Assessing Aerobic Biotransformation of Hexachlorocyclohexane Isomers by Compound-Specific Isotope Analysis

Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of d...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 13; pp. 7419 - 7431
Main Authors Schilling, Iris E, Bopp, Charlotte E, Lal, Rup, Kohler, Hans-Peter E, Hofstetter, Thomas B
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.07.2019
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/acs.est.9b01007

Cover

More Information
Summary:Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of decades and are thus challenging to assess. Here, we explored the use of compound-specific isotope analysis (CSIA) to track the aerobic biodegradation and biotransformation pathways of the most prominent isomers, namely, (−)-α-, (+)-α-, β-, γ-, and δ-HCH, through changes of their C and H isotope composition in assays of LinA2 and LinB enzymes. Dehydrochlorination of (+)-α-, γ-, and δ-HCH catalyzed by LinA2 was subject to substantial C and H isotope fraction with apparent 13C- and 2H-kinetic isotope effects (AKIEs) of up to 1.029 ± 0.001 and 6.7 ± 2.9, respectively, which are indicative of bimolecular eliminations. Hydrolytic dechlorination of δ-HCH by LinB exhibited even larger C but substantially smaller H isotope fractionation with 13C- and 2H-AKIEs of 1.073 ± 0.006 and 1.41 ± 0.04, respectively, which are typical for nucleophilic substitutions. The systematic evaluation of isomer-specific phenomena showed that, in addition to contaminant uptake limitations, diffusion-limited turnover ((−)-α-HCH), substrate dissolution (β-HCH), and potentially competing reactions catalyzed by constitutively expressed enzymes might bias the assessment of HCH biodegradation by CSIA at contaminated sites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.9b01007