCNUwN_EAq7tNIhT5LIu7rsYmFTJoh1h6Q7cadPr17jB6X7sIU_BCLBTfjGba_Ng4-lnnRzzvKAWZm7mGrYSBPzNZRNY40Hq-gar_bawxsVDlCdKkpdSfeyywKiiwrY5Gl7F_BmZuz0Rjm7zAcriJXO_S0t5EohS5OnDzXZ1NeFx9f-Bz_V6sdtOWQqdcoTGkXranRHtq4tZF_5_uoVSw_KOk1NWicv5hIXMLrTcxGj1GuZw8feEV6o3nP3XQyH6-9-0G32XjoHKB-u_Vw0_FdDAYfKCGJr0AxGuciBRoD1k95gjEXGgSFXBgqGUoCkWIgTDGuIMJMSc71VDeSuuuSITlEldHrSB0hL6BhoDiTEcMB5QGFJJURlSlIykHmcQ1dldrIhCMoN3EyhpndKMcsW26YGrpYpB4XxBw_pGsaxS7SGDpt--J18pQ578wo0aILQino2S5mCQOIBVMCCMR5kIoaOinNInM-_pYZpnvdIgnRZVwuTOVbYUqD01W0yv9V4kx7HjbMfsd__e0JqkwnM3Wq4dGUnzn7_wR8BAhA priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA4-WPQiuuvirA_64HqRxu6k-pG9zcjo4EEEFfTUVB6zl3GUUZH591uVzgwzsLvgreku0qEqlfpSSb4S4tjVFRBMzdLMeZNC4fNUV4VJKTbpXDsOseGA7HU5uIerh-IhJtz4LkzLDzFPuLFnhPmaHRzNayQbYI5MWrXn_S7DnVKvivWcoAyPcAk3CzkWiuehrq1UStH_a4hn36mJs8UGlqJSIO9fQpwb7-MXnH7gaLSMYUMQutgWWxE9Jt3W3DtixY-_ii-XoTrv9JvotykC75IeAbvpE1fLssnNhDdj2ABJOCCQtPJsnSTeRuKPv5Lbx-te926wK-4v-nfngzTWSUgRlKpSj15DObQ1QomSnoaVlMYSUMmNZboXUJmtJSrttfFYSO2dMbQcLRxNLy5X38Xa-Hns90SSQZ55o12hZQYmA6xqV4Cr0YFBNyw74nSmp8ZGEnGuZTFqwma21M2iVjvi51z6pSXP-Idcj1U-l2HK6_DiefK7iR7UgKKuWwWAtCKVutKIpdXeosJymNW2Iw5mBmuiH742zEZPGqkU_eNkbsS_dsbjrDOnwcL_7XFD3iGZfe_Hp6T3xabk6xPh1PeBWHubvPtDAjVv5iiM3D98iOec priority: 102 providerName: Wiley-Blackwell |
| Title | Improved Bathymetric Prediction Using Geological Information: SYNBATH |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EA002069 https://www.proquest.com/docview/2632246739 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021EA002069 https://doaj.org/article/43ea5c344a0942979aa6c9eca3a6f08c |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate | Ebsco customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: ABDBF dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: AVUZU dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61qRBcEE-RUqI9AJdqhdf2PoyEUIJSIg6rCBqpPa3Gj-0lJCFthfLv8TjekErQ4-6OtKMZj-ezPf4G4K2tSulhKkuZdTqVuctSVeY69blJZcpSig0FsnUxmclvF_nFAdTdXRgqq-zmxDBR26WhPfIPxCvOfVQL9Xn1K6WuUXS62rXQwNhawX4KFGOHcMSJGasHR6NxPf2-t-viMzyXsQKecUWL_2w8JNRENc97uSlQ-N_BnQ9vFyvc_Mb5_C6SDano7Ak8jhgyGW6d_hQO3OIZPPgaevRunsN4u1HgbDLy8G7zk3pmmWS6piMZckMSygSSrTz5KIl3kujjx-THZT0ank9ewOxsfP5lksZuCSlKIcrUoVOyaE2FskBvqbYtOdfGw5VMGyJ9kYKZiqNQTmmHOVfOau0Xpbn1k4zNxEvoLZYL9woSJjPmtLK54kxqJrGsbC5thVZqtG3Rh9POTo2JVOLU0WLehCNtrpp9q_bh3U56taXQ-I_ciEy-kyHi6_Biub5qYhw1UnjVjZAS_bqUq1IhFkY5gwKLllWmDyedw5oYjdfN37HTh_c7J_5TGYedMqfBw_dq3PgY4cTBd3z_X1_DI063JkKx9wn0bta37o3HMjd6AIdcTgdxmA7CjoB_mtXT4eUfukrvsw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFRSofZS8VRDC-yBcqlWeG3vw0gVSiAlpSWqIJXKyfi1XEIS0lZVfo5vw-N4QypBb73ujtaz8_CMx_MAeGWrkns3laTEOp3y3GWpKHOdetskMmHRxIYE2UHRP-OfzvPzNfjd1MJgWmWzJ4aN2k4MxsjfYF9x6rWaiXfTXylOjcLb1WaEhoqjFexBaDEWCzuO3fzaH-EuDo4-eH7vUXrYG77vp3HKQKo4Y2XqlBO8qE2leKH8CnVdUqqNN_OZNtgshTNiKqqYcEI7lVPhrNb-MJdbr5w2Y_6792CdM__PLVjv9ganX1aiPN6joDxm3BMqMNiQ9TropWGO9YotDCMDbvi5G1fjqZpfq9HopuccTN_hA9iKPmvSWQjZQ1hz40dw_2OYCTx_DL1FYMLZpOvdyflPnNFlktMZXgEh25OQlpAs4FEmklgDhS_fJl-_DbqdYf8JnN0J3Z5CazwZu21ICM-I08LmghKuCVdlZXNuK2W5VrYu2rDf0Ema2LocJ2iMZLhCp0KuUrUNe0vo6aJlx3_gukjyJQw22g4PJrMfMuqt5Myjbhjnyp-DqSiFUoURziimippUpg27DcNk1P4L-VdW2_B6ycR_IuNUg8x-4PCtGEuvkxR7_j27fdWXsNEffj6RJ0eD4x3YpFixERLNd6F1Obtyz70fdalfRGFN4Ptd68cffEEo5g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bThNB9AQhKi_GG6GIOg_iC9kwOzN7GRNiWmktYppGIcGndW7rS21rgZD-ol_lnOlsLYnyxuvuZPfk3OdcAd7YshDeTaUJtU4nInNpIotMJ942yVRaNLGhQHaQ98_Ep_PsfA1-N70wWFbZ6MSgqO3EYIz8AOeKMy_VXB7UsSxieNR7P_2V4AYpzLQ26zRUXLNgD8O4sdjkceLm1_46d3F4fORpv8dYr3v6oZ_EjQOJEpwXiVNOirw2pRK58n-r64IxbbzJT7XBwSmCU1MyxaWT2qmMSWe19he7zHpBtSn3370HG5j88kpio9MdDL-sRHy8d8FErL6nTGLgIe220WPDeusVuxjWB9zweR9ejadqfq1Go5tedDCDvcfwKPqvpL1guCew5sZP4f7HsB94_gy6iyCFs6TjXcv5T9zXZchwhukgZAESShTI4jzyB4n9UPjyHfn6bdBpn_afw9md4G0L1seTsdsGQkVKnZY2k4wKTYUqSpsJWyortLJ13oL9Bk-ViWPMcZvGqArpdCarVay2YG95eroY3_Gfcx1E-fIMDt0ODyazH1WU4UpwD7rhQih_J2aykErlRjqjuMprWpoW7DYEq6ImuKj-8m0L3i6J-E9gnGqA2Q8UvhXiyssnw_l_O7f_9TU88HJSfT4enLyATYbNG6HmfBfWL2dX7qV3qS71q8irBL7ftXj8AXQ8LRU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aIp58ixWVPagX2bKbZB_x1kpr8VAKWrCnZfJYD9ZaaovUX2-SzZZWVARvy26ymWRmki-vbxA6l2lCNUwN_EAq7tNIhT5LIu7rsYmFTJoh1h6Q7cadPr17jB6X7sIU_BCLBTfjGba_Ng4-lnnRzzvKAWZm7mGrYSBPzNZRNY40Hq-gar_bawxsVDlCdKkpdSfeyywKiiwrY5Gl7F_BmZuz0Rjm7zAcriJXO_S0t5EohS5OnDzXZ1NeFx9f-Bz_V6sdtOWQqdcoTGkXranRHtq4tZF_5_uoVSw_KOk1NWicv5hIXMLrTcxGj1GuZw8feEV6o3nP3XQyH6-9-0G32XjoHKB-u_Vw0_FdDAYfKCGJr0AxGuciBRoD1k95gjEXGgSFXBgqGUoCkWIgTDGuIMJMSc71VDeSuuuSITlEldHrSB0hL6BhoDiTEcMB5QGFJJURlSlIykHmcQ1dldrIhCMoN3EyhpndKMcsW26YGrpYpB4XxBw_pGsaxS7SGDpt--J18pQ578wo0aILQino2S5mCQOIBVMCCMR5kIoaOinNInM-_pYZpnvdIgnRZVwuTOVbYUqD01W0yv9V4kx7HjbMfsd__e0JqkwnM3Wq4dGUnzn7_wR8BAhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Bathymetric+Prediction+Using+Geological+Information%3A+SYNBATH&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Sandwell%2C+David+T.&rft.au=Goff%2C+John+A.&rft.au=Gevorgian%2C+Julie&rft.au=Harper%2C+Hugh&rft.date=2022-02-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1029%2F2021EA002069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021EA002069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon |