A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial Sensing

Recognizing when eating activities take place is one of the key challenges in automated food intake monitoring. Despite progress over the years, most proposed approaches have been largely impractical for everyday usage, requiring multiple on-body sensors or specialized devices such as neck collars f...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference) Vol. 2015; p. 1029
Main Authors Thomaz, Edison, Essa, Irfan, Abowd, Gregory D
Format Journal Article Conference Proceeding
LanguageEnglish
Published United States 01.09.2015
Subjects
Online AccessGet full text
DOI10.1145/2750858.2807545

Cover

Abstract Recognizing when eating activities take place is one of the key challenges in automated food intake monitoring. Despite progress over the years, most proposed approaches have been largely impractical for everyday usage, requiring multiple on-body sensors or specialized devices such as neck collars for swallow detection. In this paper, we describe the implementation and evaluation of an approach for inferring eating moments based on 3-axis accelerometry collected with a popular off-the-shelf smartwatch. Trained with data collected in a semi-controlled laboratory setting with 20 subjects, our system recognized eating moments in two free-living condition studies (7 participants, 1 day; 1 participant, 31 days), with F-scores of 76.1% (66.7% Precision, 88.8% Recall), and 71.3% (65.2% Precision, 78.6% Recall). This work represents a contribution towards the implementation of a practical, automated system for everyday food intake monitoring, with applicability in areas ranging from health research and food journaling.
AbstractList Recognizing when eating activities take place is one of the key challenges in automated food intake monitoring. Despite progress over the years, most proposed approaches have been largely impractical for everyday usage, requiring multiple on-body sensors or specialized devices such as neck collars for swallow detection. In this paper, we describe the implementation and evaluation of an approach for inferring eating moments based on 3-axis accelerometry collected with a popular off-the-shelf smartwatch. Trained with data collected in a semi-controlled laboratory setting with 20 subjects, our system recognized eating moments in two free-living condition studies (7 participants, 1 day; 1 participant, 31 days), with F-scores of 76.1% (66.7% Precision, 88.8% Recall), and 71.3% (65.2% Precision, 78.6% Recall). This work represents a contribution towards the implementation of a practical, automated system for everyday food intake monitoring, with applicability in areas ranging from health research and food journaling.
Author Abowd, Gregory D
Thomaz, Edison
Essa, Irfan
Author_xml – sequence: 1
  givenname: Edison
  surname: Thomaz
  fullname: Thomaz, Edison
  organization: School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia, USA
– sequence: 2
  givenname: Irfan
  surname: Essa
  fullname: Essa, Irfan
  organization: School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia, USA
– sequence: 3
  givenname: Gregory D
  surname: Abowd
  fullname: Abowd, Gregory D
  organization: School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29520397$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtqwzAURLVo6SPturuiH3AqXz0sL01I20BCSx9kaWRZTgS2bGSZkH59HeJ2NZuZA2du0YVrnUHoISbzOGb8CRJOJJdzkCThjF-ha0g5EJomN2ib4XevdLBa1TjrOt8qvcdV6_GH0e3O2R_rdnipwik2bWNc6PHBhj3eetuHaNMOLpgSr5zxwY6MT-P6sXuHLitV9-Z-yhn6fl5-LV6j9dvLapGtI8UohKjiYERRlpQDpwwIoZrolJYaNCiTSBCGcUmFTERBmEiFJExRTUUCMZDU0BkiZ-7gOnU8qLrOO28b5Y95TPKTfj7p55P-OHk8T7qhaEz53_87hf4CUAhbrg
ContentType Journal Article
Conference Proceeding
DBID NPM
ADTOC
UNPAY
DOI 10.1145/2750858.2807545
DatabaseName PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai:pubmedcentral.nih.gov:5839104
29520397
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: U54 EB020404
GroupedDBID NPM
ADTOC
UNPAY
ID FETCH-LOGICAL-a432t-f52e6bdd3525342003c0c93dc2c2ae7826e45836876b04696804a3c36721209e3
IEDL.DBID UNPAY
IngestDate Sun Oct 26 04:10:01 EDT 2025
Thu Jan 02 22:39:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Automated Dietary Assessment
Activity recognition
Inertial Sensors
Food Journaling
Dietary Intake
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a432t-f52e6bdd3525342003c0c93dc2c2ae7826e45836876b04696804a3c36721209e3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1145/2750858.2807545
PMID 29520397
ParticipantIDs unpaywall_primary_10_1145_2750858_2807545
pubmed_primary_29520397
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 9
  year: 2015
  text: 20150901
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)
PublicationTitleAlternate Proc ACM Int Conf Ubiquitous Comput
PublicationYear 2015
Score 2.1052673
Snippet Recognizing when eating activities take place is one of the key challenges in automated food intake monitoring. Despite progress over the years, most proposed...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 1029
Title A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial Sensing
URI https://www.ncbi.nlm.nih.gov/pubmed/29520397
http://doi.org/10.1145/2750858.2807545
UnpaywallVersion submittedVersion
Volume 2015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2i7QATIAqUR-WBhSEl9SvJWCFKhdSqAxVlivwKA2laQaqKfj12kz4kkBBTBt_Buop9z7XPOQa4WXmyJ7Y7UQnRHg2E8iSXiRdKV16ptl2XEyf3B7w3ok9jNt4SZHev79uU3Tn38ZCFLefZYmt9BWqcWcxdhdpoMOy8ll49v0TuFJT9eTYTXwuRpjuVo3sIj2v9TUEYeW_Nc9lSy592jH9M6gjqW3UeGm7qzjHsmewEXjqoFDyJFK2NwpFFpKikCC1tLHIA0X4m05WwDblDWLRwy9ybuDcjjEZOC2gXfYo-HbM9e6vDqPvwfN_zykcTPEEJzr2EYcOl1s7mlFBHPVO-iohWWGFhLB7gxl2VcrsLStcb89CngijCbSuI_ciQU6hm08ycAwqoaispA57IkGqfRHZzFEIrgzVXlMkGnBU5jmeFM0aMI4ZtXNCA203SN4OFBJrFZfriMn0X_4i9hAMLWFjB8bqCav4xN9cWFOSyCZXBsN8s_4tvmjeyPA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BO8AEiALlSx5YGFxSfyUZK0SpkKg6UFGmyF9hIE0rSFXRX4_dhLYSSIgpg2-wTrHvnf3eM8DV0pM9dd2JTqnBLJQaK6FSHClfXplxXZcXJz_2RW_IHkZ8tCbIbl7ftxm_8e7jEY9a3rPF1fptqAvuMHcN6sP-oPNSefX8ErlRUHZm-VR-zmWWbVSO7h7cf-tvSsLIW2tWqJZe_LRj_GNS-9BYq_PQYFV3DmDL5ofw3EGV4Elm6NsoHDlEiiqK0MLFIg8Q3Wc8WQrbkD-ERXO_zPHYvxlhDfJaQLfoM_Thme35awOG3bun2x6uHk3AklFS4JQTK5Qx3uaUMk8904GOqdFEE2kdHhDWX5UKtwsq3xuLKGCSaipcK0iC2NIjqOWT3J4ACplua6VCkaqImYDGbnOU0mhLjNCMqyYclzlOpqUzRkJiTlxc2ITrVdJXg6UEmidV-pIqfaf_iD2DXQdYeMnxOoda8T6zFw4UFOqy-iO-AHIEsTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2015+ACM+International+Joint+Conference+on+Pervasive+and+Ubiquitous+Computing&rft.atitle=A+practical+approach+for+recognizing+eating+moments+with+wrist-mounted+inertial+sensing&rft.date=2015-09-01&rft_id=info:doi/10.1145%2F2750858.2807545&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A5839104