Reliquefaction behavior of sand and its mesoscopic mechanism
Instances of historical earthquakes demonstrated that sandy grounds can liquefy more than once (reliquefaction) when earthquakes occur in succession (e.g., the main shock and aftershocks). Previous laboratory experiments proved that the resistance of sand to reliquefaction might be lower after its f...
Saved in:
Published in | Soil dynamics and earthquake engineering (1984) Vol. 114; pp. 12 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.11.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0267-7261 1879-341X |
DOI | 10.1016/j.soildyn.2018.06.024 |
Cover
Abstract | Instances of historical earthquakes demonstrated that sandy grounds can liquefy more than once (reliquefaction) when earthquakes occur in succession (e.g., the main shock and aftershocks). Previous laboratory experiments proved that the resistance of sand to reliquefaction might be lower after its first liquefaction despite an increase in density after the first liquefaction. To clarify the reliquefaction behavior of sand and its mesoscopic mechanism, a series of small-scale shaking table tests were performed for different shaking durations on a sand specimen to simulate multiple liquefactions. Mesoscopic images of the sand particles were taken with a stereomicroscope and an industrial camera both before and after each liquefaction. Then, a digital image processing technique was used to obtain the mesoscopic parameters of the sand particles, namely, the apparent void ratio, long-axis direction, and average coordination number. The test results demonstrated that the sand specimen could reliquefy up to three times according to various shaking durations, suggesting that the density of the sand specimen plays a significant role in the reliquefaction behavior of sand. The analysis of the mesoscopic parameters indicated that the long-axis directions of sand particles are prone to be horizontal in the initial state (before the first liquefaction), whereas after liquefaction and redeposition, the long-axis directions tend to be vertical, suggesting that the decrease in reliquefaction resistance results from the change in the mesoscopic structure of the sand.
•The reliquefaction resistance of sand might be lower after its first liquefaction.•Digital image processing technique was used to obtain the mesoscopic parameters.•The change in long-axis of sand particle reduces the reliquefaction resistance. |
---|---|
AbstractList | Instances of historical earthquakes demonstrated that sandy grounds can liquefy more than once (reliquefaction) when earthquakes occur in succession (e.g., the main shock and aftershocks). Previous laboratory experiments proved that the resistance of sand to reliquefaction might be lower after its first liquefaction despite an increase in density after the first liquefaction. To clarify the reliquefaction behavior of sand and its mesoscopic mechanism, a series of small-scale shaking table tests were performed for different shaking durations on a sand specimen to simulate multiple liquefactions. Mesoscopic images of the sand particles were taken with a stereomicroscope and an industrial camera both before and after each liquefaction. Then, a digital image processing technique was used to obtain the mesoscopic parameters of the sand particles, namely, the apparent void ratio, long-axis direction, and average coordination number. The test results demonstrated that the sand specimen could reliquefy up to three times according to various shaking durations, suggesting that the density of the sand specimen plays a significant role in the reliquefaction behavior of sand. The analysis of the mesoscopic parameters indicated that the long-axis directions of sand particles are prone to be horizontal in the initial state (before the first liquefaction), whereas after liquefaction and redeposition, the long-axis directions tend to be vertical, suggesting that the decrease in reliquefaction resistance results from the change in the mesoscopic structure of the sand.
•The reliquefaction resistance of sand might be lower after its first liquefaction.•Digital image processing technique was used to obtain the mesoscopic parameters.•The change in long-axis of sand particle reduces the reliquefaction resistance. Instances of historical earthquakes demonstrated that sandy grounds can liquefy more than once (reliquefaction) when earthquakes occur in succession (e.g., the main shock and aftershocks). Previous laboratory experiments proved that the resistance of sand to reliquefaction might be lower after its first liquefaction despite an increase in density after the first liquefaction. To clarify the reliquefaction behavior of sand and its mesoscopic mechanism, a series of small-scale shaking table tests were performed for different shaking durations on a sand specimen to simulate multiple liquefactions. Mesoscopic images of the sand particles were taken with a stereomicroscope and an industrial camera both before and after each liquefaction. Then, a digital image processing technique was used to obtain the mesoscopic parameters of the sand particles, namely, the apparent void ratio, long-axis direction, and average coordination number. The test results demonstrated that the sand specimen could reliquefy up to three times according to various shaking durations, suggesting that the density of the sand specimen plays a significant role in the reliquefaction behavior of sand. The analysis of the mesoscopic parameters indicated that the long-axis directions of sand particles are prone to be horizontal in the initial state (before the first liquefaction), whereas after liquefaction and redeposition, the long-axis directions tend to be vertical, suggesting that the decrease in reliquefaction resistance results from the change in the mesoscopic structure of the sand. |
Author | Bao, Xiaohua Ye, Bin Hu, Hailong Lu, Ping |
Author_xml | – sequence: 1 givenname: Bin surname: Ye fullname: Ye, Bin email: yebin@tongji.edu.cn organization: Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China – sequence: 2 givenname: Hailong surname: Hu fullname: Hu, Hailong email: hl342239@163.com organization: Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China – sequence: 3 givenname: Xiaohua surname: Bao fullname: Bao, Xiaohua email: bxh@szu.edu.cn organization: Department of Civil Engineering, Shenzhen University, Shenzhen 518060, China – sequence: 4 givenname: Ping surname: Lu fullname: Lu, Ping email: luping@tongji.edu.cn organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China |
BookMark | eNqFkN9LwzAQx4NMcJv-CULB59a7NE1aFESGv2AgiIJvIU1TlrIlM-kG--9tmU--7OG4e_h-v3f3mZGJ884Qco2QISC_7bLo7bo5uIwClhnwDCg7I1MsRZXmDL8nZAqUi1RQjhdkFmMHgAJLPiX3H2Ztf3amVbq33iW1Wam99SHxbRKVa5KxbB-TjYk-ar-1ehj1SjkbN5fkvFXraK7--px8PT99Ll7T5fvL2-JxmSpGeZ8axktoyqLURuVc1RpRCzRMMKyh4IUSiCWAAKWbCnJOC9YwQQte50ZzwfM5uTnmboMfbo297PwuuGGlpIhVlVeUV4Pq7qjSwccYTCu17dX4VR-UXUsEOeKSnfzDJUdcErgccA3u4p97G-xGhcNJ38PRZwYAe2uCjNoap01jg9G9bLw9kfALkEOJMw |
CitedBy_id | crossref_primary_10_1016_j_powtec_2023_118667 crossref_primary_10_1007_s10518_021_01143_8 crossref_primary_10_1007_s11440_022_01645_y crossref_primary_10_1680_jgele_20_00099 crossref_primary_10_1016_j_soildyn_2022_107415 crossref_primary_10_1007_s10518_024_01937_6 crossref_primary_10_1016_j_jrmge_2022_09_003 crossref_primary_10_1016_j_soildyn_2020_106206 crossref_primary_10_1016_j_tust_2022_104760 crossref_primary_10_1155_2022_5344230 crossref_primary_10_1061__ASCE_GT_1943_5606_0002456 crossref_primary_10_1016_j_sandf_2020_12_008 crossref_primary_10_1007_s11803_023_2210_z crossref_primary_10_1139_cgj_2021_0343 crossref_primary_10_1007_s11440_020_00984_y crossref_primary_10_1002_nag_3440 crossref_primary_10_1016_j_soildyn_2024_108756 crossref_primary_10_1007_s10035_021_01155_w crossref_primary_10_1007_s10064_024_03734_6 crossref_primary_10_1680_jgeot_22_00075 crossref_primary_10_1061__ASCE_GM_1943_5622_0002383 crossref_primary_10_1007_s10064_022_02621_2 crossref_primary_10_1016_j_soildyn_2023_108343 crossref_primary_10_3208_jgssp_v10_OS_10_06 crossref_primary_10_1016_j_powtec_2023_118274 crossref_primary_10_1016_j_compgeo_2023_105846 crossref_primary_10_3208_jgssp_v10_OS_10_05 crossref_primary_10_1016_j_conbuildmat_2022_126619 crossref_primary_10_1016_j_enggeo_2022_106881 crossref_primary_10_1080_13632469_2020_1778588 crossref_primary_10_3390_jmse10081026 crossref_primary_10_1016_j_soildyn_2022_107390 crossref_primary_10_1061__ASCE_GT_1943_5606_0002588 crossref_primary_10_1007_s11440_023_01819_2 crossref_primary_10_1061_IJGNAI_GMENG_7492 crossref_primary_10_1016_j_soildyn_2021_106940 crossref_primary_10_3389_fmars_2023_1211616 crossref_primary_10_1016_j_soildyn_2023_108327 crossref_primary_10_1080_1064119X_2022_2142176 crossref_primary_10_1016_j_soildyn_2024_108802 crossref_primary_10_1016_j_soildyn_2023_107962 crossref_primary_10_1016_j_sandf_2025_101589 crossref_primary_10_1016_j_soildyn_2024_109067 crossref_primary_10_1016_j_soildyn_2024_109188 crossref_primary_10_1007_s10035_021_01169_4 crossref_primary_10_1016_j_soildyn_2019_105720 crossref_primary_10_3390_jmse11010104 crossref_primary_10_1061__ASCE_EM_1943_7889_0002104 crossref_primary_10_1007_s11709_024_1057_3 crossref_primary_10_1061__ASCE_GT_1943_5606_0002833 crossref_primary_10_3208_jgssp_v10_OS_40_02 crossref_primary_10_1061__ASCE_GT_1943_5606_0002755 crossref_primary_10_1016_j_soildyn_2023_108319 crossref_primary_10_1007_s10518_021_01298_4 crossref_primary_10_1007_s10518_024_02075_9 crossref_primary_10_1016_j_soildyn_2024_108741 crossref_primary_10_1007_s12517_020_05533_1 crossref_primary_10_1016_j_soildyn_2024_108744 crossref_primary_10_3208_jgssp_v10_OS_26_02 crossref_primary_10_1016_j_soildyn_2025_109215 crossref_primary_10_1016_j_compgeo_2024_106496 crossref_primary_10_1016_j_soildyn_2024_109114 crossref_primary_10_1080_1064119X_2023_2181117 crossref_primary_10_1007_s10064_019_01672_2 crossref_primary_10_1007_s11803_023_2191_y crossref_primary_10_1016_j_sandf_2023_101357 crossref_primary_10_1680_jgein_20_00021 |
Cites_doi | 10.1061/(ASCE)1090-0241(2001)127:5(416) 10.1557/PROC-362-167 10.1061/(ASCE)GT.1943-5606.0001430 10.1061/(ASCE)MT.1943-5533.0000698 10.1109/34.87344 10.1016/j.compgeo.2015.11.025 10.3208/sandf.47.547 10.3141/1832-09 10.3208/sandf1972.22.3_109 10.1177/0361198196154800105 10.3208/sandf1972.18.4_31 10.1007/s11069-012-0433-9 10.1016/0165-1684(94)90060-4 10.1061/(ASCE)GT.1943-5606.0001634 10.1016/j.soildyn.2010.12.008 10.1016/j.cageo.2011.09.008 10.1061/JSFEAQ.0001478 10.3208/sandf.50.9 10.1061/(ASCE)0887-3801(2001)15:3(232) |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Nov 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Nov 2018 |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K FR3 KL. KR7 SOI |
DOI | 10.1016/j.soildyn.2018.06.024 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-341X |
EndPage | 21 |
ExternalDocumentID | 10_1016_j_soildyn_2018_06_024 S0267726118302239 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 WUQ Y6R ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TG 7UA 8FD C1K EFKBS FR3 KL. KR7 SOI |
ID | FETCH-LOGICAL-a426t-e4680d858cea36abc11c71e4741b0565a71180070acd9036254d47256b3ec6763 |
IEDL.DBID | .~1 |
ISSN | 0267-7261 |
IngestDate | Wed Aug 13 10:36:00 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 03:37:51 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shaking table Reliquefaction Mesoscopic mechanism Digital image processing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a426t-e4680d858cea36abc11c71e4741b0565a71180070acd9036254d47256b3ec6763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2119939269 |
PQPubID | 2045399 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2119939269 crossref_citationtrail_10_1016_j_soildyn_2018_06_024 crossref_primary_10_1016_j_soildyn_2018_06_024 elsevier_sciencedirect_doi_10_1016_j_soildyn_2018_06_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Soil dynamics and earthquake engineering (1984) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Bonifazi G, Sappa G, De CG. Applications of images digital analysis in the characterization of grains morphology influence in mechanical behavior of soils. In: Proceedings of Materials Research Society Symposium Proceedings, Boston, Vol.362; 1994. Vincent, Soille (bib26) 1991; 13 Jain (bib24) 1989 Sobel I, Feldman G. A 3×3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project; 1968. Ishihara, Okada (bib7) 1982; 22 Toyota, Takada (bib11) 2016; 143 Meyer (bib23) 1994; 38 Wakamatsu K. Recurrence of liquefaction at the same site induced by the 2011 Great East JapanEarthquake compared with previous earthquakes. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal; 2012. Beucher S, Lantuéjoul C. Use of watersheds in contour detection. In: Proceeding of International Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Renners, France, Vol.2, 1979, p. 391-396. Gorsevski, Onasch, Farver, Ye (bib19) 2012; 42 Ha, Olson, Seo, Kim (bib12) 2011; 31 Fletcher, Chandan, Masad, Sivakumar (bib18) 2003; 1382 Huang, Chang, Hsu, Huang (bib21) 2015; 2015 El-Sekelly, Dobry, Abdoun (bib14) 2016; 142 Oda, Kawamoto, Suzuki, Fujimori, Sato (bib8) 2001; 127 Wang, Yang, Onyejekwe (bib10) 2012; 25 Al-shibli, El-Saidany (bib17) 2001; 15 Huang, Yu (bib1) 2013; 65 Youd TL. Recurrence of Liquefaction at the Same Site. In: Proceedings of the 8th World Conference onEarthquake Engineering, Vol.3, 1984, p. 231–238. Ishihara, Okada (bib6) 1978; 18 Ye, Ye, Zhang, Yashima (bib13) 2007; 47 Raschke, Hryciw, Donohoe (bib15) 1996; 1548 Finn, Bransby, Pickering (bib5) 1970; 96 Gonzalez, Woods, Eddins (bib25) 2004 Yamada, Takamori, Sato (bib9) 2010; 50 Zheng, Hryciw (bib20) 2016; 73 Tohno, Shamoto (bib3) 1986; 8 Wang (10.1016/j.soildyn.2018.06.024_bib10) 2012; 25 Gonzalez (10.1016/j.soildyn.2018.06.024_bib25) 2004 Ishihara (10.1016/j.soildyn.2018.06.024_bib6) 1978; 18 10.1016/j.soildyn.2018.06.024_bib16 Al-shibli (10.1016/j.soildyn.2018.06.024_bib17) 2001; 15 Toyota (10.1016/j.soildyn.2018.06.024_bib11) 2016; 143 10.1016/j.soildyn.2018.06.024_bib2 Huang (10.1016/j.soildyn.2018.06.024_bib21) 2015; 2015 Ye (10.1016/j.soildyn.2018.06.024_bib13) 2007; 47 Oda (10.1016/j.soildyn.2018.06.024_bib8) 2001; 127 Yamada (10.1016/j.soildyn.2018.06.024_bib9) 2010; 50 Gorsevski (10.1016/j.soildyn.2018.06.024_bib19) 2012; 42 Jain (10.1016/j.soildyn.2018.06.024_bib24) 1989 El-Sekelly (10.1016/j.soildyn.2018.06.024_bib14) 2016; 142 Fletcher (10.1016/j.soildyn.2018.06.024_bib18) 2003; 1382 10.1016/j.soildyn.2018.06.024_bib4 10.1016/j.soildyn.2018.06.024_bib22 Meyer (10.1016/j.soildyn.2018.06.024_bib23) 1994; 38 10.1016/j.soildyn.2018.06.024_bib27 Finn (10.1016/j.soildyn.2018.06.024_bib5) 1970; 96 Tohno (10.1016/j.soildyn.2018.06.024_bib3) 1986; 8 Vincent (10.1016/j.soildyn.2018.06.024_bib26) 1991; 13 Ishihara (10.1016/j.soildyn.2018.06.024_bib7) 1982; 22 Huang (10.1016/j.soildyn.2018.06.024_bib1) 2013; 65 Zheng (10.1016/j.soildyn.2018.06.024_bib20) 2016; 73 Raschke (10.1016/j.soildyn.2018.06.024_bib15) 1996; 1548 Ha (10.1016/j.soildyn.2018.06.024_bib12) 2011; 31 |
References_xml | – volume: 142 start-page: 04016012 year: 2016 ident: bib14 article-title: Centrifuge modeling of the effect of preshaking on the liquefaction resistance of silty sand deposits publication-title: J Geotech Geoenviron Eng – volume: 25 start-page: 1415 year: 2012 end-page: 1423 ident: bib10 article-title: Effect of previous cyclic shearing on liquefaction resistance of mississippi river valley silt publication-title: J Mater Civil Eng – year: 1989 ident: bib24 article-title: Fundamentals of digital image processing – volume: 143 start-page: 04016120 year: 2016 ident: bib11 article-title: Variation of liquefaction strength induced by monotonic and cyclic loading histories publication-title: J Geotech Geoenviron Eng – volume: 50 start-page: 9 year: 2010 end-page: 25 ident: bib9 article-title: Effects on reliquefaction resistance produced by changes in anisotropy during liquefaction publication-title: Soils Found – year: 2004 ident: bib25 article-title: Digital image processing using MATLAB – volume: 1548 start-page: 31 year: 1996 end-page: 37 ident: bib15 article-title: Microdeformations in sands by digital image processing and analysis publication-title: Transp Res Rec J Transp Res Board – volume: 18 start-page: 31 year: 1978 end-page: 45 ident: bib6 article-title: Effects of stress history on cyclic behavior of sand publication-title: Soils Found – volume: 15 start-page: 232 year: 2001 end-page: 238 ident: bib17 article-title: Quantifying void ratio in granular materials using Voronoi tessellation publication-title: J Comput Civil Eng – volume: 22 start-page: 109 year: 1982 end-page: 125 ident: bib7 article-title: Effects of large pre-shearing on cyclic behavior of sand publication-title: Soils Found – volume: 96 start-page: 1917 year: 1970 end-page: 1934 ident: bib5 article-title: Effects of strain history on liquefaction of sands publication-title: Soil Mech Found Div – volume: 47 start-page: 547 year: 2007 end-page: 558 ident: bib13 article-title: Experiment and numerical simulation of repeated liquefaction-consolidation of sand publication-title: Soils Found – reference: Beucher S, Lantuéjoul C. Use of watersheds in contour detection. In: Proceeding of International Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Renners, France, Vol.2, 1979, p. 391-396. – volume: 127 start-page: 416 year: 2001 end-page: 423 ident: bib8 article-title: Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading publication-title: J Geotech Geoenviron Eng – volume: 8 start-page: 85 year: 1986 end-page: 116 ident: bib3 article-title: Liquefaction damage to the ground during the 1983 nihonkai-chubu (Japan Sea) earthquake in Aomori Prefecture, Tohoku, Japan publication-title: Nat Disast Sci – volume: 13 start-page: 583 year: 1991 end-page: 598 ident: bib26 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans Pattern Anal – volume: 2015 start-page: 1 year: 2015 end-page: 9 ident: bib21 article-title: A mist pluviation method for reconstituting silty sand specimens publication-title: Eng Geol – reference: Wakamatsu K. Recurrence of liquefaction at the same site induced by the 2011 Great East JapanEarthquake compared with previous earthquakes. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal; 2012. – volume: 73 start-page: 142 year: 2016 end-page: 152 ident: bib20 article-title: Segmentation of contacting soil particles in images by modified watershed analysis publication-title: Comput Geotech – reference: Youd TL. Recurrence of Liquefaction at the Same Site. In: Proceedings of the 8th World Conference onEarthquake Engineering, Vol.3, 1984, p. 231–238. – volume: 1382 start-page: 67 year: 2003 end-page: 77 ident: bib18 article-title: Aggregate imaging system for characterizing the shape of fine and coarse aggregates publication-title: Transp Res Rec J Transp Res Board – volume: 31 start-page: 682 year: 2011 end-page: 691 ident: bib12 article-title: Evaluation of reliquefaction resistance using shaking table tests publication-title: Soil Dyn Earthq Eng – volume: 65 start-page: 2375 year: 2013 end-page: 2384 ident: bib1 article-title: Review of soil liquefaction characteristics during major earthquakes of the twenty-first century publication-title: Nat Hazards – volume: 42 start-page: 136 year: 2012 end-page: 142 ident: bib19 article-title: Detecting grain boundaries in deformed rocks using a cellular automata approach publication-title: Comput Geosci-UK – reference: Sobel I, Feldman G. A 3×3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project; 1968. – reference: Bonifazi G, Sappa G, De CG. Applications of images digital analysis in the characterization of grains morphology influence in mechanical behavior of soils. In: Proceedings of Materials Research Society Symposium Proceedings, Boston, Vol.362; 1994. – volume: 38 start-page: 113 year: 1994 end-page: 125 ident: bib23 article-title: Topographic distance and watershed lines publication-title: Signal Process – volume: 127 start-page: 416 issue: 5 year: 2001 ident: 10.1016/j.soildyn.2018.06.024_bib8 article-title: Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2001)127:5(416) – ident: 10.1016/j.soildyn.2018.06.024_bib16 doi: 10.1557/PROC-362-167 – volume: 142 start-page: 04016012 issue: 6 year: 2016 ident: 10.1016/j.soildyn.2018.06.024_bib14 article-title: Centrifuge modeling of the effect of preshaking on the liquefaction resistance of silty sand deposits publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001430 – volume: 25 start-page: 1415 issue: 10 year: 2012 ident: 10.1016/j.soildyn.2018.06.024_bib10 article-title: Effect of previous cyclic shearing on liquefaction resistance of mississippi river valley silt publication-title: J Mater Civil Eng doi: 10.1061/(ASCE)MT.1943-5533.0000698 – volume: 13 start-page: 583 issue: 6 year: 1991 ident: 10.1016/j.soildyn.2018.06.024_bib26 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans Pattern Anal doi: 10.1109/34.87344 – volume: 73 start-page: 142 year: 2016 ident: 10.1016/j.soildyn.2018.06.024_bib20 article-title: Segmentation of contacting soil particles in images by modified watershed analysis publication-title: Comput Geotech doi: 10.1016/j.compgeo.2015.11.025 – volume: 47 start-page: 547 issue: 3 year: 2007 ident: 10.1016/j.soildyn.2018.06.024_bib13 article-title: Experiment and numerical simulation of repeated liquefaction-consolidation of sand publication-title: Soils Found doi: 10.3208/sandf.47.547 – volume: 1382 start-page: 67 issue: 1 year: 2003 ident: 10.1016/j.soildyn.2018.06.024_bib18 article-title: Aggregate imaging system for characterizing the shape of fine and coarse aggregates publication-title: Transp Res Rec J Transp Res Board doi: 10.3141/1832-09 – volume: 22 start-page: 109 issue: 3 year: 1982 ident: 10.1016/j.soildyn.2018.06.024_bib7 article-title: Effects of large pre-shearing on cyclic behavior of sand publication-title: Soils Found doi: 10.3208/sandf1972.22.3_109 – volume: 1548 start-page: 31 issue: 1 year: 1996 ident: 10.1016/j.soildyn.2018.06.024_bib15 article-title: Microdeformations in sands by digital image processing and analysis publication-title: Transp Res Rec J Transp Res Board doi: 10.1177/0361198196154800105 – ident: 10.1016/j.soildyn.2018.06.024_bib27 – volume: 2015 start-page: 1 issue: 188 year: 2015 ident: 10.1016/j.soildyn.2018.06.024_bib21 article-title: A mist pluviation method for reconstituting silty sand specimens publication-title: Eng Geol – volume: 18 start-page: 31 issue: 4 year: 1978 ident: 10.1016/j.soildyn.2018.06.024_bib6 article-title: Effects of stress history on cyclic behavior of sand publication-title: Soils Found doi: 10.3208/sandf1972.18.4_31 – volume: 65 start-page: 2375 issue: 3 year: 2013 ident: 10.1016/j.soildyn.2018.06.024_bib1 article-title: Review of soil liquefaction characteristics during major earthquakes of the twenty-first century publication-title: Nat Hazards doi: 10.1007/s11069-012-0433-9 – volume: 38 start-page: 113 issue: 1 year: 1994 ident: 10.1016/j.soildyn.2018.06.024_bib23 article-title: Topographic distance and watershed lines publication-title: Signal Process doi: 10.1016/0165-1684(94)90060-4 – year: 1989 ident: 10.1016/j.soildyn.2018.06.024_bib24 – volume: 143 start-page: 04016120 issue: 4 year: 2016 ident: 10.1016/j.soildyn.2018.06.024_bib11 article-title: Variation of liquefaction strength induced by monotonic and cyclic loading histories publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001634 – year: 2004 ident: 10.1016/j.soildyn.2018.06.024_bib25 – ident: 10.1016/j.soildyn.2018.06.024_bib22 – volume: 31 start-page: 682 issue: 4 year: 2011 ident: 10.1016/j.soildyn.2018.06.024_bib12 article-title: Evaluation of reliquefaction resistance using shaking table tests publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2010.12.008 – volume: 42 start-page: 136 issue: 3 year: 2012 ident: 10.1016/j.soildyn.2018.06.024_bib19 article-title: Detecting grain boundaries in deformed rocks using a cellular automata approach publication-title: Comput Geosci-UK doi: 10.1016/j.cageo.2011.09.008 – volume: 8 start-page: 85 issue: 1 year: 1986 ident: 10.1016/j.soildyn.2018.06.024_bib3 article-title: Liquefaction damage to the ground during the 1983 nihonkai-chubu (Japan Sea) earthquake in Aomori Prefecture, Tohoku, Japan publication-title: Nat Disast Sci – volume: 96 start-page: 1917 issue: 6 year: 1970 ident: 10.1016/j.soildyn.2018.06.024_bib5 article-title: Effects of strain history on liquefaction of sands publication-title: Soil Mech Found Div doi: 10.1061/JSFEAQ.0001478 – ident: 10.1016/j.soildyn.2018.06.024_bib4 – volume: 50 start-page: 9 issue: 1 year: 2010 ident: 10.1016/j.soildyn.2018.06.024_bib9 article-title: Effects on reliquefaction resistance produced by changes in anisotropy during liquefaction publication-title: Soils Found doi: 10.3208/sandf.50.9 – volume: 15 start-page: 232 issue: 3 year: 2001 ident: 10.1016/j.soildyn.2018.06.024_bib17 article-title: Quantifying void ratio in granular materials using Voronoi tessellation publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)0887-3801(2001)15:3(232) – ident: 10.1016/j.soildyn.2018.06.024_bib2 |
SSID | ssj0017186 |
Score | 2.465817 |
Snippet | Instances of historical earthquakes demonstrated that sandy grounds can liquefy more than once (reliquefaction) when earthquakes occur in succession (e.g., the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Anisotropy Coordination numbers Deformation Density Digital image processing Digital imaging Earthquakes Image processing Image processing systems Laboratory experiments Liquefaction Mesoscopic mechanism Parameters Reliquefaction Sand Sand & gravel Sand particles Seismic activity Shake table tests Shaking table Void ratio |
Title | Reliquefaction behavior of sand and its mesoscopic mechanism |
URI | https://dx.doi.org/10.1016/j.soildyn.2018.06.024 https://www.proquest.com/docview/2119939269 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lhy8pukmm90EvJRiqYq9aKG3ZbMPSOkLEw9e_O3uNJv6ACl4CCQhE8Ls7DezYb5vEbqJpUV9ho2PUxX5JOoZmFLMNzSUNElMpihwh5_GdDQhD9N42kCDmgsDbZUO-ytM36C1uxM4bwbrPA-eYe8kZhcAGCSswghIfIQwiPXux7bNA1vspdV_FubD018snmAGerlz9Q4yqLiS8QzJX_npF1Jv0s_wCB26utHrV592jBp6eYIOvqkJnqJbaC-2xo6r4NUMfG9lvEIslQdHXhbeQhcrYKPk0p4C8zcvFmdoMrx7GYx8tzmCL2xSLX1NaNJTSZxILSIqMomxZFgTWyFktqiJBQNxNzuhhVQppKmYKMJsgZNFWlKLKueouVwt9QXyFIlTmYjIMBHZ1WEmTKqS1NjhzaTIYtVCpHYJl045HDawmPO6RWzGnSc5eJJDq1xIWqi7NVtX0hm7DJLa3_xHDHAL77tM2_X4cDcJCw7idamt_2h6-f83X6F9uKroh23ULF_f9LWtQ8qsswm0Dtrr3z-Oxp_ilN1G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8YnVqjl4TdM0m32AFymWqm0vttDbstlNINKmxcSDF3-7O82mPkAKHgIhyYQwu_PNbJjvW4RuQmVQn_qJ63MduDhoJxBS1E1IRxHGkkgT4A4PR6Q_wY_TcFpD3YoLA22VFvtLTF-htb3iWW96yzT1nmHvJGoWAD5IWHUCvoW2cRhQENBvfaz7PHwDvqT80UJdePyLxuO9gGDuTL-DDqpf6nh28F8J6hdUr_JP7wDt28LRuSu_7RDV4uwI7X2TEzxGt9BfbIwtWcGpKPjOInFymWkHjrTInXmcL4COkipzCtTfNJ-foEnvftztu3Z3BFearFq4MSasrVnIVCwDIiPl-4r6MTYlQmSqmlBSUHczES2V5pCnQqwxNRVOFMSKGFg5RfVskcVnyNE45IrJIKEyMMvDSCZcM56Y8Y2UjELdQLhyiVBWOhx2sJiJqkfsRVhPCvCkgF65Dm6g1tpsWWpnbDJglb_Fj0kgDL5vMm1W4yNsFOYC1Ou4KQAJP___m6_RTn88HIjBw-jpAu3CnZKL2ET14vUtvjRFSRFdrSbdJxc-3tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliquefaction+behavior+of+sand+and+its+mesoscopic+mechanism&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Ye%2C+Bin&rft.au=Hu%2C+Hailong&rft.au=Bao%2C+Xiaohua&rft.au=Lu%2C+Ping&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=114&rft.spage=12&rft.epage=21&rft_id=info:doi/10.1016%2Fj.soildyn.2018.06.024&rft.externalDocID=S0267726118302239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon |