Improved Bathymetric Prediction Using Geological Information: SYNBATH

To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will n...

Full description

Saved in:
Bibliographic Details
Published inEarth and space science (Hoboken, N.J.) Vol. 9; no. 2
Main Authors Sandwell, David T., Goff, John A., Gevorgian, Julie, Harper, Hugh, Kim, Seung‐Sep, Yu, Yao, Tozer, Brook, Wessel, Paul, Smith, Walter H. F.
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.02.2022
American Geophysical Union (AGU)
Subjects
Online AccessGet full text
ISSN2333-5084
2333-5084
DOI10.1029/2021EA002069

Cover

Abstract To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape. Plain Language Summary The floor of the deep ocean remains as the last uncharted frontier in the inner solar system. The deep seawater (>1,000 m) prevent any type of exploration from conventional satellite remote sensing. Echosounders aboard large vessels have mapped about 20% of the seafloor, however, vast areas in the southern hemisphere will not be mapped in our lifetimes. The deep ocean floor has more than 90% of the active volcanoes; hydrothermal circulation of seawater through the crust of the seafloor spreading ridges replenishes the nutrients needed for life on Earth. This study is an effort to fill the large gaps in seafloor coverage by creating a synthetic abyssal hill fabric using geological information such as the age of the seafloor, the spreading rate and direction when it formed, and the thickness of the sediments covering the original topography. In addition, we use the latest satellite‐derived gravity to estimate the locations and shapes of about 20,000 uncharted seamounts. The combination of mapped (20%) and synthetic (80%) topography is useful for modeling ocean circulation and ocean tides although it may give a false impression that 100% of the seafloor has been mapped. Key Points ∼20% of the ocean floor topography has been surveyed by ships, the remaining 80% is predicted by satellite altimetry We increased the resolution of the predicted depth using spectral properties of abyssal hills and the characteristic shapes of seamounts We estimate the height and radius of 19,000 uncharted seamounts
AbstractList To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape. The floor of the deep ocean remains as the last uncharted frontier in the inner solar system. The deep seawater (>1,000 m) prevent any type of exploration from conventional satellite remote sensing. Echosounders aboard large vessels have mapped about 20% of the seafloor, however, vast areas in the southern hemisphere will not be mapped in our lifetimes. The deep ocean floor has more than 90% of the active volcanoes; hydrothermal circulation of seawater through the crust of the seafloor spreading ridges replenishes the nutrients needed for life on Earth. This study is an effort to fill the large gaps in seafloor coverage by creating a synthetic abyssal hill fabric using geological information such as the age of the seafloor, the spreading rate and direction when it formed, and the thickness of the sediments covering the original topography. In addition, we use the latest satellite‐derived gravity to estimate the locations and shapes of about 20,000 uncharted seamounts. The combination of mapped (20%) and synthetic (80%) topography is useful for modeling ocean circulation and ocean tides although it may give a false impression that 100% of the seafloor has been mapped. ∼20% of the ocean floor topography has been surveyed by ships, the remaining 80% is predicted by satellite altimetry We increased the resolution of the predicted depth using spectral properties of abyssal hills and the characteristic shapes of seamounts We estimate the height and radius of 19,000 uncharted seamounts
To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape. Plain Language Summary The floor of the deep ocean remains as the last uncharted frontier in the inner solar system. The deep seawater (>1,000 m) prevent any type of exploration from conventional satellite remote sensing. Echosounders aboard large vessels have mapped about 20% of the seafloor, however, vast areas in the southern hemisphere will not be mapped in our lifetimes. The deep ocean floor has more than 90% of the active volcanoes; hydrothermal circulation of seawater through the crust of the seafloor spreading ridges replenishes the nutrients needed for life on Earth. This study is an effort to fill the large gaps in seafloor coverage by creating a synthetic abyssal hill fabric using geological information such as the age of the seafloor, the spreading rate and direction when it formed, and the thickness of the sediments covering the original topography. In addition, we use the latest satellite‐derived gravity to estimate the locations and shapes of about 20,000 uncharted seamounts. The combination of mapped (20%) and synthetic (80%) topography is useful for modeling ocean circulation and ocean tides although it may give a false impression that 100% of the seafloor has been mapped. Key Points ∼20% of the ocean floor topography has been surveyed by ships, the remaining 80% is predicted by satellite altimetry We increased the resolution of the predicted depth using spectral properties of abyssal hills and the characteristic shapes of seamounts We estimate the height and radius of 19,000 uncharted seamounts
To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape.
Abstract To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite altimeter‐derived gravity measurements at a relatively low resolution. There are many remote ocean areas in the southern hemisphere that will not be completely mapped at 400 m resolution during this decade. This study is focused on the development of synthetic bathymetry to fill the gaps. There are two types of seafloor features that are not typically well resolved by satellite gravity; abyssal hills and small seamounts (<2.5 km tall). We generate synthetic realizations of abyssal hills by combining the measured statistical properties of mapped abyssal hills with regional geology including fossil spreading rate/orientation, rms height from satellite gravity, and sediment thickness. With recent improvements in accuracy and resolution, it is now possible to detect all seamounts taller than about 800 m in satellite‐derived gravity and their location can be determined to an accuracy of better than 1 km. However, the width of the gravity anomaly is much greater than the actual width of the seamount so the seamount predicted from gravity will underestimate the true seamount height and overestimate its base dimension. In this study, we use the amplitude of the vertical gravity gradient (VGG) to estimate the mass of the seamount and then use their characteristic shape, based on well‐surveyed seamounts, to replace the smooth‐predicted seamount with a seamount having a more realistic shape.
Author Sandwell, David T.
Smith, Walter H. F.
Tozer, Brook
Gevorgian, Julie
Yu, Yao
Wessel, Paul
Kim, Seung‐Sep
Harper, Hugh
Goff, John A.
Author_xml – sequence: 1
  givenname: David T.
  orcidid: 0000-0001-5657-8707
  surname: Sandwell
  fullname: Sandwell, David T.
  email: dsandwell@ucsd.edu
  organization: University of California San Diego
– sequence: 2
  givenname: John A.
  orcidid: 0000-0001-9246-5048
  surname: Goff
  fullname: Goff, John A.
  organization: University of Texas at Austin
– sequence: 3
  givenname: Julie
  surname: Gevorgian
  fullname: Gevorgian, Julie
  organization: University of California San Diego
– sequence: 4
  givenname: Hugh
  orcidid: 0000-0003-1624-9751
  surname: Harper
  fullname: Harper, Hugh
  organization: University of California San Diego
– sequence: 5
  givenname: Seung‐Sep
  orcidid: 0000-0001-8963-1332
  surname: Kim
  fullname: Kim, Seung‐Sep
  organization: Chungnam National University
– sequence: 6
  givenname: Yao
  surname: Yu
  fullname: Yu, Yao
  organization: University of California San Diego
– sequence: 7
  givenname: Brook
  surname: Tozer
  fullname: Tozer, Brook
  organization: GNS Science
– sequence: 8
  givenname: Paul
  orcidid: 0000-0001-5708-7336
  surname: Wessel
  fullname: Wessel, Paul
  organization: University of Hawaii at Manoa
– sequence: 9
  givenname: Walter H. F.
  orcidid: 0000-0002-8814-015X
  surname: Smith
  fullname: Smith, Walter H. F.
  organization: NOAA
BookMark eNqFkU1P3DAQhq0KpFLg1h8QiWsD9tj5cG8L2sJKqCAtHDhZE2eyeJWNt062aP89XkKrqkJw8sh-_Izn9Re21_mOGPsq-KngoM-Ag5hOOAee60_sAKSUacZLtfdP_Zkd9_2Scy4gyzmoAzadrdbB_6Y6OcfhcbuiITib3AaqnR2c75L73nWL5JJ86xfOYpvMusaHFe4Ovyfzh5_nk7urI7bfYNvT8et6yO5_TO8urtLrm8vZxeQ6RSVlkRKSVnljS1Q5QqyaAqCyItOishmXpZLcloBSk64IM9BUVxUUKqtlkddCHrLZ6K09Ls06uBWGrfHozMuGDwuDYXC2JaNkFFipFHKtQBcaMbeaLErMG17a6EpH16Zb4_YJ2_avUHCzi9TsIiUcI438ycjHvH5tqB_M0m9CF8c1kEuI4xRyR30bKRt83wdq3pT--aeIw3-4dcNLtkNA135w6cm1tH23gZnO5yB4fNozkGKhWw
CitedBy_id crossref_primary_10_1038_s43247_024_01480_x
crossref_primary_10_1080_17538947_2024_2430679
crossref_primary_10_1038_s41597_022_01366_7
crossref_primary_10_5194_essd_17_165_2025
crossref_primary_10_1029_2023GL102801
crossref_primary_10_1029_2023MS003806
crossref_primary_10_1126_science_ads4472
crossref_primary_10_3390_rs16010166
crossref_primary_10_3389_fmars_2023_1259262
crossref_primary_10_1080_17538947_2024_2393255
crossref_primary_10_1080_01490419_2023_2179140
crossref_primary_10_1080_01490419_2024_2401332
crossref_primary_10_1109_LGRS_2023_3302992
crossref_primary_10_1016_j_pocean_2022_102824
crossref_primary_10_1029_2022EA002331
crossref_primary_10_3390_rs16173154
crossref_primary_10_1029_2024JH000205
crossref_primary_10_1038_s43017_025_00647_0
crossref_primary_10_1093_gji_ggaf075
crossref_primary_10_3390_s23125445
crossref_primary_10_1016_j_geog_2023_12_006
crossref_primary_10_1016_j_pce_2022_103341
crossref_primary_10_3390_rs16142656
crossref_primary_10_3389_fmars_2023_1266364
crossref_primary_10_1007_s13131_023_2203_9
crossref_primary_10_1016_j_engappai_2024_109567
crossref_primary_10_3390_jmse13030507
crossref_primary_10_1016_j_heliyon_2024_e26644
crossref_primary_10_1093_gji_ggae138
crossref_primary_10_1016_j_jsames_2023_104435
crossref_primary_10_1038_s43247_023_00928_w
crossref_primary_10_1111_tgis_13178
crossref_primary_10_1029_2022JB025692
Cites_doi 10.1126/science.276.5309.93
10.1029/94JB00988
10.1126/science.277.5327.802
10.1016/j.jmarsys.2005.09.016
10.1029/2020JB019735
10.1016/j.dsr.2011.02.004
10.1007/s00190-004-0430-1
10.1111/j.1365-246X.2011.05076.x
10.1029/JB093iB04p02899
10.1029/2000JB900098
10.1016/j.asr.2019.09.011
10.1016/0012-821X(88)90143-4
10.1029/2018GC008115
10.1029/2003GL017676
10.3390/geosciences8020063
10.1029/2019GC008515
10.1029/JB093iB09p10408
10.1121/1.1908482
10.1029/2000JB000083
10.1130/SPE65-p1
10.1016/j.margeo.2011.06.011
10.5670/oceanog.2010.85
10.1029/2019EA000658
10.1029/2020GL088162
10.1126/science.1258213
10.1111/j.1365-246X.1973.tb06513.x
10.1029/2000GL012044
10.1029/1999GL007003
10.1016/j.ocemod.2009.10.001
10.1029/2005JB004083
10.1016/j.ocemod.2017.02.005
10.1190/1.1442837
10.1007/s11001-006-8181-4
10.1029/GL016i001p00045
10.1029/JB093iB11p13589
10.5670/oceanog.2010.60
10.1029/2020GC009214
ContentType Journal Article
Copyright 2022 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1029/2021EA002069
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (New)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_43ea5c344a0942979aa6c9eca3a6f08c
10.1029/2021ea002069
10_1029_2021EA002069
ESS21067
Genre article
GrantInformation_xml – fundername: DOD | US Navy | Office of Naval Research (ONR)
  funderid: N00014‐17‐1‐2866
– fundername: Nippon Foundation
  funderid: SeaBed2030
– fundername: NASA SWOT
  funderid: NNX16AH64 G, 80NSSC20K1138
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KQ8
M~E
O9-
OK1
PCBAR
PIMPY
WIN
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IEP
PHGZM
PHGZT
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-a4337-eae946fc8a46a246ff722bc1591bc5038430c82a39e9bea529edbb2745d376d13
IEDL.DBID BENPR
ISSN 2333-5084
IngestDate Tue Oct 14 18:01:49 EDT 2025
Sun Oct 26 02:00:49 EDT 2025
Mon Jul 14 07:22:45 EDT 2025
Wed Oct 01 01:52:12 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Wed Jan 22 16:27:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4337-eae946fc8a46a246ff722bc1591bc5038430c82a39e9bea529edbb2745d376d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5657-8707
0000-0001-5708-7336
0000-0001-8963-1332
0000-0002-8814-015X
0000-0003-1624-9751
0000-0001-9246-5048
OpenAccessLink https://www.proquest.com/docview/2632246739?pq-origsite=%requestingapplication%&accountid=15518
PQID 2632246739
PQPubID 4368366
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_43ea5c344a0942979aa6c9eca3a6f08c
unpaywall_primary_10_1029_2021ea002069
proquest_journals_2632246739
crossref_primary_10_1029_2021EA002069
crossref_citationtrail_10_1029_2021EA002069
wiley_primary_10_1029_2021EA002069_ESS21067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2011; 116
2021; 68
2010; 32
1990; 55
2000; 27
1973; 31
2019; 6
1997; 276
1997; 277
2008
1994; 2234
1988; 94
2004
2001; 28
2020; 125
2011; 58
1961; 33
1988; 90
2017; 112
1988; 93
2003; 30
1959; 65
2009; 114
2006; 111
2001; 106
2010; 23
2018; 8
2019; 20
2000
2021
2020
2019b
2000; 105
2006; 27
2019a
2010; 115
1964
1994; 99
2020; 47
2015
2008; 113
2020; 21
2007; 65
1989; 16
2011; 288
2014; 346
2005; 78
2011; 186
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
Scott R. B. (e_1_2_9_39_1) 2011; 116
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Loubrieu B. (e_1_2_9_26_1) 2020
GEBCO Bathymetric Compilation Group (e_1_2_9_10_1) 2020
Menard H. W. (e_1_2_9_30_1) 1964
Sauter D. (e_1_2_9_38_1) 2000
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
Loubrieu B. (e_1_2_9_25_1) 2019
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_4_1
e_1_2_9_49_1
Gevorgian J. (e_1_2_9_11_1) 2021
e_1_2_9_47_1
Adcroft A. (e_1_2_9_2_1) 2004
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
e_1_2_9_55_1
Goff J. A. (e_1_2_9_13_1) 2010; 115
Chin‐Bing S. A. (e_1_2_9_6_1) 1994
e_1_2_9_15_1
e_1_2_9_17_1
Matthews K. J. (e_1_2_9_28_1) 2011; 116
e_1_2_9_36_1
e_1_2_9_59_1
Wölfl A.‐C. (e_1_2_9_58_1) 2020
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
Becker J. J. (e_1_2_9_3_1) 2008; 113
Hébert H. (e_1_2_9_19_1) 2001; 106
Loubrieu B. (e_1_2_9_24_1) 2019
e_1_2_9_5_1
Devey (e_1_2_9_8_1) 2020
Sandwell D. T. (e_1_2_9_37_1) 2009; 114
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Kim S. S. (e_1_2_9_23_1) 2015
References_xml – volume: 113
  issue: C5
  year: 2008
  article-title: Global estimates of seafloor slope from single‐beam ship soundings
  publication-title: Journal of Geophysical Research: Oceans
– volume: 276
  start-page: 93
  issue: 5309
  year: 1997
  end-page: 96
  article-title: Spatial variability of turbulent mixing in the abyssal ocean
  publication-title: Science
– volume: 6
  start-page: 1847
  issue: 10
  year: 2019
  end-page: 1864
  article-title: Global bathymetry and topography at 15 arc sec: SRTM15+
  publication-title: Earth and Space Science
– volume: 186
  start-page: 615
  year: 2011
  end-page: 631
  article-title: New global seamount census from altimetry‐derived gravity data
  publication-title: Geophysical Journal International
– volume: 346
  start-page: 65
  issue: 6205
  year: 2014
  end-page: 67
  article-title: New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure
  publication-title: Science
– volume: 30
  issue: 17
  year: 2003
  article-title: Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry
  publication-title: Geophysical Research Letters
– volume: 90
  start-page: 457
  year: 1988
  end-page: 466
  article-title: Shape analysis of Pacific seamounts
  publication-title: Earth and Planetary Science Letters
– year: 2021
– volume: 99
  start-page: 21803
  issue: B11
  year: 1994
  end-page: 21824
  article-title: Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 27
  start-page: 1
  issue: 1
  year: 2006
  end-page: 5
  article-title: GEBCO centennial special issue–charting the secret world of the ocean floor: The GEBCO project 1903–2003
  publication-title: Marine Geophysical Researches
– volume: 8
  issue: 2
  year: 2018
  article-title: The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030
  publication-title: Geosciences
– volume: 112
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models
  publication-title: Ocean Modelling
– volume: 111
  issue: B8
  year: 2006
  article-title: Global gravity, bathymetry, and the distribution of submarine volcanism through space and time
  publication-title: Journal of Geophysical Research
– year: 2019a
– volume: 16
  start-page: 45
  issue: 1
  year: 1989
  end-page: 48
  article-title: Stochastic modeling of seafloor morphology: A parameterized Gaussian model
  publication-title: Geophysical Research Letters
– volume: 106
  start-page: 345363
  issue: B1126
  year: 2001
  end-page: 345426
  article-title: Lithospheric structure of a nascent spreading ridge inferred from gravity data: The western Gulf of Aden
  publication-title: Journal of Geophysical Research
– volume: 33
  start-page: 1498
  issue: 11
  year: 1961
  end-page: 1504
  article-title: Bottom reverberation for 530‐and 1030‐cps sound in deep water
  publication-title: Journal of the Acoustical Society of America
– volume: 125
  issue: 9
  year: 2020
  article-title: Modeling uncertainties of bathymetry predicted with satellite altimetry data and application to tsunami hazard assessments
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 27
  start-page: 1251
  issue: 9
  year: 2000
  end-page: 1254
  article-title: Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry
  publication-title: Geophysical Research Letters
– volume: 94
  start-page: 2899
  issue: B4
  year: 1988
  end-page: 2918
  article-title: Seamount statistics in the Pacific ocean
  publication-title: Journal of Geophysical Research
– volume: 20
  start-page: 5556
  issue: 11
  year: 2019
  end-page: 5564
  article-title: The generic mapping tools version 6
  publication-title: Geochemistry, Geophysics, Geosystems
– year: 2008
– volume: 23
  start-page: 20
  issue: No 1
  year: 2010
  end-page: 21
  article-title: Defining the word “seamount”
  publication-title: Oceanography
– volume: 20
  start-page: 1756
  issue: 4
  year: 2019
  end-page: 1772
  article-title: GlobSed: Updated total sediment thickness in the world's oceans
  publication-title: Geochemistry, Geophysics, Geosystems
– year: 2019b
– volume: 65
  start-page: 60
  issue: 1–4
  year: 2007
  end-page: 83
  article-title: The HYCOM (hybrid coordinate ocean model) data assimilative system
  publication-title: Journal of Marine Systems
– volume: 2234
  start-page: 188
  year: 1994
  end-page: 194
  article-title: Long‐range cw and time‐domain simulations of ocean acoustic scatter from Mid‐Atlantic Ridge corners
– volume: 58
  start-page: 442
  issue: 4
  year: 2011
  end-page: 453
  article-title: The global distribution of seamounts based on 30 arc seconds bathymetry data
  publication-title: Deep Sea Research Part I: Oceanographic Research Papers
– volume: 31
  start-page: 447
  issue: 4
  year: 1973
  end-page: 455
  article-title: The rapid calculation of potential anomalies
  publication-title: Geophysical Journal International
– volume: 28
  start-page: 811
  issue: 5
  year: 2001
  end-page: 814
  article-title: Parameterizing tidal dissipation over rough topography
  publication-title: Geophysical Research Letters
– volume: 21
  issue: 10
  year: 2020
  article-title: A global data set of present‐day oceanic crustal age and seafloor spreading parameters
  publication-title: Geochemistry, Geophysics, Geosystems
– year: 1964
– volume: 116
  issue: C9
  year: 2011
  article-title: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography
  publication-title: Journal of Geophysical Research: Oceans
– volume: 68
  start-page: 1059
  issue: 2
  year: 2021
  end-page: 1072
  article-title: Gravity field recovery from geodetic altimeter missions
  publication-title: Advances in Space Research
– start-page: 1
  year: 2015
  end-page: 6
– volume: 114
  issue: B1
  year: 2009
  article-title: Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 93
  start-page: 10408
  issue: B9
  year: 1988
  end-page: 10420
  article-title: Global distribution of seamounts from Seasat profiles
  publication-title: Journal of Geophysical Research: Solid Earth
– year: 2000
– volume: 47
  issue: 11
  year: 2020
  article-title: Identifying characteristic and anomalous mantle from the complex relationship between abyssal hill roughness and spreading rates
  publication-title: Geophysical Research Letters
– volume: 32
  start-page: 36
  issue: 1–2
  year: 2010
  end-page: 43
  article-title: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo‐spreading rate, paleo‐ridge orientation, and sediment thickness
  publication-title: Ocean Modelling
– volume: 23
  start-page: 24
  issue: 1
  year: 2010
  end-page: 33
  article-title: The global seamount census. special issue on mountains in The sea
  publication-title: Oceanography
– volume: 78
  start-page: 645
  issue: 11–12
  year: 2005
  end-page: 653
  article-title: A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling
  publication-title: Journal of Geodesy
– volume: 115
  issue: B12
  year: 2010
  article-title: Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 55
  start-page: 293
  issue: 3
  year: 1990
  end-page: 305
  article-title: Gridding with continuous curvature splines in tension
  publication-title: Geophysics
– volume: 288
  start-page: 1
  issue: 1–4
  year: 2011
  end-page: 17
  article-title: Morphology and sedimentary architecture of a modern volcaniclastic turbidite system: The Cilaos fan, offshore La Réunion Island
  publication-title: Marine Geology
– volume: 277
  start-page: 802
  year: 1997
  end-page: 805
  article-title: Sizes and ages of seamounts using remote sensing: Implications for intraplate volcanism
  publication-title: Science
– volume: 105
  start-page: 16563
  year: 2000
  end-page: 16575
  article-title: Relationship of the Central Indian Ridge segmentation with the evolution of the Rodrigues triple junction for the past 8 Ma
  publication-title: Journal of Geophysical Research
– start-page: 139
  year: 2004
  end-page: 149
– year: 2020
– volume: 116
  issue: B12
  year: 2011
  article-title: The tectonic fabric of the ocean basins
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 106
  start-page: 19431
  issue: B9
  year: 2001
  end-page: 19441
  article-title: Global distribution of seamounts inferred from gridded Geosat/ERS‐1 altimetry
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 93
  start-page: 13589
  issue: B11
  year: 1988
  end-page: 13608
  article-title: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second‐order statistics
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 65
  year: 1959
– ident: e_1_2_9_33_1
  doi: 10.1126/science.276.5309.93
– ident: e_1_2_9_46_1
  doi: 10.1029/94JB00988
– ident: e_1_2_9_54_1
  doi: 10.1126/science.277.5327.802
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jmarsys.2005.09.016
– start-page: 1
  volume-title: OCEANS 2015‐MTS/IEEE Washington
  year: 2015
  ident: e_1_2_9_23_1
– volume-title: Multibeam bathymetry raw data (Kongsberg EM 122 entire dataset) of RV MARIA S. MERIAN during cruise MSM88/1
  year: 2020
  ident: e_1_2_9_8_1
– ident: e_1_2_9_40_1
  doi: 10.1029/2020JB019735
– volume-title: Marine geology of the Pacific
  year: 1964
  ident: e_1_2_9_30_1
– ident: e_1_2_9_59_1
  doi: 10.1016/j.dsr.2011.02.004
– volume: 116
  issue: 12
  year: 2011
  ident: e_1_2_9_28_1
  article-title: The tectonic fabric of the ocean basins
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 114
  issue: 1
  year: 2009
  ident: e_1_2_9_37_1
  article-title: Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate
  publication-title: Journal of Geophysical Research: Solid Earth
– ident: e_1_2_9_43_1
  doi: 10.1007/s00190-004-0430-1
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-246X.2011.05076.x
– ident: e_1_2_9_45_1
  doi: 10.1029/JB093iB04p02899
– ident: e_1_2_9_4_1
– start-page: 188
  year: 1994
  ident: e_1_2_9_6_1
– ident: e_1_2_9_31_1
  doi: 10.1029/2000JB900098
– ident: e_1_2_9_35_1
  doi: 10.1016/j.asr.2019.09.011
– ident: e_1_2_9_44_1
  doi: 10.1016/0012-821X(88)90143-4
– volume: 116
  issue: 9
  year: 2011
  ident: e_1_2_9_39_1
  article-title: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography
  publication-title: Journal of Geophysical Research: Oceans
– volume: 106
  start-page: 345363
  issue: 1126
  year: 2001
  ident: e_1_2_9_19_1
  article-title: Lithospheric structure of a nascent spreading ridge inferred from gravity data: The western Gulf of Aden
  publication-title: Journal of Geophysical Research
– ident: e_1_2_9_49_1
  doi: 10.1029/2018GC008115
– volume-title: Multibeam bathymetry raw data (Kongsberg EM 122 entire dataset) of RV MARIA S. MERIAN during cruise MSM88/2
  year: 2020
  ident: e_1_2_9_58_1
– volume-title: The Southwest Indian ridge between 65°E and 68°E‐120m
  year: 2000
  ident: e_1_2_9_38_1
– ident: e_1_2_9_9_1
  doi: 10.1029/2003GL017676
– volume-title: Global distribution and morphology of seamounts, T45D‐0273, presented at Fall Meeting
  year: 2021
  ident: e_1_2_9_11_1
– ident: e_1_2_9_29_1
  doi: 10.3390/geosciences8020063
– ident: e_1_2_9_56_1
  doi: 10.1029/2019GC008515
– ident: e_1_2_9_7_1
  doi: 10.1029/JB093iB09p10408
– ident: e_1_2_9_27_1
  doi: 10.1121/1.1908482
– ident: e_1_2_9_55_1
  doi: 10.1029/2000JB000083
– ident: e_1_2_9_20_1
  doi: 10.1130/SPE65-p1
– ident: e_1_2_9_42_1
  doi: 10.1016/j.margeo.2011.06.011
– ident: e_1_2_9_48_1
  doi: 10.5670/oceanog.2010.85
– volume-title: Bathymetry around Saint‐Paul and Amsterdam islands/data compilation 2020
  year: 2020
  ident: e_1_2_9_26_1
– ident: e_1_2_9_52_1
  doi: 10.1029/2019EA000658
– ident: e_1_2_9_14_1
  doi: 10.1029/2020GL088162
– ident: e_1_2_9_36_1
  doi: 10.1126/science.1258213
– volume-title: Bathymetry of the French Guiana margin and Demerara plateau/data compilation
  year: 2019
  ident: e_1_2_9_25_1
– volume: 115
  issue: 12
  year: 2010
  ident: e_1_2_9_13_1
  article-title: Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability
  publication-title: Journal of Geophysical Research: Solid Earth
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-246X.1973.tb06513.x
– volume: 113
  issue: 5
  year: 2008
  ident: e_1_2_9_3_1
  article-title: Global estimates of seafloor slope from single‐beam ship soundings
  publication-title: Journal of Geophysical Research: Oceans
– ident: e_1_2_9_21_1
  doi: 10.1029/2000GL012044
– ident: e_1_2_9_12_1
  doi: 10.1029/1999GL007003
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ocemod.2009.10.001
– ident: e_1_2_9_53_1
  doi: 10.1029/2005JB004083
– volume-title: Bathymetry ‐ Kerguelen Islands (synthesis, 2019) cell size 200 m
  year: 2019
  ident: e_1_2_9_24_1
– ident: e_1_2_9_51_1
  doi: 10.1016/j.ocemod.2017.02.005
– ident: e_1_2_9_47_1
  doi: 10.1190/1.1442837
– ident: e_1_2_9_18_1
  doi: 10.1007/s11001-006-8181-4
– volume-title: The GEBCO_2020 Grid ‐ a continuous terrain model of the global oceans and land
  year: 2020
  ident: e_1_2_9_10_1
– ident: e_1_2_9_17_1
  doi: 10.1029/GL016i001p00045
– start-page: 139
  volume-title: Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling
  year: 2004
  ident: e_1_2_9_2_1
– ident: e_1_2_9_16_1
  doi: 10.1029/JB093iB11p13589
– ident: e_1_2_9_57_1
  doi: 10.5670/oceanog.2010.60
– ident: e_1_2_9_34_1
– ident: e_1_2_9_50_1
– ident: e_1_2_9_41_1
  doi: 10.1029/2020GC009214
SSID ssj0001256024
Score 2.4168205
Snippet To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite...
To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from satellite...
Abstract To date, ∼20% of the ocean floor has been surveyed by ships at a spatial resolution of 400 m or better. The remaining 80% has depth predicted from...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Abyssal hills
Bathymetry
global bathymetry
Gravity
Hills
Ocean circulation
Ocean floor
Seamounts
Sediments
Ships
uncharted seamounts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iiF7EJ1ar7EG9lMVskn3EWyutxUMRbKGelsljT7WW2iL992ay29KCj4u3ZXdgh5kk800y-YaQa5OlwsFUGlJjVShiG4UyjVXoYpOMpMEQ6wtke0l3IJ6G8XCt1RfWhJX0wKXh7gS3EGsuBLhEhMlUAiRaWg0ckoJmGldfmsm1ZKrcXXGRnImq0p0yiUl-1G4iOsLa5rUY5Kn6N_Dl7nw8gcUnjEabiNWHnM4B2a-wYtAsdTwkW3Z8RHYefS_exTFplxsC1gQtB-MWb9gbSwfPUzx6QXMHvhwgKOXRF0F19wg_3gcvr71Ws989IYNOu__QDauuCCEIztPQgpUiKXQGIgHmnoqUMaUdLImURnIXwanOGHBppXK2Y9IapVzyGRu3mJiIn5Lt8fvYnpGAiohaJU0sGRWKCkgzEwuTgREKTJHUSGNpp1xXlOHYuWKU-6NrJvN1q9bIzUp6UlJl_CDXQpOvZJDg2r9wbs8rt-d_ub1G6kuH5dWs-8iRe95ZJOXuH7crJ36rjIWlMg3v4V81zt1cYMi1d_4fql-QPYZ3KHzpd51sz6Zze-mQzUxd-UH8BQDb7qg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aIp58ixWVPagX2bKbZB_x1kpr8VAKWrCnZfJYD9ZaaovUX2-SzZZWVARvy26ymWRmki-vbxA6l2lCNUwN_EAq7tNIhT5LIu7rsYmFTJoh1h6Q7cadPr17jB6X7sIU_BCLBTfjGba_Ng4-lnnRzzvKAWZm7mGrYSBPzNZRNY40Hq-gar_bawxsVDlCdKkpdSfeyywKiiwrY5Gl7F_BmZuz0Rjm7zAcriJXO_S0t5EohS5OnDzXZ1NeFx9f-Bz_V6sdtOWQqdcoTGkXranRHtq4tZF_5_uoVSw_KOk1NWicv5hIXMLrTcxGj1GuZw8feEV6o3nP3XQyH6-9-0G32XjoHKB-u_Vw0_FdDAYfKCGJr0AxGuciBRoD1k95gjEXGgSFXBgqGUoCkWIgTDGuIMJMSc71VDeSuuuSITlEldHrSB0hL6BhoDiTEcMB5QGFJJURlSlIykHmcQ1dldrIhCMoN3EyhpndKMcsW26YGrpYpB4XxBw_pGsaxS7SGDpt--J18pQ578wo0aILQino2S5mCQOIBVMCCMR5kIoaOinNInM-_pYZpnvdIgnRZVwuTOVbYUqD01W0yv9V4kx7HjbMfsd__e0JqkwnM3Wq4dGUnzn7_wR8BAhA
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA4-WPQiuuvirA_64HqRxu6k-pG9zcjo4EEEFfTUVB6zl3GUUZH591uVzgwzsLvgreku0qEqlfpSSb4S4tjVFRBMzdLMeZNC4fNUV4VJKTbpXDsOseGA7HU5uIerh-IhJtz4LkzLDzFPuLFnhPmaHRzNayQbYI5MWrXn_S7DnVKvivWcoAyPcAk3CzkWiuehrq1UStH_a4hn36mJs8UGlqJSIO9fQpwb7-MXnH7gaLSMYUMQutgWWxE9Jt3W3DtixY-_ii-XoTrv9JvotykC75IeAbvpE1fLssnNhDdj2ABJOCCQtPJsnSTeRuKPv5Lbx-te926wK-4v-nfngzTWSUgRlKpSj15DObQ1QomSnoaVlMYSUMmNZboXUJmtJSrttfFYSO2dMbQcLRxNLy5X38Xa-Hns90SSQZ55o12hZQYmA6xqV4Cr0YFBNyw74nSmp8ZGEnGuZTFqwma21M2iVjvi51z6pSXP-Idcj1U-l2HK6_DiefK7iR7UgKKuWwWAtCKVutKIpdXeosJymNW2Iw5mBmuiH742zEZPGqkU_eNkbsS_dsbjrDOnwcL_7XFD3iGZfe_Hp6T3xabk6xPh1PeBWHubvPtDAjVv5iiM3D98iOec
  priority: 102
  providerName: Wiley-Blackwell
Title Improved Bathymetric Prediction Using Geological Information: SYNBATH
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EA002069
https://www.proquest.com/docview/2632246739
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021EA002069
https://doaj.org/article/43ea5c344a0942979aa6c9eca3a6f08c
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate | Ebsco
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: ABDBF
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: AVUZU
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61qRBcEE-RUqI9AJdqhdf2PoyEUIJSIg6rCBqpPa3Gj-0lJCFthfLv8TjekErQ4-6OtKMZj-ezPf4G4K2tSulhKkuZdTqVuctSVeY69blJZcpSig0FsnUxmclvF_nFAdTdXRgqq-zmxDBR26WhPfIPxCvOfVQL9Xn1K6WuUXS62rXQwNhawX4KFGOHcMSJGasHR6NxPf2-t-viMzyXsQKecUWL_2w8JNRENc97uSlQ-N_BnQ9vFyvc_Mb5_C6SDano7Ak8jhgyGW6d_hQO3OIZPPgaevRunsN4u1HgbDLy8G7zk3pmmWS6piMZckMSygSSrTz5KIl3kujjx-THZT0ank9ewOxsfP5lksZuCSlKIcrUoVOyaE2FskBvqbYtOdfGw5VMGyJ9kYKZiqNQTmmHOVfOau0Xpbn1k4zNxEvoLZYL9woSJjPmtLK54kxqJrGsbC5thVZqtG3Rh9POTo2JVOLU0WLehCNtrpp9q_bh3U56taXQ-I_ciEy-kyHi6_Biub5qYhw1UnjVjZAS_bqUq1IhFkY5gwKLllWmDyedw5oYjdfN37HTh_c7J_5TGYedMqfBw_dq3PgY4cTBd3z_X1_DI063JkKx9wn0bta37o3HMjd6AIdcTgdxmA7CjoB_mtXT4eUfukrvsw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFRSofZS8VRDC-yBcqlWeG3vw0gVSiAlpSWqIJXKyfi1XEIS0lZVfo5vw-N4QypBb73ujtaz8_CMx_MAeGWrkns3laTEOp3y3GWpKHOdetskMmHRxIYE2UHRP-OfzvPzNfjd1MJgWmWzJ4aN2k4MxsjfYF9x6rWaiXfTXylOjcLb1WaEhoqjFexBaDEWCzuO3fzaH-EuDo4-eH7vUXrYG77vp3HKQKo4Y2XqlBO8qE2leKH8CnVdUqqNN_OZNtgshTNiKqqYcEI7lVPhrNb-MJdbr5w2Y_6792CdM__PLVjv9ganX1aiPN6joDxm3BMqMNiQ9TropWGO9YotDCMDbvi5G1fjqZpfq9HopuccTN_hA9iKPmvSWQjZQ1hz40dw_2OYCTx_DL1FYMLZpOvdyflPnNFlktMZXgEh25OQlpAs4FEmklgDhS_fJl-_DbqdYf8JnN0J3Z5CazwZu21ICM-I08LmghKuCVdlZXNuK2W5VrYu2rDf0Ema2LocJ2iMZLhCp0KuUrUNe0vo6aJlx3_gukjyJQw22g4PJrMfMuqt5Myjbhjnyp-DqSiFUoURziimippUpg27DcNk1P4L-VdW2_B6ycR_IuNUg8x-4PCtGEuvkxR7_j27fdWXsNEffj6RJ0eD4x3YpFixERLNd6F1Obtyz70fdalfRGFN4Ptd68cffEEo5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bThNB9AQhKi_GG6GIOg_iC9kwOzN7GRNiWmktYppGIcGndW7rS21rgZD-ol_lnOlsLYnyxuvuZPfk3OdcAd7YshDeTaUJtU4nInNpIotMJ942yVRaNLGhQHaQ98_Ep_PsfA1-N70wWFbZ6MSgqO3EYIz8AOeKMy_VXB7UsSxieNR7P_2V4AYpzLQ26zRUXLNgD8O4sdjkceLm1_46d3F4fORpv8dYr3v6oZ_EjQOJEpwXiVNOirw2pRK58n-r64IxbbzJT7XBwSmCU1MyxaWT2qmMSWe19he7zHpBtSn3370HG5j88kpio9MdDL-sRHy8d8FErL6nTGLgIe220WPDeusVuxjWB9zweR9ejadqfq1Go5tedDCDvcfwKPqvpL1guCew5sZP4f7HsB94_gy6iyCFs6TjXcv5T9zXZchwhukgZAESShTI4jzyB4n9UPjyHfn6bdBpn_afw9md4G0L1seTsdsGQkVKnZY2k4wKTYUqSpsJWyortLJ13oL9Bk-ViWPMcZvGqArpdCarVay2YG95eroY3_Gfcx1E-fIMDt0ODyazH1WU4UpwD7rhQih_J2aykErlRjqjuMprWpoW7DYEq6ImuKj-8m0L3i6J-E9gnGqA2Q8UvhXiyssnw_l_O7f_9TU88HJSfT4enLyATYbNG6HmfBfWL2dX7qV3qS71q8irBL7ftXj8AXQ8LRU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aIp58ixWVPagX2bKbZB_x1kpr8VAKWrCnZfJYD9ZaaovUX2-SzZZWVARvy26ymWRmki-vbxA6l2lCNUwN_EAq7tNIhT5LIu7rsYmFTJoh1h6Q7cadPr17jB6X7sIU_BCLBTfjGba_Ng4-lnnRzzvKAWZm7mGrYSBPzNZRNY40Hq-gar_bawxsVDlCdKkpdSfeyywKiiwrY5Gl7F_BmZuz0Rjm7zAcriJXO_S0t5EohS5OnDzXZ1NeFx9f-Bz_V6sdtOWQqdcoTGkXranRHtq4tZF_5_uoVSw_KOk1NWicv5hIXMLrTcxGj1GuZw8feEV6o3nP3XQyH6-9-0G32XjoHKB-u_Vw0_FdDAYfKCGJr0AxGuciBRoD1k95gjEXGgSFXBgqGUoCkWIgTDGuIMJMSc71VDeSuuuSITlEldHrSB0hL6BhoDiTEcMB5QGFJJURlSlIykHmcQ1dldrIhCMoN3EyhpndKMcsW26YGrpYpB4XxBw_pGsaxS7SGDpt--J18pQ578wo0aILQino2S5mCQOIBVMCCMR5kIoaOinNInM-_pYZpnvdIgnRZVwuTOVbYUqD01W0yv9V4kx7HjbMfsd__e0JqkwnM3Wq4dGUnzn7_wR8BAhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Bathymetric+Prediction+Using+Geological+Information%3A+SYNBATH&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Sandwell%2C+David+T.&rft.au=Goff%2C+John+A.&rft.au=Gevorgian%2C+Julie&rft.au=Harper%2C+Hugh&rft.date=2022-02-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1029%2F2021EA002069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021EA002069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon