Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

[Display omitted] •Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine drainage (AMD) were different.•The sulfate in AMD was predominantly influenced by aerobic pyrite oxidation.•The mean proportion of sulfate oxygen de...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 551; pp. 245 - 252
Main Authors Sun, Jing, Kobayashi, Tatsuaki, Strosnider, William H.J., Wu, Pan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2017
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2017.06.006

Cover

Abstract [Display omitted] •Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine drainage (AMD) were different.•The sulfate in AMD was predominantly influenced by aerobic pyrite oxidation.•The mean proportion of sulfate oxygen derived from water was 40% in AMD.•Analysis revealed reservoir sediment contamination as a remediation priority. Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.
AbstractList Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.
[Display omitted] •Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine drainage (AMD) were different.•The sulfate in AMD was predominantly influenced by aerobic pyrite oxidation.•The mean proportion of sulfate oxygen derived from water was 40% in AMD.•Analysis revealed reservoir sediment contamination as a remediation priority. Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.
Author Sun, Jing
Wu, Pan
Strosnider, William H.J.
Kobayashi, Tatsuaki
Author_xml – sequence: 1
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  email: sunjingchiba@gmail.com
  organization: College of Resources and Environmental Engineering, Guizhou University, Huaxi, 550004 Guiyang, Guizhou, China
– sequence: 2
  givenname: Tatsuaki
  surname: Kobayashi
  fullname: Kobayashi, Tatsuaki
  organization: Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan
– sequence: 3
  givenname: William H.J.
  surname: Strosnider
  fullname: Strosnider, William H.J.
  organization: Environmental Engineering Program, Center for Watershed Research & Service, Saint Francis University, 117 Evergreen Drive, Loretto, PA 15940, USA
– sequence: 4
  givenname: Pan
  surname: Wu
  fullname: Wu, Pan
  email: pwu@gzu.edu.cn
  organization: College of Resources and Environmental Engineering, Guizhou University, Huaxi, 550004 Guiyang, Guizhou, China
BookMark eNqFkE1LAzEQhoNUsK3-BCFHL7vmYzfp4kGk-AWCB_Uc0uxEU7ebmmTV_nuj7clL5zIMvM8M80zQqPc9IHRKSUkJFefLcvm2aYPvSkaoLIkoCREHaExnsimYJHKExoQwVlDRVEdoEuOS5OK8GqOnp6QXHeA4dHYIWPct9t-bV-ixiz75NUSsI34Fb95g5YzucAraQIjY2z9IJ8Cux-86xIS_8hTiMTq0uotwsutT9HJz_Ty_Kx4eb-_nVw-FrjhNhRR13diaVFAbSupmxuqmqkTLLCMNSKmlbaRdzEBzyWsBHIASsFBZWAjBOZ-is-3edfAfA8SkVi4a6Drdgx-iYvnJfInRJkfrbdQEH2MAq9bBrXTYKErUr0S1VDuJ6leiIkJliZm7-McZl3Ryvs8aXLeXvtzSkC18OggqGge9gdYFMEm13u3Z8ANsRZP7
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_148420
crossref_primary_10_1016_j_scitotenv_2024_172298
crossref_primary_10_1016_j_jhydrol_2024_131614
crossref_primary_10_1016_j_chemosphere_2020_129134
crossref_primary_10_1007_s10653_021_00869_3
crossref_primary_10_1016_j_jenvman_2022_114996
crossref_primary_10_1016_j_envres_2023_117508
crossref_primary_10_1016_j_foodcont_2021_108165
crossref_primary_10_3390_w16192850
crossref_primary_10_1021_acsomega_2c04161
crossref_primary_10_1016_j_apgeochem_2018_11_018
crossref_primary_10_1007_s12665_021_09399_8
crossref_primary_10_1016_j_chemosphere_2020_127946
crossref_primary_10_1016_j_meatsci_2020_108113
crossref_primary_10_3390_ijerph192114293
crossref_primary_10_1016_j_scitotenv_2024_177994
crossref_primary_10_1007_s10653_022_01242_8
crossref_primary_10_1111_gwat_13363
crossref_primary_10_1007_s12665_024_11476_7
crossref_primary_10_1007_s10040_022_02559_5
crossref_primary_10_1016_j_jes_2023_12_012
crossref_primary_10_1007_s10661_023_10944_0
crossref_primary_10_1134_S009780782360153X
crossref_primary_10_1016_j_ecoenv_2022_113496
crossref_primary_10_1016_j_apgeochem_2020_104642
crossref_primary_10_1016_j_jhydrol_2020_125746
crossref_primary_10_1016_j_scitotenv_2023_168580
crossref_primary_10_1007_s10230_021_00833_8
crossref_primary_10_1016_j_scitotenv_2024_174375
crossref_primary_10_1016_j_scitotenv_2022_160368
crossref_primary_10_2166_wst_2021_259
crossref_primary_10_1016_j_chemosphere_2019_06_066
crossref_primary_10_1016_j_apgeochem_2021_105109
crossref_primary_10_1016_j_gexplo_2019_106437
crossref_primary_10_1029_2022WR033980
crossref_primary_10_1007_s10230_022_00861_y
crossref_primary_10_1016_j_jclepro_2019_118646
crossref_primary_10_1007_s10653_020_00525_2
crossref_primary_10_1080_10256016_2025_2456557
crossref_primary_10_1016_j_jhydrol_2021_126804
crossref_primary_10_1016_j_apgeochem_2019_104464
crossref_primary_10_1016_j_jhydrol_2019_05_092
crossref_primary_10_1021_acsomega_2c08145
crossref_primary_10_1016_j_envpol_2024_125495
crossref_primary_10_1016_j_quascirev_2024_108684
crossref_primary_10_1016_j_jclepro_2020_123813
crossref_primary_10_1016_j_scitotenv_2024_171310
crossref_primary_10_1016_j_jfca_2021_103856
crossref_primary_10_1016_j_scitotenv_2024_177372
crossref_primary_10_1016_j_scitotenv_2025_179120
crossref_primary_10_1016_j_scitotenv_2020_143223
crossref_primary_10_3390_ijerph192114434
crossref_primary_10_1016_j_apgeochem_2022_105351
crossref_primary_10_1016_j_ecoenv_2022_114286
crossref_primary_10_1016_j_ecoenv_2019_06_001
crossref_primary_10_1016_j_jhydrol_2018_04_072
Cites_doi 10.1126/science.167.3921.1121
10.1016/j.jhydrol.2013.01.017
10.1016/j.gca.2007.04.017
10.1016/j.scitotenv.2015.10.139
10.1038/308538a0
10.1144/SP279.11
10.1016/j.chemgeo.2003.11.009
10.1007/s12665-012-2083-3
10.1029/JB073i018p06099
10.1016/j.jhydrol.2016.12.009
10.1016/S0040-6090(02)00989-6
10.1029/JC078i015p02625
10.1016/j.scitotenv.2004.09.002
10.1016/j.apgeochem.2007.04.018
10.1016/0016-7037(84)90315-6
10.1016/j.chemgeo.2011.01.017
10.1007/s10533-012-9807-z
10.1016/j.apgeochem.2004.11.004
10.1016/j.chemgeo.2006.11.014
10.1016/j.scitotenv.2014.04.008
10.1007/s10230-004-0060-0
10.1080/10643389509388477
10.1146/annurev.earth.24.1.225
10.1002/(SICI)1096-9837(200002)25:2<155::AID-ESP55>3.0.CO;2-P
10.2134/jeq1995.00472425002400030021x
10.1016/j.scitotenv.2013.06.067
10.3133/ofr9894
10.1007/s00254-008-1423-9
10.1128/AEM.65.7.2987-2993.1999
10.1007/s10498-007-9017-9
10.1016/j.chemgeo.2009.05.026
10.1016/j.earscirev.2011.07.003
10.1007/s12665-013-2734-z
10.1016/j.jhydrol.2013.09.029
10.2113/gsecongeo.104.8.1213
10.1016/S0883-2927(02)00018-5
10.2113/gsecongeo.61.8.1428
10.1016/j.apgeochem.2013.01.008
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2017.06.006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 252
ExternalDocumentID 10_1016_j_jhydrol_2017_06_006
S0022169417304092
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a431t-76559f504e5c10598259446d2f209e77a7f97fb8ea37356e3ee10efe4feb66333
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Sun Sep 28 12:26:00 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
Wed Oct 01 03:47:31 EDT 2025
Fri Feb 23 02:26:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Karst water
Hydrochemistry
Stable isotope composition
Acid mine drainage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a431t-76559f504e5c10598259446d2f209e77a7f97fb8ea37356e3ee10efe4feb66333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000431219
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000431219
crossref_primary_10_1016_j_jhydrol_2017_06_006
crossref_citationtrail_10_1016_j_jhydrol_2017_06_006
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2017_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dogramaci, McLean, Skrzypek (b0025) 2017; 545
Szynkiewicz, Witcher, Modelska, Borrok, Pratt (b0200) 2011; 283
Nordstrom (b0135) 1982
Knöller, Fauville, Mayer, Strauch, Friese, Veizer (b0115) 2004; 204
Taylor, Wheeler (b0205) 1994; 550
Smedley, Kinniburgh (b9005) 2002; 17
Wu, Tao, Yang (b0240) 2009; 28
Evangelou (b0045) 1995; 24
Singer, Stumm (b0170) 1970; 167
Wynn, Borsato, Baker, Frisia, Miorandi, Fairchild (b0245) 2013; 114
Stumm, Morgan (b0180) 1996
Galván, Olías, Cerón, Cánovas, Pérez-López, Nieto (b0065) 2013; 463
Horibe, Shigehara, Takakuwa (b0100) 1973; 78
Strosnider, Llanos López, LaBar, Palmer, Nairn (b0175) 2014; 71
Taylor, Wheeler, Nordstrom (b0215) 1984; 48
Karper, P.L., 1998. Water-quality Data (July 1994 Through September 1996) and Statistical Summaries of Data for Surface Water in the Sand Coulee Coal Area, Montana. US Geol. Surv., Open-File, Report 98–94.
Sun, Tang, Wu, Strosnider, Han (b0190) 2013; 504
Roesler, Gammons, Druschel, Oduro, Poulson (b0145) 2007; 13
Samborska, Halas, Bottrell (b0150) 2013; 486
Field (b0055) 1966; 61
Fowler, Holmes, Crundwell (b0060) 1999; 65
Johnson, Hallberg (b0105) 2005; 338
Wolkersdorfer, Bowell (b0230) 2004; 23
Sun, Tang, Wu, Liu, Zhang (b0185) 2013; 69
Evangelou, Zhang (b0050) 1995; 25
Taylor, Wheeler, Nordstrom (b0210) 1984; 308
Bottrell, Webber, Gunn, Worthington (b0015) 2000; 25
Buzatu, Dill, Buzgar, Damian, Maftei, Apopei (b0020) 2016; 542
Wu, Tang, Liu, Zhu, Pei, Feng (b0235) 2009; 57
Morin, Hutt (b0130) 1997
Nordstrom, Southam (b0140) 1997; 35
Lloyd (b0125) 1968; 73
Gammons, Brown, Poulson, Henderson (b0080) 2013; 31
Gammons, Snyder, Poulson, Petritz (b0070) 2009; 104
Sun, Tang, Wu, Strosnider (b0195) 2014; 487
Garrels, Thompson (b0085) 1960; 258
Xiao, Liu, Li (b0250) 2003; 32
Krouse, Grinenko (b0120) 1991
Schulte, Van Geldern, Freitag, Karim, Négrel, Petelet-Giraud, Probst, Probst, Telmer, Veizer, Barth (b0160) 2011; 109
Edraki, Golding, Baublys, Lawrence (b0030) 2005; 20
Gammons, Duaime, Parker, Poulson, Kennelly (b0075) 2010; 269
Elswick, Hower, Carmo, Sun, Mardon (b0040) 2007; 22
Seal, Kuiry, Heinmen (b0165) 2003; 423
Apha (b9000) 1998
Balci, Shanks, Mayer, Mandernack (b0005) 2007; 71
Gat (b0090) 1996; 24
Bottrel (b0010) 2007; 279
Hoefs (b0095) 2009
Einsiedl, Schäfer, Northrup (b0035) 2007; 238
Bottrel (10.1016/j.jhydrol.2017.06.006_b0010) 2007; 279
Horibe (10.1016/j.jhydrol.2017.06.006_b0100) 1973; 78
Singer (10.1016/j.jhydrol.2017.06.006_b0170) 1970; 167
Strosnider (10.1016/j.jhydrol.2017.06.006_b0175) 2014; 71
Morin (10.1016/j.jhydrol.2017.06.006_b0130) 1997
Seal (10.1016/j.jhydrol.2017.06.006_b0165) 2003; 423
Nordstrom (10.1016/j.jhydrol.2017.06.006_b0135) 1982
Galván (10.1016/j.jhydrol.2017.06.006_b0065) 2013; 463
Nordstrom (10.1016/j.jhydrol.2017.06.006_b0140) 1997; 35
Gammons (10.1016/j.jhydrol.2017.06.006_b0080) 2013; 31
Field (10.1016/j.jhydrol.2017.06.006_b0055) 1966; 61
Wolkersdorfer (10.1016/j.jhydrol.2017.06.006_b0230) 2004; 23
Wynn (10.1016/j.jhydrol.2017.06.006_b0245) 2013; 114
Sun (10.1016/j.jhydrol.2017.06.006_b0185) 2013; 69
Einsiedl (10.1016/j.jhydrol.2017.06.006_b0035) 2007; 238
Schulte (10.1016/j.jhydrol.2017.06.006_b0160) 2011; 109
Wu (10.1016/j.jhydrol.2017.06.006_b0235) 2009; 57
Taylor (10.1016/j.jhydrol.2017.06.006_b0215) 1984; 48
Dogramaci (10.1016/j.jhydrol.2017.06.006_b0025) 2017; 545
Taylor (10.1016/j.jhydrol.2017.06.006_b0210) 1984; 308
Roesler (10.1016/j.jhydrol.2017.06.006_b0145) 2007; 13
Bottrell (10.1016/j.jhydrol.2017.06.006_b0015) 2000; 25
Lloyd (10.1016/j.jhydrol.2017.06.006_b0125) 1968; 73
Hoefs (10.1016/j.jhydrol.2017.06.006_b0095) 2009
Evangelou (10.1016/j.jhydrol.2017.06.006_b0045) 1995; 24
Wu (10.1016/j.jhydrol.2017.06.006_b0240) 2009; 28
Gammons (10.1016/j.jhydrol.2017.06.006_b0070) 2009; 104
Gat (10.1016/j.jhydrol.2017.06.006_b0090) 1996; 24
Samborska (10.1016/j.jhydrol.2017.06.006_b0150) 2013; 486
Sun (10.1016/j.jhydrol.2017.06.006_b0195) 2014; 487
Johnson (10.1016/j.jhydrol.2017.06.006_b0105) 2005; 338
Gammons (10.1016/j.jhydrol.2017.06.006_b0075) 2010; 269
Fowler (10.1016/j.jhydrol.2017.06.006_b0060) 1999; 65
Sun (10.1016/j.jhydrol.2017.06.006_b0190) 2013; 504
Elswick (10.1016/j.jhydrol.2017.06.006_b0040) 2007; 22
Taylor (10.1016/j.jhydrol.2017.06.006_b0205) 1994; 550
Knöller (10.1016/j.jhydrol.2017.06.006_b0115) 2004; 204
Szynkiewicz (10.1016/j.jhydrol.2017.06.006_b0200) 2011; 283
Evangelou (10.1016/j.jhydrol.2017.06.006_b0050) 1995; 25
Buzatu (10.1016/j.jhydrol.2017.06.006_b0020) 2016; 542
10.1016/j.jhydrol.2017.06.006_b0110
Krouse (10.1016/j.jhydrol.2017.06.006_b0120) 1991
Garrels (10.1016/j.jhydrol.2017.06.006_b0085) 1960; 258
Stumm (10.1016/j.jhydrol.2017.06.006_b0180) 1996
Apha (10.1016/j.jhydrol.2017.06.006_b9000) 1998
Xiao (10.1016/j.jhydrol.2017.06.006_b0250) 2003; 32
Balci (10.1016/j.jhydrol.2017.06.006_b0005) 2007; 71
Smedley (10.1016/j.jhydrol.2017.06.006_b9005) 2002; 17
Edraki (10.1016/j.jhydrol.2017.06.006_b0030) 2005; 20
References_xml – volume: 65
  start-page: 2987
  year: 1999
  end-page: 2993
  ident: b0060
  article-title: Mechanism of pyrite dissolution in the presence of thiobacillus ferrooxidans
  publication-title: Appl. Environ. Microb.
– volume: 13
  start-page: 211
  year: 2007
  end-page: 235
  ident: b0145
  article-title: Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction
  publication-title: Aquat. Geochem.
– volume: 61
  start-page: 1428
  year: 1966
  end-page: 1435
  ident: b0055
  article-title: Sulfur isotopic method for discriminating between sulfates of hypogene and supergene origin
  publication-title: Econ. Geol.
– volume: 22
  start-page: 2065
  year: 2007
  end-page: 2077
  ident: b0040
  article-title: Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant
  publication-title: Appl. Geochem.
– reference: Karper, P.L., 1998. Water-quality Data (July 1994 Through September 1996) and Statistical Summaries of Data for Surface Water in the Sand Coulee Coal Area, Montana. US Geol. Surv., Open-File, Report 98–94.
– volume: 17
  start-page: 517
  year: 2002
  end-page: 568
  ident: b9005
  article-title: A review of the source, behaviour and distribution of arsenic in natural waters
  publication-title: Appl. Geochem.
– volume: 283
  start-page: 194
  year: 2011
  end-page: 209
  ident: b0200
  article-title: Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA)
  publication-title: Chem. Geol.
– volume: 114
  start-page: 255
  year: 2013
  end-page: 267
  ident: b0245
  article-title: Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at Grotta di Ernesto, Italy
  publication-title: Biogeochemistry
– volume: 71
  start-page: 3796
  year: 2007
  end-page: 3811
  ident: b0005
  article-title: Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite
  publication-title: Geochim. Cosmochim. Acta
– year: 2009
  ident: b0095
  article-title: Stable Isotope Geochemistry
– volume: 104
  start-page: 1213
  year: 2009
  end-page: 1234
  ident: b0070
  article-title: Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana
  publication-title: Econ. Geol.
– volume: 23
  start-page: 162
  year: 2004
  end-page: 182
  ident: b0230
  article-title: Contemporary reviews of mine water studies in Europe, Part 1. Mine
  publication-title: Water Environ.
– volume: 279
  start-page: 123
  year: 2007
  end-page: 135
  ident: b0010
  article-title: Stable isotopes in aqueous sulphate as tracers of natural and contaminant sulphate sources: a reconnaissance study of the Xingwen karst aquifer, Sichuan, China
  publication-title: Geol. Soc. Lond. Spec. Publ.
– volume: 308
  start-page: 538
  year: 1984
  end-page: 541
  ident: b0210
  article-title: Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation
  publication-title: Nature
– year: 1991
  ident: b0120
  article-title: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment
– volume: 167
  start-page: 1121
  year: 1970
  end-page: 1123
  ident: b0170
  article-title: Acidic mine drainage: the rate-determining step
  publication-title: Science
– volume: 25
  start-page: 155
  year: 2000
  end-page: 165
  ident: b0015
  article-title: The geochemistry of sulphur in a mixed allogenic–autogenic karst catchment, Castleton, Derbyshire, UK
  publication-title: Earth Surf. Proc. Land.
– volume: 463
  start-page: 572
  year: 2013
  end-page: 580
  ident: b0065
  article-title: Assessment of the dissolved pollutant flux of the Odiel River (SW Spain) during a wet period
  publication-title: Sci. Total Environ.
– volume: 504
  start-page: 115
  year: 2013
  end-page: 124
  ident: b0190
  article-title: Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China
  publication-title: J. Hydrol.
– volume: 20
  start-page: 789
  year: 2005
  end-page: 805
  ident: b0030
  article-title: Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia
  publication-title: Appl. Geochem.
– volume: 35
  start-page: 361
  year: 1997
  end-page: 390
  ident: b0140
  article-title: Geomicrobiology of sulfide mineral oxidation
  publication-title: Rev. Mineral.
– volume: 57
  start-page: 1457
  year: 2009
  end-page: 1467
  ident: b0235
  article-title: Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in Southwestern China
  publication-title: Environ. Geol.
– volume: 423
  start-page: 243
  year: 2003
  end-page: 251
  ident: b0165
  article-title: Effect of glycine and hydrogen peroxide on chemical–mechanical planarization of copper
  publication-title: Thin Solid Films
– volume: 31
  start-page: 228
  year: 2013
  end-page: 238
  ident: b0080
  article-title: Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage
  publication-title: Appl. Geochem.
– volume: 69
  start-page: 2623
  year: 2013
  end-page: 2632
  ident: b0185
  article-title: Migration of Cu, Zn, Cd and As in epikarst water affected by acid mine drainage at a coalfield basin, Xingren, Southwest China
  publication-title: Environ. Earth Sci.
– volume: 24
  start-page: 535
  year: 1995
  end-page: 542
  ident: b0045
  article-title: Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings
  publication-title: J. Environ. Qual.
– start-page: 46
  year: 1982
  ident: b0135
  article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals
  publication-title: Acid Sulfate Weathering: Pedogeochemistry and Relationship to Manipulation of Soil Minerals
– year: 1996
  ident: b0180
  article-title: Aquatic Chemistry
– volume: 71
  start-page: 3223
  year: 2014
  end-page: 3234
  ident: b0175
  article-title: Unabated acid mine drainage from Cerro Rico de Potosí, Bolivia: Uncommon constituents of concern impact the Rio Pilcomayo headwaters
  publication-title: Environ. Earth Sci.
– volume: 28
  start-page: 403
  year: 2009
  ident: b0240
  article-title: Arsenic species in stream sediment at a high arsenic coal
  publication-title: Bull. Miner. Petrol. Geochem.
– volume: 78
  start-page: 2625
  year: 1973
  end-page: 2629
  ident: b0100
  article-title: Isotope separation factor of carbon dioxide water system and isotopic composition of atmospheric oxygen
  publication-title: J. Geophys. Res.
– year: 1998
  ident: b9000
  article-title: WEF, Standard Methods for the Examination of Water and Wastewater 20th Edition-4500-NO3-D nitrate Electrode Method
– volume: 109
  start-page: 20
  year: 2011
  end-page: 31
  ident: b0160
  article-title: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances
  publication-title: Earth Sci. Rev.
– year: 1997
  ident: b0130
  article-title: Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies
– volume: 487
  start-page: 123
  year: 2014
  end-page: 129
  ident: b0195
  article-title: Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield
  publication-title: Sci. Total Environ.
– volume: 73
  start-page: 6099
  year: 1968
  end-page: 6110
  ident: b0125
  article-title: Oxygen isotope behavior in the sulfate water system
  publication-title: J. Geophys. Res.
– volume: 258
  start-page: 57
  year: 1960
  end-page: 67
  ident: b0085
  article-title: Oxidation of pyrite by iron sulfate solutions
  publication-title: Am. J. Sci.
– volume: 486
  start-page: 136
  year: 2013
  end-page: 150
  ident: b0150
  article-title: Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland
  publication-title: J. Hydrol.
– volume: 238
  start-page: 268
  year: 2007
  end-page: 276
  ident: b0035
  article-title: Combined sulfur K-edge XANES spectroscopy and stable isotope analyses of fulvic acids and groundwater sulfate identify sulfur cycling in a karstic catchment area
  publication-title: Chem. Geol.
– volume: 48
  start-page: 2669
  year: 1984
  end-page: 2678
  ident: b0215
  article-title: Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite
  publication-title: Geochim. Cosmochim. Acta
– volume: 269
  start-page: 100
  year: 2010
  end-page: 112
  ident: b0075
  article-title: Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA
  publication-title: Chem. Geol.
– volume: 204
  start-page: 303
  year: 2004
  end-page: 323
  ident: b0115
  article-title: Sulfur cycling in an acid mining lake and its vicinity in Lusatia
  publication-title: Germany. Chem. Geol.
– volume: 338
  start-page: 3
  year: 2005
  end-page: 14
  ident: b0105
  article-title: Acid mine drainage remediation options: a review
  publication-title: Sci. Total Environ.
– volume: 542
  start-page: 629
  year: 2016
  end-page: 641
  ident: b0020
  article-title: Efflorescent sulfates from Baia Sprie mining area (Romania) – Acid mine drainage and climatological approach
  publication-title: Sci. Total Environ.
– volume: 550
  start-page: 414
  year: 1994
  end-page: 581
  ident: b0205
  article-title: Sulfur-and oxygen-isotope geochemistry of acid mine drainage in the western United States
  publication-title: Environ. Geochem. Sulfide Oxid
– volume: 25
  start-page: 141
  year: 1995
  end-page: 199
  ident: b0050
  article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 24
  start-page: 225
  year: 1996
  end-page: 262
  ident: b0090
  article-title: Oxygen and hydrogen isotopes in the hydrologic cycle
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 32
  start-page: 248
  year: 2003
  end-page: 254
  ident: b0250
  article-title: Geochemical characteristics of sulfur and nitrogen isotopic compositions in rains of Guiyang in summer
  publication-title: Geochemistry
– volume: 545
  start-page: 288
  year: 2017
  end-page: 298
  ident: b0025
  article-title: Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia
  publication-title: J. Hydrol.
– volume: 167
  start-page: 1121
  year: 1970
  ident: 10.1016/j.jhydrol.2017.06.006_b0170
  article-title: Acidic mine drainage: the rate-determining step
  publication-title: Science
  doi: 10.1126/science.167.3921.1121
– volume: 486
  start-page: 136
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.006_b0150
  article-title: Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.01.017
– volume: 71
  start-page: 3796
  year: 2007
  ident: 10.1016/j.jhydrol.2017.06.006_b0005
  article-title: Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.04.017
– volume: 542
  start-page: 629
  year: 2016
  ident: 10.1016/j.jhydrol.2017.06.006_b0020
  article-title: Efflorescent sulfates from Baia Sprie mining area (Romania) – Acid mine drainage and climatological approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.10.139
– year: 2009
  ident: 10.1016/j.jhydrol.2017.06.006_b0095
– volume: 308
  start-page: 538
  year: 1984
  ident: 10.1016/j.jhydrol.2017.06.006_b0210
  article-title: Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation
  publication-title: Nature
  doi: 10.1038/308538a0
– volume: 279
  start-page: 123
  year: 2007
  ident: 10.1016/j.jhydrol.2017.06.006_b0010
  article-title: Stable isotopes in aqueous sulphate as tracers of natural and contaminant sulphate sources: a reconnaissance study of the Xingwen karst aquifer, Sichuan, China
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/SP279.11
– volume: 204
  start-page: 303
  year: 2004
  ident: 10.1016/j.jhydrol.2017.06.006_b0115
  article-title: Sulfur cycling in an acid mining lake and its vicinity in Lusatia
  publication-title: Germany. Chem. Geol.
  doi: 10.1016/j.chemgeo.2003.11.009
– volume: 69
  start-page: 2623
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.006_b0185
  article-title: Migration of Cu, Zn, Cd and As in epikarst water affected by acid mine drainage at a coalfield basin, Xingren, Southwest China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-2083-3
– volume: 32
  start-page: 248
  year: 2003
  ident: 10.1016/j.jhydrol.2017.06.006_b0250
  article-title: Geochemical characteristics of sulfur and nitrogen isotopic compositions in rains of Guiyang in summer
  publication-title: Geochemistry
– volume: 73
  start-page: 6099
  year: 1968
  ident: 10.1016/j.jhydrol.2017.06.006_b0125
  article-title: Oxygen isotope behavior in the sulfate water system
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB073i018p06099
– volume: 545
  start-page: 288
  year: 2017
  ident: 10.1016/j.jhydrol.2017.06.006_b0025
  article-title: Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.12.009
– volume: 423
  start-page: 243
  year: 2003
  ident: 10.1016/j.jhydrol.2017.06.006_b0165
  article-title: Effect of glycine and hydrogen peroxide on chemical–mechanical planarization of copper
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(02)00989-6
– volume: 78
  start-page: 2625
  year: 1973
  ident: 10.1016/j.jhydrol.2017.06.006_b0100
  article-title: Isotope separation factor of carbon dioxide water system and isotopic composition of atmospheric oxygen
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC078i015p02625
– year: 1997
  ident: 10.1016/j.jhydrol.2017.06.006_b0130
– year: 1996
  ident: 10.1016/j.jhydrol.2017.06.006_b0180
– volume: 338
  start-page: 3
  year: 2005
  ident: 10.1016/j.jhydrol.2017.06.006_b0105
  article-title: Acid mine drainage remediation options: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.09.002
– volume: 22
  start-page: 2065
  year: 2007
  ident: 10.1016/j.jhydrol.2017.06.006_b0040
  article-title: Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.04.018
– volume: 35
  start-page: 361
  year: 1997
  ident: 10.1016/j.jhydrol.2017.06.006_b0140
  article-title: Geomicrobiology of sulfide mineral oxidation
  publication-title: Rev. Mineral.
– volume: 48
  start-page: 2669
  year: 1984
  ident: 10.1016/j.jhydrol.2017.06.006_b0215
  article-title: Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(84)90315-6
– volume: 283
  start-page: 194
  year: 2011
  ident: 10.1016/j.jhydrol.2017.06.006_b0200
  article-title: Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA)
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2011.01.017
– volume: 114
  start-page: 255
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.006_b0245
  article-title: Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at Grotta di Ernesto, Italy
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-012-9807-z
– volume: 20
  start-page: 789
  year: 2005
  ident: 10.1016/j.jhydrol.2017.06.006_b0030
  article-title: Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.11.004
– volume: 238
  start-page: 268
  year: 2007
  ident: 10.1016/j.jhydrol.2017.06.006_b0035
  article-title: Combined sulfur K-edge XANES spectroscopy and stable isotope analyses of fulvic acids and groundwater sulfate identify sulfur cycling in a karstic catchment area
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2006.11.014
– volume: 487
  start-page: 123
  year: 2014
  ident: 10.1016/j.jhydrol.2017.06.006_b0195
  article-title: Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.04.008
– volume: 23
  start-page: 162
  year: 2004
  ident: 10.1016/j.jhydrol.2017.06.006_b0230
  article-title: Contemporary reviews of mine water studies in Europe, Part 1. Mine
  publication-title: Water Environ.
  doi: 10.1007/s10230-004-0060-0
– volume: 25
  start-page: 141
  year: 1995
  ident: 10.1016/j.jhydrol.2017.06.006_b0050
  article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389509388477
– volume: 28
  start-page: 403
  issue: Suppl
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.006_b0240
  article-title: Arsenic species in stream sediment at a high arsenic coal
  publication-title: Bull. Miner. Petrol. Geochem.
– volume: 24
  start-page: 225
  year: 1996
  ident: 10.1016/j.jhydrol.2017.06.006_b0090
  article-title: Oxygen and hydrogen isotopes in the hydrologic cycle
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.24.1.225
– start-page: 46
  year: 1982
  ident: 10.1016/j.jhydrol.2017.06.006_b0135
  article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals
– volume: 25
  start-page: 155
  year: 2000
  ident: 10.1016/j.jhydrol.2017.06.006_b0015
  article-title: The geochemistry of sulphur in a mixed allogenic–autogenic karst catchment, Castleton, Derbyshire, UK
  publication-title: Earth Surf. Proc. Land.
  doi: 10.1002/(SICI)1096-9837(200002)25:2<155::AID-ESP55>3.0.CO;2-P
– volume: 24
  start-page: 535
  year: 1995
  ident: 10.1016/j.jhydrol.2017.06.006_b0045
  article-title: Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1995.00472425002400030021x
– year: 1991
  ident: 10.1016/j.jhydrol.2017.06.006_b0120
– volume: 550
  start-page: 414
  year: 1994
  ident: 10.1016/j.jhydrol.2017.06.006_b0205
  article-title: Sulfur-and oxygen-isotope geochemistry of acid mine drainage in the western United States
  publication-title: Environ. Geochem. Sulfide Oxid
– volume: 463
  start-page: 572
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.006_b0065
  article-title: Assessment of the dissolved pollutant flux of the Odiel River (SW Spain) during a wet period
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.06.067
– ident: 10.1016/j.jhydrol.2017.06.006_b0110
  doi: 10.3133/ofr9894
– volume: 57
  start-page: 1457
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.006_b0235
  article-title: Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in Southwestern China
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1423-9
– volume: 65
  start-page: 2987
  year: 1999
  ident: 10.1016/j.jhydrol.2017.06.006_b0060
  article-title: Mechanism of pyrite dissolution in the presence of thiobacillus ferrooxidans
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.65.7.2987-2993.1999
– volume: 13
  start-page: 211
  year: 2007
  ident: 10.1016/j.jhydrol.2017.06.006_b0145
  article-title: Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-007-9017-9
– volume: 269
  start-page: 100
  year: 2010
  ident: 10.1016/j.jhydrol.2017.06.006_b0075
  article-title: Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.05.026
– volume: 109
  start-page: 20
  year: 2011
  ident: 10.1016/j.jhydrol.2017.06.006_b0160
  article-title: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2011.07.003
– volume: 71
  start-page: 3223
  year: 2014
  ident: 10.1016/j.jhydrol.2017.06.006_b0175
  article-title: Unabated acid mine drainage from Cerro Rico de Potosí, Bolivia: Uncommon constituents of concern impact the Rio Pilcomayo headwaters
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2734-z
– year: 1998
  ident: 10.1016/j.jhydrol.2017.06.006_b9000
– volume: 504
  start-page: 115
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.006_b0190
  article-title: Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.09.029
– volume: 258
  start-page: 57
  year: 1960
  ident: 10.1016/j.jhydrol.2017.06.006_b0085
  article-title: Oxidation of pyrite by iron sulfate solutions
  publication-title: Am. J. Sci.
– volume: 104
  start-page: 1213
  year: 2009
  ident: 10.1016/j.jhydrol.2017.06.006_b0070
  article-title: Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.104.8.1213
– volume: 17
  start-page: 517
  year: 2002
  ident: 10.1016/j.jhydrol.2017.06.006_b9005
  article-title: A review of the source, behaviour and distribution of arsenic in natural waters
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(02)00018-5
– volume: 61
  start-page: 1428
  year: 1966
  ident: 10.1016/j.jhydrol.2017.06.006_b0055
  article-title: Sulfur isotopic method for discriminating between sulfates of hypogene and supergene origin
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.61.8.1428
– volume: 31
  start-page: 228
  year: 2013
  ident: 10.1016/j.jhydrol.2017.06.006_b0080
  article-title: Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.01.008
SSID ssj0000334
Score 2.4672747
Snippet [Display omitted] •Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine...
Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Acid mine drainage
air
anaerobic conditions
aquifers
atmospheric deposition
humans
Hydrochemistry
Karst water
karsts
mining
oxidation
oxygen
planning
principal component analysis
pyrite
remediation
sediments
Stable isotope composition
stable isotopes
sulfates
sulfur
tracer techniques
Title Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters
URI https://dx.doi.org/10.1016/j.jhydrol.2017.06.006
https://www.proquest.com/docview/2000431219
Volume 551
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFfGJ9lBW8ps1722MplqrQixZ6C7vprE0tSWlStBd_uzN5WBSh4DEhsyyzk5lv2JlvGLvTxHiCYcMgrhjDtW1pKMvyDQQLuG8B4Mm8QHbkD8fu48Sb1Fi_6oWhssrS9xc-PffW5Zt2qc32Moqox9e2LerDRCPFLIX8sOsKmmLQ-tyWeZiO41aM4fT1tounPW_NZ5vpKqEbCEvkNJ40-Ojv-PTLU-fhZ3DEDkvcyHvF1o5ZDeITtl-OMJ9tTtkzwka1AJ6uF3q94jKe8uRjg-bBozTJkiWkXKb8FWhCVk4RwLOVDBH88UTnQgg6eRTzN8x0M_4uiXXzjI0H9y_9oVFOTDAkAoHMED4mCNozXfBCAk6Y_nUx35va2ja7IIQUuiu06oB0hOP54ABYJmhwNSiEHo5zzupxEsMF42HH1r5QSmO4wqTGUgI_xHUt7SmF59pgbqWnICzpxGmqxSKo6sbmQanegNQb5PVzfoO1vsWWBZ_GLoFOdQjBD8MI0OfvEr2tDi3An4ZuQmQMyTql2ZtEKoTe-vL_y1-xA3oqqgGvWT1breEGEUqmmrkJNtle7-FpOPoC1uXmAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPODF-Iz4XBOvBfpcOBoiQUUuQsJtswuzApKW0BLl4m93prQSjQmJ17az2cxOZ77JznzD2K0hxhMMGxZxxVie4yhL23ZgIVjAfQsAX6UFst2g3fceB_6gwJp5LwyVVWa-f-3TU2-dPalm2qzOJxPq8XUcm_ow0UgxS0E_vOP5jqAMrPK5qfOoua6XU4bT55s2nuq0Mh2vRouIriBskfJ40uSjvwPUL1edxp_WPtvLgCO_W-_tgBUgPGSlbIb5eHXEXhA36hnweDkzywVX4YhHHyu0Dz6JoySaQ8xVzF-BRmSlHAE8Waghoj8emVQIUSefhPwNU92Evyui3Txm_dZ9r9m2spEJlkIkkFgiwAzB-DUP_CEhJ8z_GpjwjRzj1BoghBKmIYyug3KF6wfgAtg1MOAZ0Ig9XPeEFcMohFPGh3XHBEJrg_EKsxpbC_wQ17WNrzUebJl5uZ7kMOMTp7EWM5kXjk1lpl5J6pVpAV1QZpVvsfmaUGObQD0_BPnDMiQ6_W2iN_mhSfxr6CpEhRAtYxq-SaxC6K7P_r_8NSu1e88d2XnoPp2zXXqzLg28YMVksYRLhCuJvkrN8Qs7QOeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+sulfur+and+oxygen+isotopes+as+geochemical+tracers+of+sulfate+in+karst+waters&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Sun%2C+Jing&rft.au=Kobayashi%2C+Tatsuaki&rft.au=Strosnider%2C+William+H.J.&rft.au=Wu%2C+Pan&rft.date=2017-08-01&rft.issn=0022-1694&rft.volume=551+p.245-252&rft.spage=245&rft.epage=252&rft_id=info:doi/10.1016%2Fj.jhydrol.2017.06.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon