Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters
[Display omitted] •Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine drainage (AMD) were different.•The sulfate in AMD was predominantly influenced by aerobic pyrite oxidation.•The mean proportion of sulfate oxygen de...
Saved in:
| Published in | Journal of hydrology (Amsterdam) Vol. 551; pp. 245 - 252 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-1694 1879-2707 |
| DOI | 10.1016/j.jhydrol.2017.06.006 |
Cover
| Abstract | [Display omitted]
•Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine drainage (AMD) were different.•The sulfate in AMD was predominantly influenced by aerobic pyrite oxidation.•The mean proportion of sulfate oxygen derived from water was 40% in AMD.•Analysis revealed reservoir sediment contamination as a remediation priority.
Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems. |
|---|---|
| AbstractList | Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems. [Display omitted] •Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine drainage (AMD) were different.•The sulfate in AMD was predominantly influenced by aerobic pyrite oxidation.•The mean proportion of sulfate oxygen derived from water was 40% in AMD.•Analysis revealed reservoir sediment contamination as a remediation priority. Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems. |
| Author | Sun, Jing Wu, Pan Strosnider, William H.J. Kobayashi, Tatsuaki |
| Author_xml | – sequence: 1 givenname: Jing surname: Sun fullname: Sun, Jing email: sunjingchiba@gmail.com organization: College of Resources and Environmental Engineering, Guizhou University, Huaxi, 550004 Guiyang, Guizhou, China – sequence: 2 givenname: Tatsuaki surname: Kobayashi fullname: Kobayashi, Tatsuaki organization: Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan – sequence: 3 givenname: William H.J. surname: Strosnider fullname: Strosnider, William H.J. organization: Environmental Engineering Program, Center for Watershed Research & Service, Saint Francis University, 117 Evergreen Drive, Loretto, PA 15940, USA – sequence: 4 givenname: Pan surname: Wu fullname: Wu, Pan email: pwu@gzu.edu.cn organization: College of Resources and Environmental Engineering, Guizhou University, Huaxi, 550004 Guiyang, Guizhou, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-BCFHL7vmYzfp4kGk-AWCB_Uc0uxEU7ebmmTV_nuj7clL5zIMvM8M80zQqPc9IHRKSUkJFefLcvm2aYPvSkaoLIkoCREHaExnsimYJHKExoQwVlDRVEdoEuOS5OK8GqOnp6QXHeA4dHYIWPct9t-bV-ixiz75NUSsI34Fb95g5YzucAraQIjY2z9IJ8Cux-86xIS_8hTiMTq0uotwsutT9HJz_Ty_Kx4eb-_nVw-FrjhNhRR13diaVFAbSupmxuqmqkTLLCMNSKmlbaRdzEBzyWsBHIASsFBZWAjBOZ-is-3edfAfA8SkVi4a6Drdgx-iYvnJfInRJkfrbdQEH2MAq9bBrXTYKErUr0S1VDuJ6leiIkJliZm7-McZl3Ryvs8aXLeXvtzSkC18OggqGge9gdYFMEm13u3Z8ANsRZP7 |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_148420 crossref_primary_10_1016_j_scitotenv_2024_172298 crossref_primary_10_1016_j_jhydrol_2024_131614 crossref_primary_10_1016_j_chemosphere_2020_129134 crossref_primary_10_1007_s10653_021_00869_3 crossref_primary_10_1016_j_jenvman_2022_114996 crossref_primary_10_1016_j_envres_2023_117508 crossref_primary_10_1016_j_foodcont_2021_108165 crossref_primary_10_3390_w16192850 crossref_primary_10_1021_acsomega_2c04161 crossref_primary_10_1016_j_apgeochem_2018_11_018 crossref_primary_10_1007_s12665_021_09399_8 crossref_primary_10_1016_j_chemosphere_2020_127946 crossref_primary_10_1016_j_meatsci_2020_108113 crossref_primary_10_3390_ijerph192114293 crossref_primary_10_1016_j_scitotenv_2024_177994 crossref_primary_10_1007_s10653_022_01242_8 crossref_primary_10_1111_gwat_13363 crossref_primary_10_1007_s12665_024_11476_7 crossref_primary_10_1007_s10040_022_02559_5 crossref_primary_10_1016_j_jes_2023_12_012 crossref_primary_10_1007_s10661_023_10944_0 crossref_primary_10_1134_S009780782360153X crossref_primary_10_1016_j_ecoenv_2022_113496 crossref_primary_10_1016_j_apgeochem_2020_104642 crossref_primary_10_1016_j_jhydrol_2020_125746 crossref_primary_10_1016_j_scitotenv_2023_168580 crossref_primary_10_1007_s10230_021_00833_8 crossref_primary_10_1016_j_scitotenv_2024_174375 crossref_primary_10_1016_j_scitotenv_2022_160368 crossref_primary_10_2166_wst_2021_259 crossref_primary_10_1016_j_chemosphere_2019_06_066 crossref_primary_10_1016_j_apgeochem_2021_105109 crossref_primary_10_1016_j_gexplo_2019_106437 crossref_primary_10_1029_2022WR033980 crossref_primary_10_1007_s10230_022_00861_y crossref_primary_10_1016_j_jclepro_2019_118646 crossref_primary_10_1007_s10653_020_00525_2 crossref_primary_10_1080_10256016_2025_2456557 crossref_primary_10_1016_j_jhydrol_2021_126804 crossref_primary_10_1016_j_apgeochem_2019_104464 crossref_primary_10_1016_j_jhydrol_2019_05_092 crossref_primary_10_1021_acsomega_2c08145 crossref_primary_10_1016_j_envpol_2024_125495 crossref_primary_10_1016_j_quascirev_2024_108684 crossref_primary_10_1016_j_jclepro_2020_123813 crossref_primary_10_1016_j_scitotenv_2024_171310 crossref_primary_10_1016_j_jfca_2021_103856 crossref_primary_10_1016_j_scitotenv_2024_177372 crossref_primary_10_1016_j_scitotenv_2025_179120 crossref_primary_10_1016_j_scitotenv_2020_143223 crossref_primary_10_3390_ijerph192114434 crossref_primary_10_1016_j_apgeochem_2022_105351 crossref_primary_10_1016_j_ecoenv_2022_114286 crossref_primary_10_1016_j_ecoenv_2019_06_001 crossref_primary_10_1016_j_jhydrol_2018_04_072 |
| Cites_doi | 10.1126/science.167.3921.1121 10.1016/j.jhydrol.2013.01.017 10.1016/j.gca.2007.04.017 10.1016/j.scitotenv.2015.10.139 10.1038/308538a0 10.1144/SP279.11 10.1016/j.chemgeo.2003.11.009 10.1007/s12665-012-2083-3 10.1029/JB073i018p06099 10.1016/j.jhydrol.2016.12.009 10.1016/S0040-6090(02)00989-6 10.1029/JC078i015p02625 10.1016/j.scitotenv.2004.09.002 10.1016/j.apgeochem.2007.04.018 10.1016/0016-7037(84)90315-6 10.1016/j.chemgeo.2011.01.017 10.1007/s10533-012-9807-z 10.1016/j.apgeochem.2004.11.004 10.1016/j.chemgeo.2006.11.014 10.1016/j.scitotenv.2014.04.008 10.1007/s10230-004-0060-0 10.1080/10643389509388477 10.1146/annurev.earth.24.1.225 10.1002/(SICI)1096-9837(200002)25:2<155::AID-ESP55>3.0.CO;2-P 10.2134/jeq1995.00472425002400030021x 10.1016/j.scitotenv.2013.06.067 10.3133/ofr9894 10.1007/s00254-008-1423-9 10.1128/AEM.65.7.2987-2993.1999 10.1007/s10498-007-9017-9 10.1016/j.chemgeo.2009.05.026 10.1016/j.earscirev.2011.07.003 10.1007/s12665-013-2734-z 10.1016/j.jhydrol.2013.09.029 10.2113/gsecongeo.104.8.1213 10.1016/S0883-2927(02)00018-5 10.2113/gsecongeo.61.8.1428 10.1016/j.apgeochem.2013.01.008 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2017.06.006 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| EndPage | 252 |
| ExternalDocumentID | 10_1016_j_jhydrol_2017_06_006 S0022169417304092 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a431t-76559f504e5c10598259446d2f209e77a7f97fb8ea37356e3ee10efe4feb66333 |
| IEDL.DBID | .~1 |
| ISSN | 0022-1694 |
| IngestDate | Sun Sep 28 12:26:00 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 Wed Oct 01 03:47:31 EDT 2025 Fri Feb 23 02:26:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Karst water Hydrochemistry Stable isotope composition Acid mine drainage |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a431t-76559f504e5c10598259446d2f209e77a7f97fb8ea37356e3ee10efe4feb66333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000431219 |
| PQPubID | 24069 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2000431219 crossref_primary_10_1016_j_jhydrol_2017_06_006 crossref_citationtrail_10_1016_j_jhydrol_2017_06_006 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2017_06_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2017 2017-08-00 20170801 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Dogramaci, McLean, Skrzypek (b0025) 2017; 545 Szynkiewicz, Witcher, Modelska, Borrok, Pratt (b0200) 2011; 283 Nordstrom (b0135) 1982 Knöller, Fauville, Mayer, Strauch, Friese, Veizer (b0115) 2004; 204 Taylor, Wheeler (b0205) 1994; 550 Smedley, Kinniburgh (b9005) 2002; 17 Wu, Tao, Yang (b0240) 2009; 28 Evangelou (b0045) 1995; 24 Singer, Stumm (b0170) 1970; 167 Wynn, Borsato, Baker, Frisia, Miorandi, Fairchild (b0245) 2013; 114 Stumm, Morgan (b0180) 1996 Galván, Olías, Cerón, Cánovas, Pérez-López, Nieto (b0065) 2013; 463 Horibe, Shigehara, Takakuwa (b0100) 1973; 78 Strosnider, Llanos López, LaBar, Palmer, Nairn (b0175) 2014; 71 Taylor, Wheeler, Nordstrom (b0215) 1984; 48 Karper, P.L., 1998. Water-quality Data (July 1994 Through September 1996) and Statistical Summaries of Data for Surface Water in the Sand Coulee Coal Area, Montana. US Geol. Surv., Open-File, Report 98–94. Sun, Tang, Wu, Strosnider, Han (b0190) 2013; 504 Roesler, Gammons, Druschel, Oduro, Poulson (b0145) 2007; 13 Samborska, Halas, Bottrell (b0150) 2013; 486 Field (b0055) 1966; 61 Fowler, Holmes, Crundwell (b0060) 1999; 65 Johnson, Hallberg (b0105) 2005; 338 Wolkersdorfer, Bowell (b0230) 2004; 23 Sun, Tang, Wu, Liu, Zhang (b0185) 2013; 69 Evangelou, Zhang (b0050) 1995; 25 Taylor, Wheeler, Nordstrom (b0210) 1984; 308 Bottrell, Webber, Gunn, Worthington (b0015) 2000; 25 Buzatu, Dill, Buzgar, Damian, Maftei, Apopei (b0020) 2016; 542 Wu, Tang, Liu, Zhu, Pei, Feng (b0235) 2009; 57 Morin, Hutt (b0130) 1997 Nordstrom, Southam (b0140) 1997; 35 Lloyd (b0125) 1968; 73 Gammons, Brown, Poulson, Henderson (b0080) 2013; 31 Gammons, Snyder, Poulson, Petritz (b0070) 2009; 104 Sun, Tang, Wu, Strosnider (b0195) 2014; 487 Garrels, Thompson (b0085) 1960; 258 Xiao, Liu, Li (b0250) 2003; 32 Krouse, Grinenko (b0120) 1991 Schulte, Van Geldern, Freitag, Karim, Négrel, Petelet-Giraud, Probst, Probst, Telmer, Veizer, Barth (b0160) 2011; 109 Edraki, Golding, Baublys, Lawrence (b0030) 2005; 20 Gammons, Duaime, Parker, Poulson, Kennelly (b0075) 2010; 269 Elswick, Hower, Carmo, Sun, Mardon (b0040) 2007; 22 Seal, Kuiry, Heinmen (b0165) 2003; 423 Apha (b9000) 1998 Balci, Shanks, Mayer, Mandernack (b0005) 2007; 71 Gat (b0090) 1996; 24 Bottrel (b0010) 2007; 279 Hoefs (b0095) 2009 Einsiedl, Schäfer, Northrup (b0035) 2007; 238 Bottrel (10.1016/j.jhydrol.2017.06.006_b0010) 2007; 279 Horibe (10.1016/j.jhydrol.2017.06.006_b0100) 1973; 78 Singer (10.1016/j.jhydrol.2017.06.006_b0170) 1970; 167 Strosnider (10.1016/j.jhydrol.2017.06.006_b0175) 2014; 71 Morin (10.1016/j.jhydrol.2017.06.006_b0130) 1997 Seal (10.1016/j.jhydrol.2017.06.006_b0165) 2003; 423 Nordstrom (10.1016/j.jhydrol.2017.06.006_b0135) 1982 Galván (10.1016/j.jhydrol.2017.06.006_b0065) 2013; 463 Nordstrom (10.1016/j.jhydrol.2017.06.006_b0140) 1997; 35 Gammons (10.1016/j.jhydrol.2017.06.006_b0080) 2013; 31 Field (10.1016/j.jhydrol.2017.06.006_b0055) 1966; 61 Wolkersdorfer (10.1016/j.jhydrol.2017.06.006_b0230) 2004; 23 Wynn (10.1016/j.jhydrol.2017.06.006_b0245) 2013; 114 Sun (10.1016/j.jhydrol.2017.06.006_b0185) 2013; 69 Einsiedl (10.1016/j.jhydrol.2017.06.006_b0035) 2007; 238 Schulte (10.1016/j.jhydrol.2017.06.006_b0160) 2011; 109 Wu (10.1016/j.jhydrol.2017.06.006_b0235) 2009; 57 Taylor (10.1016/j.jhydrol.2017.06.006_b0215) 1984; 48 Dogramaci (10.1016/j.jhydrol.2017.06.006_b0025) 2017; 545 Taylor (10.1016/j.jhydrol.2017.06.006_b0210) 1984; 308 Roesler (10.1016/j.jhydrol.2017.06.006_b0145) 2007; 13 Bottrell (10.1016/j.jhydrol.2017.06.006_b0015) 2000; 25 Lloyd (10.1016/j.jhydrol.2017.06.006_b0125) 1968; 73 Hoefs (10.1016/j.jhydrol.2017.06.006_b0095) 2009 Evangelou (10.1016/j.jhydrol.2017.06.006_b0045) 1995; 24 Wu (10.1016/j.jhydrol.2017.06.006_b0240) 2009; 28 Gammons (10.1016/j.jhydrol.2017.06.006_b0070) 2009; 104 Gat (10.1016/j.jhydrol.2017.06.006_b0090) 1996; 24 Samborska (10.1016/j.jhydrol.2017.06.006_b0150) 2013; 486 Sun (10.1016/j.jhydrol.2017.06.006_b0195) 2014; 487 Johnson (10.1016/j.jhydrol.2017.06.006_b0105) 2005; 338 Gammons (10.1016/j.jhydrol.2017.06.006_b0075) 2010; 269 Fowler (10.1016/j.jhydrol.2017.06.006_b0060) 1999; 65 Sun (10.1016/j.jhydrol.2017.06.006_b0190) 2013; 504 Elswick (10.1016/j.jhydrol.2017.06.006_b0040) 2007; 22 Taylor (10.1016/j.jhydrol.2017.06.006_b0205) 1994; 550 Knöller (10.1016/j.jhydrol.2017.06.006_b0115) 2004; 204 Szynkiewicz (10.1016/j.jhydrol.2017.06.006_b0200) 2011; 283 Evangelou (10.1016/j.jhydrol.2017.06.006_b0050) 1995; 25 Buzatu (10.1016/j.jhydrol.2017.06.006_b0020) 2016; 542 10.1016/j.jhydrol.2017.06.006_b0110 Krouse (10.1016/j.jhydrol.2017.06.006_b0120) 1991 Garrels (10.1016/j.jhydrol.2017.06.006_b0085) 1960; 258 Stumm (10.1016/j.jhydrol.2017.06.006_b0180) 1996 Apha (10.1016/j.jhydrol.2017.06.006_b9000) 1998 Xiao (10.1016/j.jhydrol.2017.06.006_b0250) 2003; 32 Balci (10.1016/j.jhydrol.2017.06.006_b0005) 2007; 71 Smedley (10.1016/j.jhydrol.2017.06.006_b9005) 2002; 17 Edraki (10.1016/j.jhydrol.2017.06.006_b0030) 2005; 20 |
| References_xml | – volume: 65 start-page: 2987 year: 1999 end-page: 2993 ident: b0060 article-title: Mechanism of pyrite dissolution in the presence of thiobacillus ferrooxidans publication-title: Appl. Environ. Microb. – volume: 13 start-page: 211 year: 2007 end-page: 235 ident: b0145 article-title: Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction publication-title: Aquat. Geochem. – volume: 61 start-page: 1428 year: 1966 end-page: 1435 ident: b0055 article-title: Sulfur isotopic method for discriminating between sulfates of hypogene and supergene origin publication-title: Econ. Geol. – volume: 22 start-page: 2065 year: 2007 end-page: 2077 ident: b0040 article-title: Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant publication-title: Appl. Geochem. – reference: Karper, P.L., 1998. Water-quality Data (July 1994 Through September 1996) and Statistical Summaries of Data for Surface Water in the Sand Coulee Coal Area, Montana. US Geol. Surv., Open-File, Report 98–94. – volume: 17 start-page: 517 year: 2002 end-page: 568 ident: b9005 article-title: A review of the source, behaviour and distribution of arsenic in natural waters publication-title: Appl. Geochem. – volume: 283 start-page: 194 year: 2011 end-page: 209 ident: b0200 article-title: Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA) publication-title: Chem. Geol. – volume: 114 start-page: 255 year: 2013 end-page: 267 ident: b0245 article-title: Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at Grotta di Ernesto, Italy publication-title: Biogeochemistry – volume: 71 start-page: 3796 year: 2007 end-page: 3811 ident: b0005 article-title: Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite publication-title: Geochim. Cosmochim. Acta – year: 2009 ident: b0095 article-title: Stable Isotope Geochemistry – volume: 104 start-page: 1213 year: 2009 end-page: 1234 ident: b0070 article-title: Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana publication-title: Econ. Geol. – volume: 23 start-page: 162 year: 2004 end-page: 182 ident: b0230 article-title: Contemporary reviews of mine water studies in Europe, Part 1. Mine publication-title: Water Environ. – volume: 279 start-page: 123 year: 2007 end-page: 135 ident: b0010 article-title: Stable isotopes in aqueous sulphate as tracers of natural and contaminant sulphate sources: a reconnaissance study of the Xingwen karst aquifer, Sichuan, China publication-title: Geol. Soc. Lond. Spec. Publ. – volume: 308 start-page: 538 year: 1984 end-page: 541 ident: b0210 article-title: Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation publication-title: Nature – year: 1991 ident: b0120 article-title: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment – volume: 167 start-page: 1121 year: 1970 end-page: 1123 ident: b0170 article-title: Acidic mine drainage: the rate-determining step publication-title: Science – volume: 25 start-page: 155 year: 2000 end-page: 165 ident: b0015 article-title: The geochemistry of sulphur in a mixed allogenic–autogenic karst catchment, Castleton, Derbyshire, UK publication-title: Earth Surf. Proc. Land. – volume: 463 start-page: 572 year: 2013 end-page: 580 ident: b0065 article-title: Assessment of the dissolved pollutant flux of the Odiel River (SW Spain) during a wet period publication-title: Sci. Total Environ. – volume: 504 start-page: 115 year: 2013 end-page: 124 ident: b0190 article-title: Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China publication-title: J. Hydrol. – volume: 20 start-page: 789 year: 2005 end-page: 805 ident: b0030 article-title: Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia publication-title: Appl. Geochem. – volume: 35 start-page: 361 year: 1997 end-page: 390 ident: b0140 article-title: Geomicrobiology of sulfide mineral oxidation publication-title: Rev. Mineral. – volume: 57 start-page: 1457 year: 2009 end-page: 1467 ident: b0235 article-title: Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in Southwestern China publication-title: Environ. Geol. – volume: 423 start-page: 243 year: 2003 end-page: 251 ident: b0165 article-title: Effect of glycine and hydrogen peroxide on chemical–mechanical planarization of copper publication-title: Thin Solid Films – volume: 31 start-page: 228 year: 2013 end-page: 238 ident: b0080 article-title: Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage publication-title: Appl. Geochem. – volume: 69 start-page: 2623 year: 2013 end-page: 2632 ident: b0185 article-title: Migration of Cu, Zn, Cd and As in epikarst water affected by acid mine drainage at a coalfield basin, Xingren, Southwest China publication-title: Environ. Earth Sci. – volume: 24 start-page: 535 year: 1995 end-page: 542 ident: b0045 article-title: Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings publication-title: J. Environ. Qual. – start-page: 46 year: 1982 ident: b0135 article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals publication-title: Acid Sulfate Weathering: Pedogeochemistry and Relationship to Manipulation of Soil Minerals – year: 1996 ident: b0180 article-title: Aquatic Chemistry – volume: 71 start-page: 3223 year: 2014 end-page: 3234 ident: b0175 article-title: Unabated acid mine drainage from Cerro Rico de Potosí, Bolivia: Uncommon constituents of concern impact the Rio Pilcomayo headwaters publication-title: Environ. Earth Sci. – volume: 28 start-page: 403 year: 2009 ident: b0240 article-title: Arsenic species in stream sediment at a high arsenic coal publication-title: Bull. Miner. Petrol. Geochem. – volume: 78 start-page: 2625 year: 1973 end-page: 2629 ident: b0100 article-title: Isotope separation factor of carbon dioxide water system and isotopic composition of atmospheric oxygen publication-title: J. Geophys. Res. – year: 1998 ident: b9000 article-title: WEF, Standard Methods for the Examination of Water and Wastewater 20th Edition-4500-NO3-D nitrate Electrode Method – volume: 109 start-page: 20 year: 2011 end-page: 31 ident: b0160 article-title: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances publication-title: Earth Sci. Rev. – year: 1997 ident: b0130 article-title: Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies – volume: 487 start-page: 123 year: 2014 end-page: 129 ident: b0195 article-title: Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield publication-title: Sci. Total Environ. – volume: 73 start-page: 6099 year: 1968 end-page: 6110 ident: b0125 article-title: Oxygen isotope behavior in the sulfate water system publication-title: J. Geophys. Res. – volume: 258 start-page: 57 year: 1960 end-page: 67 ident: b0085 article-title: Oxidation of pyrite by iron sulfate solutions publication-title: Am. J. Sci. – volume: 486 start-page: 136 year: 2013 end-page: 150 ident: b0150 article-title: Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland publication-title: J. Hydrol. – volume: 238 start-page: 268 year: 2007 end-page: 276 ident: b0035 article-title: Combined sulfur K-edge XANES spectroscopy and stable isotope analyses of fulvic acids and groundwater sulfate identify sulfur cycling in a karstic catchment area publication-title: Chem. Geol. – volume: 48 start-page: 2669 year: 1984 end-page: 2678 ident: b0215 article-title: Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite publication-title: Geochim. Cosmochim. Acta – volume: 269 start-page: 100 year: 2010 end-page: 112 ident: b0075 article-title: Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA publication-title: Chem. Geol. – volume: 204 start-page: 303 year: 2004 end-page: 323 ident: b0115 article-title: Sulfur cycling in an acid mining lake and its vicinity in Lusatia publication-title: Germany. Chem. Geol. – volume: 338 start-page: 3 year: 2005 end-page: 14 ident: b0105 article-title: Acid mine drainage remediation options: a review publication-title: Sci. Total Environ. – volume: 542 start-page: 629 year: 2016 end-page: 641 ident: b0020 article-title: Efflorescent sulfates from Baia Sprie mining area (Romania) – Acid mine drainage and climatological approach publication-title: Sci. Total Environ. – volume: 550 start-page: 414 year: 1994 end-page: 581 ident: b0205 article-title: Sulfur-and oxygen-isotope geochemistry of acid mine drainage in the western United States publication-title: Environ. Geochem. Sulfide Oxid – volume: 25 start-page: 141 year: 1995 end-page: 199 ident: b0050 article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention publication-title: Crit. Rev. Env. Sci. Tec. – volume: 24 start-page: 225 year: 1996 end-page: 262 ident: b0090 article-title: Oxygen and hydrogen isotopes in the hydrologic cycle publication-title: Annu. Rev. Earth Planet. Sci. – volume: 32 start-page: 248 year: 2003 end-page: 254 ident: b0250 article-title: Geochemical characteristics of sulfur and nitrogen isotopic compositions in rains of Guiyang in summer publication-title: Geochemistry – volume: 545 start-page: 288 year: 2017 end-page: 298 ident: b0025 article-title: Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia publication-title: J. Hydrol. – volume: 167 start-page: 1121 year: 1970 ident: 10.1016/j.jhydrol.2017.06.006_b0170 article-title: Acidic mine drainage: the rate-determining step publication-title: Science doi: 10.1126/science.167.3921.1121 – volume: 486 start-page: 136 year: 2013 ident: 10.1016/j.jhydrol.2017.06.006_b0150 article-title: Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.01.017 – volume: 71 start-page: 3796 year: 2007 ident: 10.1016/j.jhydrol.2017.06.006_b0005 article-title: Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.04.017 – volume: 542 start-page: 629 year: 2016 ident: 10.1016/j.jhydrol.2017.06.006_b0020 article-title: Efflorescent sulfates from Baia Sprie mining area (Romania) – Acid mine drainage and climatological approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.10.139 – year: 2009 ident: 10.1016/j.jhydrol.2017.06.006_b0095 – volume: 308 start-page: 538 year: 1984 ident: 10.1016/j.jhydrol.2017.06.006_b0210 article-title: Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation publication-title: Nature doi: 10.1038/308538a0 – volume: 279 start-page: 123 year: 2007 ident: 10.1016/j.jhydrol.2017.06.006_b0010 article-title: Stable isotopes in aqueous sulphate as tracers of natural and contaminant sulphate sources: a reconnaissance study of the Xingwen karst aquifer, Sichuan, China publication-title: Geol. Soc. Lond. Spec. Publ. doi: 10.1144/SP279.11 – volume: 204 start-page: 303 year: 2004 ident: 10.1016/j.jhydrol.2017.06.006_b0115 article-title: Sulfur cycling in an acid mining lake and its vicinity in Lusatia publication-title: Germany. Chem. Geol. doi: 10.1016/j.chemgeo.2003.11.009 – volume: 69 start-page: 2623 year: 2013 ident: 10.1016/j.jhydrol.2017.06.006_b0185 article-title: Migration of Cu, Zn, Cd and As in epikarst water affected by acid mine drainage at a coalfield basin, Xingren, Southwest China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-2083-3 – volume: 32 start-page: 248 year: 2003 ident: 10.1016/j.jhydrol.2017.06.006_b0250 article-title: Geochemical characteristics of sulfur and nitrogen isotopic compositions in rains of Guiyang in summer publication-title: Geochemistry – volume: 73 start-page: 6099 year: 1968 ident: 10.1016/j.jhydrol.2017.06.006_b0125 article-title: Oxygen isotope behavior in the sulfate water system publication-title: J. Geophys. Res. doi: 10.1029/JB073i018p06099 – volume: 545 start-page: 288 year: 2017 ident: 10.1016/j.jhydrol.2017.06.006_b0025 article-title: Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.12.009 – volume: 423 start-page: 243 year: 2003 ident: 10.1016/j.jhydrol.2017.06.006_b0165 article-title: Effect of glycine and hydrogen peroxide on chemical–mechanical planarization of copper publication-title: Thin Solid Films doi: 10.1016/S0040-6090(02)00989-6 – volume: 78 start-page: 2625 year: 1973 ident: 10.1016/j.jhydrol.2017.06.006_b0100 article-title: Isotope separation factor of carbon dioxide water system and isotopic composition of atmospheric oxygen publication-title: J. Geophys. Res. doi: 10.1029/JC078i015p02625 – year: 1997 ident: 10.1016/j.jhydrol.2017.06.006_b0130 – year: 1996 ident: 10.1016/j.jhydrol.2017.06.006_b0180 – volume: 338 start-page: 3 year: 2005 ident: 10.1016/j.jhydrol.2017.06.006_b0105 article-title: Acid mine drainage remediation options: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.09.002 – volume: 22 start-page: 2065 year: 2007 ident: 10.1016/j.jhydrol.2017.06.006_b0040 article-title: Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.04.018 – volume: 35 start-page: 361 year: 1997 ident: 10.1016/j.jhydrol.2017.06.006_b0140 article-title: Geomicrobiology of sulfide mineral oxidation publication-title: Rev. Mineral. – volume: 48 start-page: 2669 year: 1984 ident: 10.1016/j.jhydrol.2017.06.006_b0215 article-title: Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(84)90315-6 – volume: 283 start-page: 194 year: 2011 ident: 10.1016/j.jhydrol.2017.06.006_b0200 article-title: Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA) publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2011.01.017 – volume: 114 start-page: 255 year: 2013 ident: 10.1016/j.jhydrol.2017.06.006_b0245 article-title: Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at Grotta di Ernesto, Italy publication-title: Biogeochemistry doi: 10.1007/s10533-012-9807-z – volume: 20 start-page: 789 year: 2005 ident: 10.1016/j.jhydrol.2017.06.006_b0030 article-title: Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.11.004 – volume: 238 start-page: 268 year: 2007 ident: 10.1016/j.jhydrol.2017.06.006_b0035 article-title: Combined sulfur K-edge XANES spectroscopy and stable isotope analyses of fulvic acids and groundwater sulfate identify sulfur cycling in a karstic catchment area publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2006.11.014 – volume: 487 start-page: 123 year: 2014 ident: 10.1016/j.jhydrol.2017.06.006_b0195 article-title: Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.04.008 – volume: 23 start-page: 162 year: 2004 ident: 10.1016/j.jhydrol.2017.06.006_b0230 article-title: Contemporary reviews of mine water studies in Europe, Part 1. Mine publication-title: Water Environ. doi: 10.1007/s10230-004-0060-0 – volume: 25 start-page: 141 year: 1995 ident: 10.1016/j.jhydrol.2017.06.006_b0050 article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389509388477 – volume: 28 start-page: 403 issue: Suppl year: 2009 ident: 10.1016/j.jhydrol.2017.06.006_b0240 article-title: Arsenic species in stream sediment at a high arsenic coal publication-title: Bull. Miner. Petrol. Geochem. – volume: 24 start-page: 225 year: 1996 ident: 10.1016/j.jhydrol.2017.06.006_b0090 article-title: Oxygen and hydrogen isotopes in the hydrologic cycle publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.24.1.225 – start-page: 46 year: 1982 ident: 10.1016/j.jhydrol.2017.06.006_b0135 article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals – volume: 25 start-page: 155 year: 2000 ident: 10.1016/j.jhydrol.2017.06.006_b0015 article-title: The geochemistry of sulphur in a mixed allogenic–autogenic karst catchment, Castleton, Derbyshire, UK publication-title: Earth Surf. Proc. Land. doi: 10.1002/(SICI)1096-9837(200002)25:2<155::AID-ESP55>3.0.CO;2-P – volume: 24 start-page: 535 year: 1995 ident: 10.1016/j.jhydrol.2017.06.006_b0045 article-title: Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings publication-title: J. Environ. Qual. doi: 10.2134/jeq1995.00472425002400030021x – year: 1991 ident: 10.1016/j.jhydrol.2017.06.006_b0120 – volume: 550 start-page: 414 year: 1994 ident: 10.1016/j.jhydrol.2017.06.006_b0205 article-title: Sulfur-and oxygen-isotope geochemistry of acid mine drainage in the western United States publication-title: Environ. Geochem. Sulfide Oxid – volume: 463 start-page: 572 year: 2013 ident: 10.1016/j.jhydrol.2017.06.006_b0065 article-title: Assessment of the dissolved pollutant flux of the Odiel River (SW Spain) during a wet period publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.06.067 – ident: 10.1016/j.jhydrol.2017.06.006_b0110 doi: 10.3133/ofr9894 – volume: 57 start-page: 1457 year: 2009 ident: 10.1016/j.jhydrol.2017.06.006_b0235 article-title: Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in Southwestern China publication-title: Environ. Geol. doi: 10.1007/s00254-008-1423-9 – volume: 65 start-page: 2987 year: 1999 ident: 10.1016/j.jhydrol.2017.06.006_b0060 article-title: Mechanism of pyrite dissolution in the presence of thiobacillus ferrooxidans publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.65.7.2987-2993.1999 – volume: 13 start-page: 211 year: 2007 ident: 10.1016/j.jhydrol.2017.06.006_b0145 article-title: Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction publication-title: Aquat. Geochem. doi: 10.1007/s10498-007-9017-9 – volume: 269 start-page: 100 year: 2010 ident: 10.1016/j.jhydrol.2017.06.006_b0075 article-title: Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.05.026 – volume: 109 start-page: 20 year: 2011 ident: 10.1016/j.jhydrol.2017.06.006_b0160 article-title: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2011.07.003 – volume: 71 start-page: 3223 year: 2014 ident: 10.1016/j.jhydrol.2017.06.006_b0175 article-title: Unabated acid mine drainage from Cerro Rico de Potosí, Bolivia: Uncommon constituents of concern impact the Rio Pilcomayo headwaters publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2734-z – year: 1998 ident: 10.1016/j.jhydrol.2017.06.006_b9000 – volume: 504 start-page: 115 year: 2013 ident: 10.1016/j.jhydrol.2017.06.006_b0190 article-title: Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.09.029 – volume: 258 start-page: 57 year: 1960 ident: 10.1016/j.jhydrol.2017.06.006_b0085 article-title: Oxidation of pyrite by iron sulfate solutions publication-title: Am. J. Sci. – volume: 104 start-page: 1213 year: 2009 ident: 10.1016/j.jhydrol.2017.06.006_b0070 article-title: Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana publication-title: Econ. Geol. doi: 10.2113/gsecongeo.104.8.1213 – volume: 17 start-page: 517 year: 2002 ident: 10.1016/j.jhydrol.2017.06.006_b9005 article-title: A review of the source, behaviour and distribution of arsenic in natural waters publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(02)00018-5 – volume: 61 start-page: 1428 year: 1966 ident: 10.1016/j.jhydrol.2017.06.006_b0055 article-title: Sulfur isotopic method for discriminating between sulfates of hypogene and supergene origin publication-title: Econ. Geol. doi: 10.2113/gsecongeo.61.8.1428 – volume: 31 start-page: 228 year: 2013 ident: 10.1016/j.jhydrol.2017.06.006_b0080 article-title: Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.01.008 |
| SSID | ssj0000334 |
| Score | 2.4672747 |
| Snippet | [Display omitted]
•Elucidating δ34SSO4, δ18OSO4 and δ18OH2O dynamics can guide remediation strategies.•Isotopic compositions with and without acid mine... Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 245 |
| SubjectTerms | Acid mine drainage air anaerobic conditions aquifers atmospheric deposition humans Hydrochemistry Karst water karsts mining oxidation oxygen planning principal component analysis pyrite remediation sediments Stable isotope composition stable isotopes sulfates sulfur tracer techniques |
| Title | Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2017.06.006 https://www.proquest.com/docview/2000431219 |
| Volume | 551 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFfGJ9lBW8ps1722MplqrQixZ6C7vprE0tSWlStBd_uzN5WBSh4DEhsyyzk5lv2JlvGLvTxHiCYcMgrhjDtW1pKMvyDQQLuG8B4Mm8QHbkD8fu48Sb1Fi_6oWhssrS9xc-PffW5Zt2qc32Moqox9e2LerDRCPFLIX8sOsKmmLQ-tyWeZiO41aM4fT1tounPW_NZ5vpKqEbCEvkNJ40-Ojv-PTLU-fhZ3DEDkvcyHvF1o5ZDeITtl-OMJ9tTtkzwka1AJ6uF3q94jKe8uRjg-bBozTJkiWkXKb8FWhCVk4RwLOVDBH88UTnQgg6eRTzN8x0M_4uiXXzjI0H9y_9oVFOTDAkAoHMED4mCNozXfBCAk6Y_nUx35va2ja7IIQUuiu06oB0hOP54ABYJmhwNSiEHo5zzupxEsMF42HH1r5QSmO4wqTGUgI_xHUt7SmF59pgbqWnICzpxGmqxSKo6sbmQanegNQb5PVzfoO1vsWWBZ_GLoFOdQjBD8MI0OfvEr2tDi3An4ZuQmQMyTql2ZtEKoTe-vL_y1-xA3oqqgGvWT1breEGEUqmmrkJNtle7-FpOPoC1uXmAw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPODF-Iz4XBOvBfpcOBoiQUUuQsJtswuzApKW0BLl4m93prQSjQmJ17az2cxOZ77JznzD2K0hxhMMGxZxxVie4yhL23ZgIVjAfQsAX6UFst2g3fceB_6gwJp5LwyVVWa-f-3TU2-dPalm2qzOJxPq8XUcm_ow0UgxS0E_vOP5jqAMrPK5qfOoua6XU4bT55s2nuq0Mh2vRouIriBskfJ40uSjvwPUL1edxp_WPtvLgCO_W-_tgBUgPGSlbIb5eHXEXhA36hnweDkzywVX4YhHHyu0Dz6JoySaQ8xVzF-BRmSlHAE8Waghoj8emVQIUSefhPwNU92Evyui3Txm_dZ9r9m2spEJlkIkkFgiwAzB-DUP_CEhJ8z_GpjwjRzj1BoghBKmIYyug3KF6wfgAtg1MOAZ0Ig9XPeEFcMohFPGh3XHBEJrg_EKsxpbC_wQ17WNrzUebJl5uZ7kMOMTp7EWM5kXjk1lpl5J6pVpAV1QZpVvsfmaUGObQD0_BPnDMiQ6_W2iN_mhSfxr6CpEhRAtYxq-SaxC6K7P_r_8NSu1e88d2XnoPp2zXXqzLg28YMVksYRLhCuJvkrN8Qs7QOeY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+sulfur+and+oxygen+isotopes+as+geochemical+tracers+of+sulfate+in+karst+waters&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Sun%2C+Jing&rft.au=Kobayashi%2C+Tatsuaki&rft.au=Strosnider%2C+William+H.J.&rft.au=Wu%2C+Pan&rft.date=2017-08-01&rft.issn=0022-1694&rft.volume=551+p.245-252&rft.spage=245&rft.epage=252&rft_id=info:doi/10.1016%2Fj.jhydrol.2017.06.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |