Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification
Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To de...
Saved in:
| Published in | ACS nano Vol. 18; no. 41; pp. 27933 - 27948 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
15.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1936-0851 1936-086X 1936-086X |
| DOI | 10.1021/acsnano.4c05153 |
Cover
| Abstract | Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing. |
|---|---|
| AbstractList | Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing. Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing.Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing. Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing. |
| Author | Ozcan, Aydogan Yim, Geon Chang, Nicole Liao, Kun Goncharov, Artem Ghosh, Rajesh Garner, Omai B. Eryilmaz, Merve Joung, Hyou-Arm Han, Gyeo-Re Di Carlo, Dino Kim, Minsoo Veszpremi, Marcell Ngo, Kevin |
| AuthorAffiliation | Department of Chemistry and Biochemistry California NanoSystems Institute (CNSI) Bioengineering Department Department of Pathology and Laboratory Medicine Electrical & Computer Engineering Department Department of Surgery |
| AuthorAffiliation_xml | – name: Department of Pathology and Laboratory Medicine – name: California NanoSystems Institute (CNSI) – name: Bioengineering Department – name: Department of Surgery – name: Electrical & Computer Engineering Department – name: Department of Chemistry and Biochemistry |
| Author_xml | – sequence: 1 givenname: Gyeo-Re orcidid: 0000-0003-3584-4433 surname: Han fullname: Han, Gyeo-Re – sequence: 2 givenname: Artem surname: Goncharov fullname: Goncharov, Artem – sequence: 3 givenname: Merve orcidid: 0000-0003-3034-7665 surname: Eryilmaz fullname: Eryilmaz, Merve – sequence: 4 givenname: Hyou-Arm orcidid: 0000-0001-5106-4459 surname: Joung fullname: Joung, Hyou-Arm – sequence: 5 givenname: Rajesh orcidid: 0000-0002-7408-8944 surname: Ghosh fullname: Ghosh, Rajesh – sequence: 6 givenname: Geon surname: Yim fullname: Yim, Geon – sequence: 7 givenname: Nicole surname: Chang fullname: Chang, Nicole – sequence: 8 givenname: Minsoo surname: Kim fullname: Kim, Minsoo – sequence: 9 givenname: Kevin surname: Ngo fullname: Ngo, Kevin – sequence: 10 givenname: Marcell surname: Veszpremi fullname: Veszpremi, Marcell – sequence: 11 givenname: Kun surname: Liao fullname: Liao, Kun – sequence: 12 givenname: Omai B. surname: Garner fullname: Garner, Omai B. – sequence: 13 givenname: Dino orcidid: 0000-0003-3942-4284 surname: Di Carlo fullname: Di Carlo, Dino email: dicarlo@ucla.edu – sequence: 14 givenname: Aydogan orcidid: 0000-0002-0717-683X surname: Ozcan fullname: Ozcan, Aydogan email: ozcan@ucla.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39365271$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1v1DAQxS1URL84c0M-IqG0dhIn2RNa-kGRVoBEi7hZE2ey68prp7bTak_863jZbSlI0JNHmvd-43mzT3ass0jIK86OOMv5MahgwbqjUjHBRfGM7PFJUWWsqb7vPNSC75L9EK4ZE3VTVy_IbpEaIq_5HvlxijjQGYK32s6zM7sAq7CjX2BAn72HkOpv6KNWYOi5cXd0GgKsaO88vdDzRfYVbdBR3-q4opfeDS5x6ClGVFE7S69CwtJP6Y8DrCkG6XQ5GN0n4FpwSJ73YAK-3L4H5Or87PLkIpt9_vDxZDrLoCxYzEQjajXJmzbHslOsrlXXlFDypi246jqOk7znIPoyb_u-grZv2rRFWbOuKhgiFgeEbbijHWB1B8bIwesl-JXkTK6zlNss5TbLZHm3sQxju8ROoY0eftscaPlnx-qFnLtbyXnZFJMyT4Q3W4J3NyOGKJc6KDQGLLoxyILzvKlYVYkkff142MOU-0slgdgIlHcheOyl0vFXhGm2Nv_Z4vgv39N7v904UkNeu9HbdJh_qn8CMrnMig |
| CitedBy_id | crossref_primary_10_1039_D4LC00699B crossref_primary_10_15324_kjcls_2024_56_4_295 crossref_primary_10_1117_1_AP_6_5_050500 crossref_primary_10_1002_smll_202411585 |
| Cites_doi | 10.1016/j.microc.2023.108962 10.21037/jlpm-23-3 10.1002/smll.202300617 10.1056/NEJMra1606915 10.7759/cureus.4231 10.1136/emermed-2021-211907 10.3343/alm.2016.36.5.405 10.1038/s41551-023-01057-7 10.1373/clinchem.2009.128611 10.1016/j.bios.2019.03.049 10.1021/acssensors.0c02676 10.1080/10903127.2020.1721740 10.1016/j.cccn.2004.03.036 10.1515/cclm-2014-0565 10.1021/acsami.9b17888 10.1161/CIRCULATIONAHA.111.023697 10.1136/heartjnl-2018-314306 10.1038/s41467-020-15487-3 10.1021/acs.analchem.7b05018 10.1136/heartjnl-2019-316242 10.1016/j.cca.2010.03.001 10.1093/eurheartj/ehaa083 10.1007/s11883-016-0559-4 10.1021/acsnano.3c04994 10.1016/j.bios.2021.113554 10.1161/CIR.0000000000000617 10.1038/nrcardio.2017.48 10.1161/CIRCULATIONAHA.111.023846 10.1016/j.bios.2020.112621 10.1021/acs.analchem.1c04476 10.1373/clinchem.2016.255109 10.1021/acsnano.3c02164 10.7759/cureus.28824 10.1177/23992026211055095 10.1186/s12889-018-5806-x 10.1001/jamacardio.2018.3368 10.1016/j.clinbiochem.2023.02.004 10.1039/D1LC00467K 10.1056/NEJMoa1803377 10.1101/2023.06.14.544508 10.1021/acsami.0c07893 10.1373/clinchem.2017.277186 10.1016/j.clinbiochem.2016.11.011 10.1093/ajcp/aqx066 10.1021/acsnano.9b08151 10.1038/s41586-019-0956-2 10.1161/CIR.0000000000001052 10.1038/s41746-020-0274-y |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1021/acsnano.4c05153 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 27948 |
| ExternalDocumentID | oai:escholarship.org:ark:/13030/qt9ht5t4kx PMC11483942 39365271 10_1021_acsnano_4c05153 c661844767 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAYXX ABBLG ABLBI ADHGD CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC EJD LG6 UNPAY |
| ID | FETCH-LOGICAL-a430t-5857c928b2e4dc077cd84a418b31cdd1e92f1a5f42bff6abf8bced470d630eee3 |
| IEDL.DBID | ACS |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Sun Oct 26 04:08:44 EDT 2025 Tue Sep 30 17:07:10 EDT 2025 Thu Jul 10 17:23:49 EDT 2025 Mon Jul 21 05:51:31 EDT 2025 Tue Jul 01 00:37:43 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Oct 16 03:12:45 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 41 |
| Keywords | cardiovascular disease high sensitivity deep learning troponin vertical flow assay nanoparticle amplification point-of-care |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a430t-5857c928b2e4dc077cd84a418b31cdd1e92f1a5f42bff6abf8bced470d630eee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5106-4459 0000-0003-3584-4433 0000-0002-0717-683X 0000-0002-7408-8944 0000-0003-3034-7665 0000-0003-3942-4284 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/9ht5t4kx |
| PMID | 39365271 |
| PQID | 3112860665 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1021_acsnano_4c05153 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11483942 proquest_miscellaneous_3112860665 pubmed_primary_39365271 crossref_citationtrail_10_1021_acsnano_4c05153 crossref_primary_10_1021_acsnano_4c05153 acs_journals_10_1021_acsnano_4c05153 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-15 |
| PublicationDateYYYYMMDD | 2024-10-15 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2024 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 Plapp F. V. (ref23/cit23) 2023; 53 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 Armbruster D. A. (ref46/cit46) 2008; 29 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref39/cit39 doi: 10.1016/j.microc.2023.108962 – ident: ref17/cit17 doi: 10.21037/jlpm-23-3 – ident: ref41/cit41 doi: 10.1002/smll.202300617 – ident: ref6/cit6 doi: 10.1056/NEJMra1606915 – ident: ref30/cit30 doi: 10.7759/cureus.4231 – ident: ref7/cit7 doi: 10.1136/emermed-2021-211907 – ident: ref24/cit24 doi: 10.3343/alm.2016.36.5.405 – ident: ref44/cit44 doi: 10.1038/s41551-023-01057-7 – ident: ref47/cit47 doi: 10.1373/clinchem.2009.128611 – volume: 53 start-page: 322 year: 2023 ident: ref23/cit23 publication-title: Ann. Clin. Lab. Sci. – ident: ref36/cit36 doi: 10.1016/j.bios.2019.03.049 – ident: ref22/cit22 – ident: ref35/cit35 doi: 10.1021/acssensors.0c02676 – ident: ref51/cit51 doi: 10.1080/10903127.2020.1721740 – volume: 29 start-page: S49 year: 2008 ident: ref46/cit46 publication-title: Clin. Biochem. Rev. – ident: ref28/cit28 doi: 10.1016/j.cccn.2004.03.036 – ident: ref14/cit14 doi: 10.1515/cclm-2014-0565 – ident: ref33/cit33 doi: 10.1021/acsami.9b17888 – ident: ref18/cit18 doi: 10.1161/CIRCULATIONAHA.111.023697 – ident: ref16/cit16 doi: 10.1136/heartjnl-2018-314306 – ident: ref31/cit31 doi: 10.1038/s41467-020-15487-3 – ident: ref37/cit37 doi: 10.1021/acs.analchem.7b05018 – ident: ref19/cit19 doi: 10.1136/heartjnl-2019-316242 – ident: ref26/cit26 doi: 10.1016/j.cca.2010.03.001 – ident: ref13/cit13 doi: 10.1093/eurheartj/ehaa083 – ident: ref4/cit4 doi: 10.1007/s11883-016-0559-4 – ident: ref52/cit52 doi: 10.1021/acsnano.3c04994 – ident: ref38/cit38 doi: 10.1016/j.bios.2021.113554 – ident: ref11/cit11 doi: 10.1161/CIR.0000000000000617 – ident: ref9/cit9 doi: 10.1038/nrcardio.2017.48 – ident: ref8/cit8 doi: 10.1161/CIRCULATIONAHA.111.023846 – ident: ref5/cit5 doi: 10.1016/j.bios.2020.112621 – ident: ref21/cit21 doi: 10.1021/acs.analchem.1c04476 – ident: ref15/cit15 doi: 10.1373/clinchem.2016.255109 – ident: ref32/cit32 doi: 10.1021/acsnano.3c02164 – ident: ref20/cit20 doi: 10.7759/cureus.28824 – ident: ref1/cit1 – ident: ref29/cit29 doi: 10.1177/23992026211055095 – ident: ref3/cit3 doi: 10.1186/s12889-018-5806-x – ident: ref49/cit49 doi: 10.1001/jamacardio.2018.3368 – ident: ref25/cit25 doi: 10.1016/j.clinbiochem.2023.02.004 – ident: ref45/cit45 doi: 10.1039/D1LC00467K – ident: ref10/cit10 doi: 10.1056/NEJMoa1803377 – ident: ref42/cit42 doi: 10.1101/2023.06.14.544508 – ident: ref34/cit34 doi: 10.1021/acsami.0c07893 – ident: ref12/cit12 doi: 10.1373/clinchem.2017.277186 – ident: ref27/cit27 doi: 10.1016/j.clinbiochem.2016.11.011 – ident: ref48/cit48 doi: 10.1093/ajcp/aqx066 – ident: ref43/cit43 doi: 10.1021/acsnano.9b08151 – ident: ref50/cit50 doi: 10.1038/s41586-019-0956-2 – ident: ref2/cit2 doi: 10.1161/CIR.0000000000001052 – ident: ref40/cit40 doi: 10.1038/s41746-020-0274-y |
| SSID | ssj0057876 |
| Score | 2.5519564 |
| Snippet | Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards.... Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards.... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 27933 |
| SubjectTerms | Biomarkers - blood Biosensing Techniques - instrumentation Colorimetry - instrumentation Colorimetry - methods Deep Learning Gold - chemistry Humans Limit of Detection Nanoparticles - chemistry Point-of-Care Testing Troponin I - analysis Troponin I - blood |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlc2h76PvhvlAhh_agjSzLr-O2yRIKDYFmy_ZkJFnKhixak7UJ6aV_vSNZa7INoe3N2JKQmZH1jebzNwjtspxmpqQ1STKZE64ZJ6KIU2JKacDDdE790cXXo-xwxr_M03kQi3b_wuhNTLc4a3wiv-trku2VizZt-TnAxZ0sBdg9Qjuzo-PJjz5rDFFx4UsthutsPsj4xHtCra2wqzFXrqCJ0weEO9v70A1weZMjebezjbi6FMvltQ1o-rCnbq29bqHjnZyPu1aO1c8_VB3_6d0eoQcBhuJJ7zeP0R1tn6D718QJn6Jf-1o3OOivnpIDu_BkAXwsGn1BPsHuV-PvnpUNA02Xq0sMphZXGFAwduwR8s1x4_viFPjEFWOAcfC-bj35y2JPVsDwdYewvZ8Gnjh6uwmniM_QbHpw8vmQhHINRPCEtgQCj1yVrJBM81rRPFd1wQWPC5nEqq5jXTITi9RwJo3JhDSFhFnznNZZQrXWyXM0siurXyIsuaQpE7WkZcKNplIpI3IBYFJwycosQrtgwiost3XlM-ksroKlq2DpCI03Nq5UkDx3lTeWt3f4MHRoerWP25u-3zhNBSvSpVmE1atuXSUAYQsXF6YRetE70TBYAu6ZsjyOULHlXkMDp_a9_cSeLbzqtwtck5KzCH0cPPFvk3z1H21fo3sMAJvbl-P0DRq1F51-C4Crle_CUvsNcXQw_Q priority: 102 providerName: Unpaywall |
| Title | Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification |
| URI | http://dx.doi.org/10.1021/acsnano.4c05153 https://www.ncbi.nlm.nih.gov/pubmed/39365271 https://www.proquest.com/docview/3112860665 https://pubmed.ncbi.nlm.nih.gov/PMC11483942 https://escholarship.org/uc/item/9ht5t4kx |
| UnpaywallVersion | submittedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-086X databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVaOLQcSj9pSotciUN78OLYTpwct8AKVSpCgq3oKbIduyBW3hXJCtFL_3rHSTZlu0L0HHvkjMeeGc_TG4R2maSpy2lJeKolEZYJorI4IS7XDizMSto8XXw7To_G4ut5cv6XLPrfCj6L95SpvPLTgTChHQl_jNZZKmVA7w33TxeXbrC7tC0gQ4IMUUTP4rMiILghUy27oZXYchUi-WTuZ-r2Rk0md_zPaLNFblUNbWGAnVwN5rUemF-rpI4P_9pz9KyLQvGwNZsX6JH1L9HGHW7CV-j3gbUz3NGv_iSH_qLBCuATNbPX5As4vxJ_b0DZIGg0md5g2Gl1iyEIxgE8Qk4DNL7tTYHPQi8GkIMPbN1gvzxusAoYLnfI2ttl4GFAt7vuEfE1Go8Oz_aPSNetgSjBaU0g75AmZ5lmVpSGSmnKTCgRZ5rHpixjmzMXq8QJpp1LlXaZhlULScuUU2stf4PW_NTbtwhroWnCVKlpzoWzVBvjlFQQSyqhWZ5GaBdUV3SnrSqaQjqLi06fRafPCA0We1yYjvE8NN6Y3D_hUz9h1pJ93D_048JoCjiQocqivJ3Oq4JDBJuFtDCJ0FZrRL0wDuaZMBlHKFsyr35AIPte_uIvLxrS75C38lywCH3uLfGhRb77Pz1to6cMQrXgkePkPVqrr-f2A4Ratd5pDtkOWh8fnwx__AE_ECpA |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKORQOvB_haaQe4JDFr7yOS9vVAm0F6hb1FtmOTREr76rJqioX_jpjJxu6rCrgmsQjezz2zNhfvkFom2UktQWpYp6qLBaGiVjmNIltoSxYmMlIOLo4OEzHx-LDSXKygcjyXxjoRA2S6nCJ_5tdgL6FZ0662UBoX5WEX0PXk1RQn24Nd46We683v7S9R4Y8GYKJnsxnTYD3Rrpe9UZrIeY6UnJr4eby4lxOp5fc0Og2-twPIKBPvg8WjRroH39wO_7PCO-gW11MioetEd1FG8bdQzcvMRXeRz93jZnjjoz1a7znTgNyAH-Sc3MWvwNXWOEvAaINgkbT2TmGeZcXGEJi7KEk8ZEHyreVKvDEV2YAOXjXNAEJ5nBALmDY6iGHb7uBhx7rbrsjxQfoeLQ32RnHXe2GWApOmhiykEwXLFfMiEqTLNNVLqSgueJUVxU1BbNUJlYwZW0qlc0V9FpkpEo5Mcbwh2jTzZx5jLASiiRMVooUXFhDlNZWZhIiSykUK9IIbYPqym7t1WW4Vme07PRZdvqM0GA51aXu-M99GY7p1Q1e9w3mLfXH1Z--WtpOCcvT37lIZ2aLuuQQz-Y-SUwi9Ki1pV4YBytNWEYjlK9YWf-Bp_5efeO-nQYKcJ_F8kKwCL3pDfJvnXzyb3p6ibbGk4P9cv_94cen6AaDIM77apo8Q5vN2cI8hyCsUS_CuvsFFD4w8g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSFAOvB_haaQe4ODFsZ3XsXS7Kq-qUruot8hObFqx8kZNVlW58NcZO96oy6oCrnmMHGcm84395RuEtlhGU1PQmvBUZURoJojM44SYQhnwMJ1Rv3TxdT_dm4pPx8lx-CnM_QsDg2jBUus38V1UN7UJCgPxezhupZ2PROU6k_Dr6EaSQqA7QLRzuPz-OhdM-71kqJUBUAyCPmsGXEaq2tWMtAYz19mStxa2kRfncja7lIomd9F0eAjPQPkxWnRqVP38Q9_xf5_yHroTsCne7p3pPrqm7QN0-5Ji4UP0a6x1g4Mo63eya088gwAfyEafkQ-QEmv8zVO1wdBkNj_H8P7lBQZojB2lhBw6wnzfsQIfuQ4NYAePdecZYRZ7BgOGTz7U8v0w8LbjvJuwtPgITSe7Rzt7JPRwIFJw2hGoRrKqYLliWtQVzbKqzoUUca54XNV1rAtmYpkYwZQxqVQmVzBqkdE65VRrzR-jDTu3-inCSiiaMFkrWnBhNFVVZWQmAWFKoViRRmgLpq4MMdiWfnudxWWYzzLMZ4RGy9ddVkEH3bXjmF19w9vhhqaXALn60jdL_ykhTN3ei7R6vmhLDrg2d8ViEqEnvT8Nxjh4asKyOEL5iqcNFzgJ8NUz9vTES4G7apYXgkXo3eCUfxvks3-bp9fo5sF4Un75uP_5OdpkgOVcyo6TF2ijO1vol4DFOvXKh95vp4wzdQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlc2h76PvhvlAhh_agjSzLr-O2yRIKDYFmy_ZkJFnKhixak7UJ6aV_vSNZa7INoe3N2JKQmZH1jebzNwjtspxmpqQ1STKZE64ZJ6KIU2JKacDDdE790cXXo-xwxr_M03kQi3b_wuhNTLc4a3wiv-trku2VizZt-TnAxZ0sBdg9Qjuzo-PJjz5rDFFx4UsthutsPsj4xHtCra2wqzFXrqCJ0weEO9v70A1weZMjebezjbi6FMvltQ1o-rCnbq29bqHjnZyPu1aO1c8_VB3_6d0eoQcBhuJJ7zeP0R1tn6D718QJn6Jf-1o3OOivnpIDu_BkAXwsGn1BPsHuV-PvnpUNA02Xq0sMphZXGFAwduwR8s1x4_viFPjEFWOAcfC-bj35y2JPVsDwdYewvZ8Gnjh6uwmniM_QbHpw8vmQhHINRPCEtgQCj1yVrJBM81rRPFd1wQWPC5nEqq5jXTITi9RwJo3JhDSFhFnznNZZQrXWyXM0siurXyIsuaQpE7WkZcKNplIpI3IBYFJwycosQrtgwiost3XlM-ksroKlq2DpCI03Nq5UkDx3lTeWt3f4MHRoerWP25u-3zhNBSvSpVmE1atuXSUAYQsXF6YRetE70TBYAu6ZsjyOULHlXkMDp_a9_cSeLbzqtwtck5KzCH0cPPFvk3z1H21fo3sMAJvbl-P0DRq1F51-C4Crle_CUvsNcXQw_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Enhanced+Paper-Based+Vertical+Flow+Assay+for+High-Sensitivity+Troponin+Detection+Using+Nanoparticle+Amplification&rft.jtitle=ACS+nano&rft.au=Han%2C+Gyeo-Re&rft.au=Goncharov%2C+Artem&rft.au=Eryilmaz%2C+Merve&rft.au=Joung%2C+Hyou-Arm&rft.date=2024-10-15&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=41&rft.spage=27933&rft.epage=27948&rft_id=info:doi/10.1021%2Facsnano.4c05153&rft.externalDocID=c661844767 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |