Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles

Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanopa...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 17; no. 3; pp. 2266 - 2278
Main Authors Palani, Stephen, Kenison, John P., Sabuncu, Sinan, Huang, Tao, Civitci, Fehmi, Esener, Sadik, Nan, Xiaolin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.02.2023
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.2c08702

Cover

Abstract Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.
AbstractList Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.
Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.
Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.
Author Sabuncu, Sinan
Nan, Xiaolin
Palani, Stephen
Civitci, Fehmi
Esener, Sadik
Kenison, John P.
Huang, Tao
AuthorAffiliation Knight Cancer Early Detection Advanced Research Center
Department of Biomedical Engineering
AuthorAffiliation_xml – name: Department of Biomedical Engineering
– name: Knight Cancer Early Detection Advanced Research Center
Author_xml – sequence: 1
  givenname: Stephen
  surname: Palani
  fullname: Palani, Stephen
  organization: Department of Biomedical Engineering
– sequence: 2
  givenname: John P.
  orcidid: 0000-0003-4138-6600
  surname: Kenison
  fullname: Kenison, John P.
  organization: Knight Cancer Early Detection Advanced Research Center
– sequence: 3
  givenname: Sinan
  orcidid: 0000-0001-8346-8175
  surname: Sabuncu
  fullname: Sabuncu, Sinan
  organization: Knight Cancer Early Detection Advanced Research Center
– sequence: 4
  givenname: Tao
  surname: Huang
  fullname: Huang, Tao
  organization: Department of Biomedical Engineering
– sequence: 5
  givenname: Fehmi
  surname: Civitci
  fullname: Civitci, Fehmi
  organization: Knight Cancer Early Detection Advanced Research Center
– sequence: 6
  givenname: Sadik
  surname: Esener
  fullname: Esener, Sadik
  organization: Department of Biomedical Engineering
– sequence: 7
  givenname: Xiaolin
  orcidid: 0000-0002-0597-0255
  surname: Nan
  fullname: Nan, Xiaolin
  email: nan@ohsu.edu
  organization: Department of Biomedical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36660770$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1rFDEYDlKxH3r2JjlWyrZJZicfF0GKbYXVlk4P3kIm886akknWZGZBf4a_2Cy7XVTQU8LzPh9v8hyjgxADIPSaknNKGL0wNgcT4jmzRArCnqEjqio-I5J_Odjfa3qIjnN-JKQWUvAX6LDinBMhyBH6-Wnyo8srsGMyHi-iNd79gA43U-qNBXznTR5iwPeQY4kqyOmQF83d_dsCrcH4jE3o8O0ako0DZNw8eW3gBkJ2YYlvYIQUlxDAja6QYo-bgnvA19F3-HN5w8qk0VkP-SV63hdbeLU7T9DD1YeHy5vZ4vb64-X7xczMmRpnlaRd1Upmed_CvJb1XJK54pQJRYloKWXEdkr2VS9Zq4Ttha0BekVoC6LAJ-jd1nY1tQN0FsJma71KbjDpu47G6T8nwX3Vy7jWSlUVJ7IYnO4MUvw2QR714LIF702AOGXNBJesYkTNC_XN71n7kKceCuFiS7Ap5pyg31Mo0Zum9a5pvWu6KOq_FNaNZnRxs6zz_9GdbXVloB_jlEL543-yfwECScE5
CitedBy_id crossref_primary_10_1016_j_trac_2023_117090
crossref_primary_10_1039_D4GC00560K
crossref_primary_10_1016_j_kjs_2023_12_002
crossref_primary_10_1021_acsphotonics_3c00785
crossref_primary_10_1002_anie_202318539
crossref_primary_10_1002_bkcs_12894
crossref_primary_10_1016_j_bios_2024_116527
crossref_primary_10_1021_acs_analchem_3c04587
crossref_primary_10_3390_mi15050631
crossref_primary_10_1016_j_jallcom_2024_177220
crossref_primary_10_1016_j_fochx_2025_102226
crossref_primary_10_1021_acs_nanolett_4c05695
crossref_primary_10_3390_foods14050742
crossref_primary_10_1002_ange_202318539
crossref_primary_10_1038_s41598_024_56456_w
crossref_primary_10_1016_j_biopha_2024_116311
crossref_primary_10_1021_acsanm_3c05141
crossref_primary_10_1002_adts_202400005
crossref_primary_10_1002_adhm_202403059
crossref_primary_10_1039_D4AY01509F
crossref_primary_10_1063_5_0255749
crossref_primary_10_1002_adom_202301964
crossref_primary_10_1016_j_jece_2024_114866
crossref_primary_10_1039_D4LC00572D
crossref_primary_10_1016_j_pes_2024_100018
crossref_primary_10_1016_j_colsurfa_2024_135664
crossref_primary_10_1021_acsanm_3c00921
crossref_primary_10_1039_D4MA00546E
crossref_primary_10_1016_j_optmat_2024_115665
crossref_primary_10_1021_acsomega_4c05485
crossref_primary_10_35848_1347_4065_ad7963
crossref_primary_10_1016_j_foodcont_2024_110704
crossref_primary_10_1364_OE_544956
crossref_primary_10_1016_j_ijleo_2025_172233
crossref_primary_10_1021_acs_chemmater_4c00417
crossref_primary_10_1080_15583724_2024_2400961
crossref_primary_10_1007_s11468_024_02226_3
crossref_primary_10_1016_j_arabjc_2024_105936
crossref_primary_10_1021_acsami_4c05900
Cites_doi 10.1002/anie.201604731
10.1021/nn8006465
10.1002/anie.200802248
10.1021/la801357v
10.1021/nn404985h
10.4103/0975-7406.72127
10.1039/D0NR08256B
10.14440/jbm.2014.36
10.1021/jp026731y
10.1002/adma.201201690
10.1021/nl204496g
10.1002/smll.201102426
10.1021/acs.jpclett.0c01507
10.1039/b714759g
10.1021/la0471792
10.1088/0957-4484/27/2/024001
10.1002/adma.200802789
10.1021/cr200061k
10.3791/50549
10.1002/anie.201004910
10.1002/9783527632015.ch14
10.1007/s11468-010-9130-2
10.3390/s151025774
10.1002/smll.200701295
10.1021/nl034372s
10.1364/OPEX.13.008520
10.1021/acs.jpcb.2c03249
10.1088/0957-4484/24/28/285502
10.3390/ma11020243
10.1016/j.bpj.2017.11.013
10.1021/la800305j
10.21203/rs.3.rs-1600967/v1
10.1021/cm020732l
10.1021/cr2001178
10.1021/acs.nanolett.5b00872
10.1021/ac7017348
10.1371/journal.pone.0100589
10.1021/acs.accounts.9b00230
10.1038/nmat3462
10.1039/C2CP43162A
10.1016/j.scitotenv.2021.145478
10.1016/j.jcis.2006.05.012
10.3791/53154
10.1021/jp4056522
10.1038/nnano.2012.51
10.1021/jp2081066
10.1021/acs.nanolett.5b00771
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsnano.2c08702
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2278
ExternalDocumentID PMC9933608
36660770
10_1021_acsnano_2c08702
a738471538
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM132322
– fundername: ;
  grantid: R01GM132322
– fundername: ;
  grantid: CEDAR4250918
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
NPM
7X8
5PM
ID FETCH-LOGICAL-a429t-381d3b82c6fbe45854804961279107b1120cd98f3f82b97cf7c5eef901be78f3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Aug 21 18:38:18 EDT 2025
Fri Jul 11 10:49:39 EDT 2025
Mon Jul 21 05:58:41 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue Jul 01 02:58:58 EDT 2025
Thu Feb 16 05:45:47 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords single particle
multispectral imaging
nanoparticles
localized surface plasmon resonance
dark-field microscopy
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-381d3b82c6fbe45854804961279107b1120cd98f3f82b97cf7c5eef901be78f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4138-6600
0000-0002-0597-0255
0000-0001-8346-8175
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9933608
PMID 36660770
PQID 2768232094
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9933608
proquest_miscellaneous_2768232094
pubmed_primary_36660770
crossref_primary_10_1021_acsnano_2c08702
crossref_citationtrail_10_1021_acsnano_2c08702
acs_journals_10_1021_acsnano_2c08702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-14
PublicationDateYYYYMMDD 2023-02-14
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
John C. L. (ref18/cit18) 2010
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1002/anie.201604731
– ident: ref17/cit17
  doi: 10.1021/nn8006465
– ident: ref11/cit11
  doi: 10.1002/anie.200802248
– ident: ref41/cit41
  doi: 10.1021/la801357v
– ident: ref38/cit38
  doi: 10.1021/nn404985h
– ident: ref1/cit1
  doi: 10.4103/0975-7406.72127
– ident: ref22/cit22
  doi: 10.1039/D0NR08256B
– ident: ref44/cit44
  doi: 10.14440/jbm.2014.36
– ident: ref9/cit9
  doi: 10.1021/jp026731y
– ident: ref14/cit14
  doi: 10.1002/adma.201201690
– ident: ref7/cit7
  doi: 10.1021/nl204496g
– ident: ref32/cit32
  doi: 10.1002/smll.201102426
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.0c01507
– ident: ref37/cit37
  doi: 10.1039/b714759g
– ident: ref40/cit40
  doi: 10.1021/la0471792
– ident: ref24/cit24
  doi: 10.1088/0957-4484/27/2/024001
– ident: ref15/cit15
  doi: 10.1002/adma.200802789
– ident: ref21/cit21
  doi: 10.1021/cr200061k
– ident: ref47/cit47
  doi: 10.3791/50549
– ident: ref34/cit34
  doi: 10.1002/anie.201004910
– start-page: 359
  volume-title: Trace Analysis with Nanomaterials
  year: 2010
  ident: ref18/cit18
  doi: 10.1002/9783527632015.ch14
– ident: ref16/cit16
  doi: 10.1007/s11468-010-9130-2
– ident: ref4/cit4
  doi: 10.3390/s151025774
– ident: ref10/cit10
  doi: 10.1002/smll.200701295
– ident: ref5/cit5
  doi: 10.1021/nl034372s
– ident: ref27/cit27
  doi: 10.1364/OPEX.13.008520
– ident: ref26/cit26
  doi: 10.1021/acs.jpcb.2c03249
– ident: ref20/cit20
  doi: 10.1088/0957-4484/24/28/285502
– ident: ref29/cit29
  doi: 10.3390/ma11020243
– ident: ref25/cit25
  doi: 10.1016/j.bpj.2017.11.013
– ident: ref42/cit42
  doi: 10.1021/la800305j
– ident: ref23/cit23
  doi: 10.21203/rs.3.rs-1600967/v1
– ident: ref33/cit33
  doi: 10.1021/cm020732l
– ident: ref13/cit13
  doi: 10.1021/cr2001178
– ident: ref8/cit8
  doi: 10.1021/acs.nanolett.5b00872
– ident: ref3/cit3
  doi: 10.1021/ac7017348
– ident: ref45/cit45
  doi: 10.1371/journal.pone.0100589
– ident: ref19/cit19
  doi: 10.1021/acs.accounts.9b00230
– ident: ref35/cit35
  doi: 10.1038/nmat3462
– ident: ref28/cit28
  doi: 10.1039/C2CP43162A
– ident: ref31/cit31
  doi: 10.1016/j.scitotenv.2021.145478
– ident: ref39/cit39
  doi: 10.1016/j.jcis.2006.05.012
– ident: ref46/cit46
  doi: 10.3791/53154
– ident: ref30/cit30
  doi: 10.1021/jp4056522
– ident: ref6/cit6
  doi: 10.1038/nnano.2012.51
– ident: ref43/cit43
  doi: 10.1021/jp2081066
– ident: ref2/cit2
  doi: 10.1021/acs.nanolett.5b00771
SSID ssj0057876
Score 2.5979378
Snippet Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR)....
Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR)....
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2266
Title Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles
URI http://dx.doi.org/10.1021/acsnano.2c08702
https://www.ncbi.nlm.nih.gov/pubmed/36660770
https://www.proquest.com/docview/2768232094
https://pubmed.ncbi.nlm.nih.gov/PMC9933608
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVQ2ZQFj5bHQKmM1EVZZEich5NlVdGOUIGqKVJ3UWxfQ8XgoGaGRT-DL-Y4yQydjirY3thW7Bz7nhtfHzO25xXChY5NYGKrgoQEBcpEFGRFqqyRWqvYn3f--CmbfEk-XKQXf8Wib-_gi-hdrVtXu2YsdAhsYbW9LzJ4Gc-CDsvFoutxl_UbyAiQwSKWKj5rDXg3pNtVN7TGLW-nSN7wOUeP-myttpMq9Kkm38fzmRrr63Uhx3935zF7ODBPftBD5Qm7R26LPbihR7jNfnfHcbvDl3gbfuL93OU1GV7Or2ytiZ-CawO33P_090odxPd_tCfl6dlbmH6Bc7a8doZ_xvwAkqnl5aItby59srz7yic-BacBcqmTc-WN5SXsU-LHzdRwLPiI5IeEvafs_Oj9-eEkGC5tCGq4tlkABmBilQudWUUJgpEkRxACHiVBTKQCvQu1KXIb21yowosi6ZTIgpYokjA_YxuucfSCcYvgEwZdRCZNMm2USWSdkLFpXmidyRHbw2BWw5xrq247XUTVMMLVMMIjNl586UoPuuf--o3p3RX2lxV-9pIfdxd9s4BOhWnp91pqR828rQTCOJBVBM8j9ryH0rKxGCFjKGU4YnIFZMsCXvJ79Ym7_NZJf4NNxlmYv_y_rr9imwKczCeZR8kO25hdzek1ONRM7Xaz5w-Wgxx-
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWqsgAWvB_D00hdlEWmeTh2sqwqygDTUsggdRfFL6gYHNTMsOhn8MUcZ5LQaVUJtjex5TjHvufqXh8TsuUVwmOV6EAnVgbMxCaQOjIBz1NptVBKJv6888Ehn3xh74_T4w0S9mdhMIgGPTVtEv-vukC0A5urXD2OVQiIYdO9lnLG_WUNu3tFv_d6-PFVHhlxMsjEIOZzqQPvjVSz7o0uUcyLlZLnXM_-bfJpGHRbcfJ9vFzIsTq7oOf4P191h9zqeCjdXQHnLtkw7h65eU6d8D753R7ObY9iYlB06r3eyZnRtFie2koZegTmDRRTnwLwuh2Gbv9opsXR59cw_QIDbWjlNP2I1QJcm4YWfV_eXPjSefeVTnxBTg0cm1bcldaWFrDPDX1bzzXF9o-4vivfe0Bm-29me5Ogu8IhqODoFgH4gE5kFitupWEITViGkASsSoCmCAmyFyqdZzaxWSxzL5GkUmMsSIo0AuaHZNPVzjwm1CIUhUHlkU4ZV1pqJipmtE2zXCkuRmQLk1l2K7Ap2-R6HJXdDJfdDI_IuP_hpepU0P1lHPOrG2wPDX6uBECufvVVj6ASi9RnXipn6mVTxgjqQF0RSo_IoxWihs4SBJChEOGIiDWsDS94AfD1J-7kWysEDm6Z8DB78m-f_pJcn8wOpuX03eGHp-RGDLbmy88j9oxsLk6X5jnY1UK-aBfUH2lRJOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hIiE48H4EKCxSD-Xg4Pfax6o0BAglwq3Um-V9tRVhXdUJh_4MfjHfOI7VtKoE17F3tV7P7HyjmfmWsS1iCA9VpD0dWenFJjSe1IHx0jyRVgulZET9zt_20_Fh_OUoOeqawqgXBotoMFPTJvHJqs-07RgGgg-Qu8rVw1D5UDMcvLcBRwK6sGFnt1idv6SC6TKXjFgZgKIn9Lk2AXkk1ax7pGsw82q15CX3M3rADvuFt1UnP4eLuRyqiyucjv_7ZQ_Z_Q6P8p2lAj1it4x7zO5dYil8wv60TbptSyYWxifk_U4vjObF4txWyvApEDi0mVMqgPg7DN_-1UyK6Y_3EP0GEm145TT_DquBfpuGF6u5SFxQCb075mMqzKmhz6YleeW15QXkM8M_1TPN4QYQ33dlfE_ZwWjvYHfsdVc5eBUc3twDLtCRzEKVWmlihChxhtAE6EoArggJ0OcrnWc2slkoc6JKUokxFmBFGgHxM7bhamdeMG4RkkKg8kAncaq01LGoYqNtkuVKpWLAtrCZZWeJTdkm2cOg7Ha47HZ4wIarn16qjg2dLuWY3Txgux9wtiQCufnVdystKmGslIGpnKkXTRkiuAOERUg9YM-XWtVPFiGQ9IXwB0ys6Vv_AhGBrz9xpyctITgwZpT62ct_-_S37M7046icfN7_-ordDQHaqAo9iF-zjfn5wmwCZM3lm9am_gKHVCda
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+Localized+Surface+Plasmon+Resonance+%28msLSPR%29+Reveals+and+Overcomes+Spectral+and+Sensing+Heterogeneities+of+Single+Gold+Nanoparticles&rft.jtitle=ACS+nano&rft.au=Palani%2C+Stephen&rft.au=Kenison%2C+John+P.&rft.au=Sabuncu%2C+Sinan&rft.au=Huang%2C+Tao&rft.date=2023-02-14&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=17&rft.issue=3&rft.spage=2266&rft.epage=2278&rft_id=info:doi/10.1021%2Facsnano.2c08702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_2c08702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon