Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles
Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanopa...
Saved in:
Published in | ACS nano Vol. 17; no. 3; pp. 2266 - 2278 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.2c08702 |
Cover
Abstract | Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain. |
---|---|
AbstractList | Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain. Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain. Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain. |
Author | Sabuncu, Sinan Nan, Xiaolin Palani, Stephen Civitci, Fehmi Esener, Sadik Kenison, John P. Huang, Tao |
AuthorAffiliation | Knight Cancer Early Detection Advanced Research Center Department of Biomedical Engineering |
AuthorAffiliation_xml | – name: Department of Biomedical Engineering – name: Knight Cancer Early Detection Advanced Research Center |
Author_xml | – sequence: 1 givenname: Stephen surname: Palani fullname: Palani, Stephen organization: Department of Biomedical Engineering – sequence: 2 givenname: John P. orcidid: 0000-0003-4138-6600 surname: Kenison fullname: Kenison, John P. organization: Knight Cancer Early Detection Advanced Research Center – sequence: 3 givenname: Sinan orcidid: 0000-0001-8346-8175 surname: Sabuncu fullname: Sabuncu, Sinan organization: Knight Cancer Early Detection Advanced Research Center – sequence: 4 givenname: Tao surname: Huang fullname: Huang, Tao organization: Department of Biomedical Engineering – sequence: 5 givenname: Fehmi surname: Civitci fullname: Civitci, Fehmi organization: Knight Cancer Early Detection Advanced Research Center – sequence: 6 givenname: Sadik surname: Esener fullname: Esener, Sadik organization: Department of Biomedical Engineering – sequence: 7 givenname: Xiaolin orcidid: 0000-0002-0597-0255 surname: Nan fullname: Nan, Xiaolin email: nan@ohsu.edu organization: Department of Biomedical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36660770$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1rFDEYDlKxH3r2JjlWyrZJZicfF0GKbYXVlk4P3kIm886akknWZGZBf4a_2Cy7XVTQU8LzPh9v8hyjgxADIPSaknNKGL0wNgcT4jmzRArCnqEjqio-I5J_Odjfa3qIjnN-JKQWUvAX6LDinBMhyBH6-Wnyo8srsGMyHi-iNd79gA43U-qNBXznTR5iwPeQY4kqyOmQF83d_dsCrcH4jE3o8O0ako0DZNw8eW3gBkJ2YYlvYIQUlxDAja6QYo-bgnvA19F3-HN5w8qk0VkP-SV63hdbeLU7T9DD1YeHy5vZ4vb64-X7xczMmRpnlaRd1Upmed_CvJb1XJK54pQJRYloKWXEdkr2VS9Zq4Ttha0BekVoC6LAJ-jd1nY1tQN0FsJma71KbjDpu47G6T8nwX3Vy7jWSlUVJ7IYnO4MUvw2QR714LIF702AOGXNBJesYkTNC_XN71n7kKceCuFiS7Ap5pyg31Mo0Zum9a5pvWu6KOq_FNaNZnRxs6zz_9GdbXVloB_jlEL543-yfwECScE5 |
CitedBy_id | crossref_primary_10_1016_j_trac_2023_117090 crossref_primary_10_1039_D4GC00560K crossref_primary_10_1016_j_kjs_2023_12_002 crossref_primary_10_1021_acsphotonics_3c00785 crossref_primary_10_1002_anie_202318539 crossref_primary_10_1002_bkcs_12894 crossref_primary_10_1016_j_bios_2024_116527 crossref_primary_10_1021_acs_analchem_3c04587 crossref_primary_10_3390_mi15050631 crossref_primary_10_1016_j_jallcom_2024_177220 crossref_primary_10_1016_j_fochx_2025_102226 crossref_primary_10_1021_acs_nanolett_4c05695 crossref_primary_10_3390_foods14050742 crossref_primary_10_1002_ange_202318539 crossref_primary_10_1038_s41598_024_56456_w crossref_primary_10_1016_j_biopha_2024_116311 crossref_primary_10_1021_acsanm_3c05141 crossref_primary_10_1002_adts_202400005 crossref_primary_10_1002_adhm_202403059 crossref_primary_10_1039_D4AY01509F crossref_primary_10_1063_5_0255749 crossref_primary_10_1002_adom_202301964 crossref_primary_10_1016_j_jece_2024_114866 crossref_primary_10_1039_D4LC00572D crossref_primary_10_1016_j_pes_2024_100018 crossref_primary_10_1016_j_colsurfa_2024_135664 crossref_primary_10_1021_acsanm_3c00921 crossref_primary_10_1039_D4MA00546E crossref_primary_10_1016_j_optmat_2024_115665 crossref_primary_10_1021_acsomega_4c05485 crossref_primary_10_35848_1347_4065_ad7963 crossref_primary_10_1016_j_foodcont_2024_110704 crossref_primary_10_1364_OE_544956 crossref_primary_10_1016_j_ijleo_2025_172233 crossref_primary_10_1021_acs_chemmater_4c00417 crossref_primary_10_1080_15583724_2024_2400961 crossref_primary_10_1007_s11468_024_02226_3 crossref_primary_10_1016_j_arabjc_2024_105936 crossref_primary_10_1021_acsami_4c05900 |
Cites_doi | 10.1002/anie.201604731 10.1021/nn8006465 10.1002/anie.200802248 10.1021/la801357v 10.1021/nn404985h 10.4103/0975-7406.72127 10.1039/D0NR08256B 10.14440/jbm.2014.36 10.1021/jp026731y 10.1002/adma.201201690 10.1021/nl204496g 10.1002/smll.201102426 10.1021/acs.jpclett.0c01507 10.1039/b714759g 10.1021/la0471792 10.1088/0957-4484/27/2/024001 10.1002/adma.200802789 10.1021/cr200061k 10.3791/50549 10.1002/anie.201004910 10.1002/9783527632015.ch14 10.1007/s11468-010-9130-2 10.3390/s151025774 10.1002/smll.200701295 10.1021/nl034372s 10.1364/OPEX.13.008520 10.1021/acs.jpcb.2c03249 10.1088/0957-4484/24/28/285502 10.3390/ma11020243 10.1016/j.bpj.2017.11.013 10.1021/la800305j 10.21203/rs.3.rs-1600967/v1 10.1021/cm020732l 10.1021/cr2001178 10.1021/acs.nanolett.5b00872 10.1021/ac7017348 10.1371/journal.pone.0100589 10.1021/acs.accounts.9b00230 10.1038/nmat3462 10.1039/C2CP43162A 10.1016/j.scitotenv.2021.145478 10.1016/j.jcis.2006.05.012 10.3791/53154 10.1021/jp4056522 10.1038/nnano.2012.51 10.1021/jp2081066 10.1021/acs.nanolett.5b00771 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acsnano.2c08702 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2278 |
ExternalDocumentID | PMC9933608 36660770 10_1021_acsnano_2c08702 a738471538 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM132322 – fundername: ; grantid: R01GM132322 – fundername: ; grantid: CEDAR4250918 |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-a429t-381d3b82c6fbe45854804961279107b1120cd98f3f82b97cf7c5eef901be78f3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 18:38:18 EDT 2025 Fri Jul 11 10:49:39 EDT 2025 Mon Jul 21 05:58:41 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Tue Jul 01 02:58:58 EDT 2025 Thu Feb 16 05:45:47 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | single particle multispectral imaging nanoparticles localized surface plasmon resonance dark-field microscopy |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a429t-381d3b82c6fbe45854804961279107b1120cd98f3f82b97cf7c5eef901be78f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4138-6600 0000-0002-0597-0255 0000-0001-8346-8175 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9933608 |
PMID | 36660770 |
PQID | 2768232094 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9933608 proquest_miscellaneous_2768232094 pubmed_primary_36660770 crossref_primary_10_1021_acsnano_2c08702 crossref_citationtrail_10_1021_acsnano_2c08702 acs_journals_10_1021_acsnano_2c08702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-14 |
PublicationDateYYYYMMDD | 2023-02-14 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 John C. L. (ref18/cit18) 2010 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1002/anie.201604731 – ident: ref17/cit17 doi: 10.1021/nn8006465 – ident: ref11/cit11 doi: 10.1002/anie.200802248 – ident: ref41/cit41 doi: 10.1021/la801357v – ident: ref38/cit38 doi: 10.1021/nn404985h – ident: ref1/cit1 doi: 10.4103/0975-7406.72127 – ident: ref22/cit22 doi: 10.1039/D0NR08256B – ident: ref44/cit44 doi: 10.14440/jbm.2014.36 – ident: ref9/cit9 doi: 10.1021/jp026731y – ident: ref14/cit14 doi: 10.1002/adma.201201690 – ident: ref7/cit7 doi: 10.1021/nl204496g – ident: ref32/cit32 doi: 10.1002/smll.201102426 – ident: ref36/cit36 doi: 10.1021/acs.jpclett.0c01507 – ident: ref37/cit37 doi: 10.1039/b714759g – ident: ref40/cit40 doi: 10.1021/la0471792 – ident: ref24/cit24 doi: 10.1088/0957-4484/27/2/024001 – ident: ref15/cit15 doi: 10.1002/adma.200802789 – ident: ref21/cit21 doi: 10.1021/cr200061k – ident: ref47/cit47 doi: 10.3791/50549 – ident: ref34/cit34 doi: 10.1002/anie.201004910 – start-page: 359 volume-title: Trace Analysis with Nanomaterials year: 2010 ident: ref18/cit18 doi: 10.1002/9783527632015.ch14 – ident: ref16/cit16 doi: 10.1007/s11468-010-9130-2 – ident: ref4/cit4 doi: 10.3390/s151025774 – ident: ref10/cit10 doi: 10.1002/smll.200701295 – ident: ref5/cit5 doi: 10.1021/nl034372s – ident: ref27/cit27 doi: 10.1364/OPEX.13.008520 – ident: ref26/cit26 doi: 10.1021/acs.jpcb.2c03249 – ident: ref20/cit20 doi: 10.1088/0957-4484/24/28/285502 – ident: ref29/cit29 doi: 10.3390/ma11020243 – ident: ref25/cit25 doi: 10.1016/j.bpj.2017.11.013 – ident: ref42/cit42 doi: 10.1021/la800305j – ident: ref23/cit23 doi: 10.21203/rs.3.rs-1600967/v1 – ident: ref33/cit33 doi: 10.1021/cm020732l – ident: ref13/cit13 doi: 10.1021/cr2001178 – ident: ref8/cit8 doi: 10.1021/acs.nanolett.5b00872 – ident: ref3/cit3 doi: 10.1021/ac7017348 – ident: ref45/cit45 doi: 10.1371/journal.pone.0100589 – ident: ref19/cit19 doi: 10.1021/acs.accounts.9b00230 – ident: ref35/cit35 doi: 10.1038/nmat3462 – ident: ref28/cit28 doi: 10.1039/C2CP43162A – ident: ref31/cit31 doi: 10.1016/j.scitotenv.2021.145478 – ident: ref39/cit39 doi: 10.1016/j.jcis.2006.05.012 – ident: ref46/cit46 doi: 10.3791/53154 – ident: ref30/cit30 doi: 10.1021/jp4056522 – ident: ref6/cit6 doi: 10.1038/nnano.2012.51 – ident: ref43/cit43 doi: 10.1021/jp2081066 – ident: ref2/cit2 doi: 10.1021/acs.nanolett.5b00771 |
SSID | ssj0057876 |
Score | 2.5979378 |
Snippet | Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR).... Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR).... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2266 |
Title | Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles |
URI | http://dx.doi.org/10.1021/acsnano.2c08702 https://www.ncbi.nlm.nih.gov/pubmed/36660770 https://www.proquest.com/docview/2768232094 https://pubmed.ncbi.nlm.nih.gov/PMC9933608 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVQ2ZQFj5bHQKmM1EVZZEich5NlVdGOUIGqKVJ3UWxfQ8XgoGaGRT-DL-Y4yQydjirY3thW7Bz7nhtfHzO25xXChY5NYGKrgoQEBcpEFGRFqqyRWqvYn3f--CmbfEk-XKQXf8Wib-_gi-hdrVtXu2YsdAhsYbW9LzJ4Gc-CDsvFoutxl_UbyAiQwSKWKj5rDXg3pNtVN7TGLW-nSN7wOUeP-myttpMq9Kkm38fzmRrr63Uhx3935zF7ODBPftBD5Qm7R26LPbihR7jNfnfHcbvDl3gbfuL93OU1GV7Or2ytiZ-CawO33P_090odxPd_tCfl6dlbmH6Bc7a8doZ_xvwAkqnl5aItby59srz7yic-BacBcqmTc-WN5SXsU-LHzdRwLPiI5IeEvafs_Oj9-eEkGC5tCGq4tlkABmBilQudWUUJgpEkRxACHiVBTKQCvQu1KXIb21yowosi6ZTIgpYokjA_YxuucfSCcYvgEwZdRCZNMm2USWSdkLFpXmidyRHbw2BWw5xrq247XUTVMMLVMMIjNl586UoPuuf--o3p3RX2lxV-9pIfdxd9s4BOhWnp91pqR828rQTCOJBVBM8j9ryH0rKxGCFjKGU4YnIFZMsCXvJ79Ym7_NZJf4NNxlmYv_y_rr9imwKczCeZR8kO25hdzek1ONRM7Xaz5w-Wgxx- |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWqsgAWvB_D00hdlEWmeTh2sqwqygDTUsggdRfFL6gYHNTMsOhn8MUcZ5LQaVUJtjex5TjHvufqXh8TsuUVwmOV6EAnVgbMxCaQOjIBz1NptVBKJv6888Ehn3xh74_T4w0S9mdhMIgGPTVtEv-vukC0A5urXD2OVQiIYdO9lnLG_WUNu3tFv_d6-PFVHhlxMsjEIOZzqQPvjVSz7o0uUcyLlZLnXM_-bfJpGHRbcfJ9vFzIsTq7oOf4P191h9zqeCjdXQHnLtkw7h65eU6d8D753R7ObY9iYlB06r3eyZnRtFie2koZegTmDRRTnwLwuh2Gbv9opsXR59cw_QIDbWjlNP2I1QJcm4YWfV_eXPjSefeVTnxBTg0cm1bcldaWFrDPDX1bzzXF9o-4vivfe0Bm-29me5Ogu8IhqODoFgH4gE5kFitupWEITViGkASsSoCmCAmyFyqdZzaxWSxzL5GkUmMsSIo0AuaHZNPVzjwm1CIUhUHlkU4ZV1pqJipmtE2zXCkuRmQLk1l2K7Ap2-R6HJXdDJfdDI_IuP_hpepU0P1lHPOrG2wPDX6uBECufvVVj6ASi9RnXipn6mVTxgjqQF0RSo_IoxWihs4SBJChEOGIiDWsDS94AfD1J-7kWysEDm6Z8DB78m-f_pJcn8wOpuX03eGHp-RGDLbmy88j9oxsLk6X5jnY1UK-aBfUH2lRJOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hIiE48H4EKCxSD-Xg4Pfax6o0BAglwq3Um-V9tRVhXdUJh_4MfjHfOI7VtKoE17F3tV7P7HyjmfmWsS1iCA9VpD0dWenFJjSe1IHx0jyRVgulZET9zt_20_Fh_OUoOeqawqgXBotoMFPTJvHJqs-07RgGgg-Qu8rVw1D5UDMcvLcBRwK6sGFnt1idv6SC6TKXjFgZgKIn9Lk2AXkk1ax7pGsw82q15CX3M3rADvuFt1UnP4eLuRyqiyucjv_7ZQ_Z_Q6P8p2lAj1it4x7zO5dYil8wv60TbptSyYWxifk_U4vjObF4txWyvApEDi0mVMqgPg7DN_-1UyK6Y_3EP0GEm145TT_DquBfpuGF6u5SFxQCb075mMqzKmhz6YleeW15QXkM8M_1TPN4QYQ33dlfE_ZwWjvYHfsdVc5eBUc3twDLtCRzEKVWmlihChxhtAE6EoArggJ0OcrnWc2slkoc6JKUokxFmBFGgHxM7bhamdeMG4RkkKg8kAncaq01LGoYqNtkuVKpWLAtrCZZWeJTdkm2cOg7Ha47HZ4wIarn16qjg2dLuWY3Txgux9wtiQCufnVdystKmGslIGpnKkXTRkiuAOERUg9YM-XWtVPFiGQ9IXwB0ys6Vv_AhGBrz9xpyctITgwZpT62ct_-_S37M7046icfN7_-ordDQHaqAo9iF-zjfn5wmwCZM3lm9am_gKHVCda |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+Localized+Surface+Plasmon+Resonance+%28msLSPR%29+Reveals+and+Overcomes+Spectral+and+Sensing+Heterogeneities+of+Single+Gold+Nanoparticles&rft.jtitle=ACS+nano&rft.au=Palani%2C+Stephen&rft.au=Kenison%2C+John+P.&rft.au=Sabuncu%2C+Sinan&rft.au=Huang%2C+Tao&rft.date=2023-02-14&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=17&rft.issue=3&rft.spage=2266&rft.epage=2278&rft_id=info:doi/10.1021%2Facsnano.2c08702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_2c08702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |