Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe

Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor–acceptor chromoph...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 11; no. 12; pp. 12276 - 12291
Main Authors Cheng, Kai, Chen, Hao, Jenkins, Cesare H, Zhang, Guanglei, Zhao, Wei, Zhang, Zhe, Han, Fei, Fung, Jonathan, Yang, Meng, Jiang, Yuxin, Xing, Lei, Cheng, Zhen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.12.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.7b05966

Cover

Abstract Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor–acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D−π–A−π–D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody–DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody–DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.
AbstractList Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor–acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D−π–A−π–D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody–DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody–DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.
Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.
Not provided.
Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-Z ) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.
Author Zhao, Wei
Han, Fei
Yang, Meng
Cheng, Zhen
Jiang, Yuxin
Zhang, Zhe
Chen, Hao
Cheng, Kai
Jenkins, Cesare H
Zhang, Guanglei
Fung, Jonathan
Xing, Lei
AuthorAffiliation Department of Radiation Oncology
Stanford University
Molecular Imaging Program at Stanford (MIPS), Bio-X Program, Department of Radiology
Beijing Jiaotong University
Department of Ultrasound
Stanford University School of Medicine
Chinese Academy of Medical Science, Peking Union Medical College Hospital
School of Computer and Information Technology
AuthorAffiliation_xml – name: Department of Ultrasound
– name: Department of Radiation Oncology
– name: Stanford University School of Medicine
– name: Molecular Imaging Program at Stanford (MIPS), Bio-X Program, Department of Radiology
– name: Beijing Jiaotong University
– name: School of Computer and Information Technology
– name: Stanford University
– name: Chinese Academy of Medical Science, Peking Union Medical College Hospital
Author_xml – sequence: 1
  givenname: Kai
  surname: Cheng
  fullname: Cheng, Kai
  organization: Stanford University School of Medicine
– sequence: 2
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Stanford University
– sequence: 3
  givenname: Cesare H
  surname: Jenkins
  fullname: Jenkins, Cesare H
  organization: Stanford University School of Medicine
– sequence: 4
  givenname: Guanglei
  surname: Zhang
  fullname: Zhang, Guanglei
  organization: Beijing Jiaotong University
– sequence: 5
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: Stanford University School of Medicine
– sequence: 6
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Stanford University
– sequence: 7
  givenname: Fei
  surname: Han
  fullname: Han, Fei
  organization: Stanford University School of Medicine
– sequence: 8
  givenname: Jonathan
  surname: Fung
  fullname: Fung, Jonathan
  organization: Stanford University
– sequence: 9
  givenname: Meng
  surname: Yang
  fullname: Yang, Meng
  organization: Chinese Academy of Medical Science, Peking Union Medical College Hospital
– sequence: 10
  givenname: Yuxin
  surname: Jiang
  fullname: Jiang, Yuxin
  organization: Chinese Academy of Medical Science, Peking Union Medical College Hospital
– sequence: 11
  givenname: Lei
  surname: Xing
  fullname: Xing, Lei
  email: lei@stanford.edu
  organization: Stanford University School of Medicine
– sequence: 12
  givenname: Zhen
  orcidid: 0000-0001-8177-9463
  surname: Cheng
  fullname: Cheng, Zhen
  email: zcheng@stanford.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29202225$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1539570$$D View this record in Osti.gov
BookMark eNp1kU9v1DAQxS1URP_AmRuyOCHRtLZT28mxLBQilYJEkbhZE2ey6yprb23nUL4GXxi3u-WA1JMtz--NZ947JHs-eCTkNWcnnAl-CjZ58OFE90y2Sj0jB7ytVcUa9Wvv313yfXKY0g1jUjdavSD7ohVMCCEPyJ8fdz6vMLl0TBcriGAzRvcbsgv-mIIf6AcX1jg4CxM932ymcrmvJRpGCvQa4hIzDvTjDFP1NQyFukKIVefHCBGHquvoxTSHiMmit_jQ8vsq5AA2zCk7S7s1LJ1f0quyyCaGHl-S5yNMCV_tziPy8-LT9eJLdfntc7c4v6zgTKhc6V61A-t53zDRtwAMUNRNjbqBXjCmGAgpyqOWvaqFFhIGJZpW8lGqBs-wPiJvt31DmcMk6zLalQ3eo82Gy7qVmhXo3RYqo93OmLJZu7LKNIHHsoDhra5LEo2WBX2zQ-e-WGY20a0h3plHtwsgt4CNIaWIoyl_PtiZI7jJcGbuUzW7VM0u1aI7_U_32PppxfutohTMTZijL0Y-Sf8FkIa1sw
CitedBy_id crossref_primary_10_1021_acs_analchem_9b03152
crossref_primary_10_1021_jacs_4c03406
crossref_primary_10_1002_adhm_201800477
crossref_primary_10_1021_acsnano_8b07283
crossref_primary_10_1002_adfm_201901480
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1016_j_ccr_2022_214609
crossref_primary_10_1039_C9NR09999A
crossref_primary_10_1002_1878_0261_12674
crossref_primary_10_1039_C9SC03504D
crossref_primary_10_1039_C9QM00036D
crossref_primary_10_1002_adma_201805875
crossref_primary_10_1021_acsabm_8b00116
crossref_primary_10_1007_s00339_020_03572_9
crossref_primary_10_1002_adom_202201067
crossref_primary_10_1021_acs_chemmater_3c02983
crossref_primary_10_1186_s12944_024_02429_x
crossref_primary_10_3390_bios14060282
crossref_primary_10_1002_adma_202300413
crossref_primary_10_1039_D0NR01098G
crossref_primary_10_1002_adom_202101634
crossref_primary_10_1152_ajpheart_00719_2020
crossref_primary_10_1039_D1TB02282B
crossref_primary_10_1016_j_bioactmat_2025_02_040
crossref_primary_10_2147_IJN_S284520
crossref_primary_10_1002_adfm_202107624
crossref_primary_10_1021_acsmacrolett_9b00815
crossref_primary_10_1016_j_microc_2024_111368
crossref_primary_10_1016_j_jcis_2023_12_088
crossref_primary_10_1016_j_nano_2023_102677
crossref_primary_10_1039_C8NH00299A
crossref_primary_10_1142_S1793545823300100
crossref_primary_10_1016_j_molmed_2020_02_003
crossref_primary_10_1002_adhm_202300537
crossref_primary_10_1002_smll_202007882
crossref_primary_10_1016_j_biomaterials_2021_120717
crossref_primary_10_1002_anbr_202200087
crossref_primary_10_1021_acsabm_1c00423
crossref_primary_10_1002_cphc_202200716
crossref_primary_10_1039_C9CC02148E
crossref_primary_10_1002_cmdc_202100125
crossref_primary_10_1021_acsnano_1c00076
crossref_primary_10_1016_j_actbio_2021_12_013
crossref_primary_10_1016_j_cej_2019_123959
crossref_primary_10_1002_smll_201903382
crossref_primary_10_1039_C8RA08163H
crossref_primary_10_1039_C9TB01381D
crossref_primary_10_1016_j_cjche_2021_06_013
crossref_primary_10_1021_acsami_9b06824
crossref_primary_10_1007_s11426_019_9506_2
crossref_primary_10_1002_anie_202000108
crossref_primary_10_1002_adom_201900045
crossref_primary_10_1021_acsapm_9b00967
crossref_primary_10_1021_acsnano_3c12316
crossref_primary_10_1016_j_mtbio_2022_100441
crossref_primary_10_1002_adhm_201901470
crossref_primary_10_1073_pnas_1908761116
crossref_primary_10_1007_s11307_018_1239_2
crossref_primary_10_1021_acsabm_8b00265
crossref_primary_10_1002_adma_201900321
crossref_primary_10_1039_D2TB00626J
crossref_primary_10_1002_wnan_1734
crossref_primary_10_26599_NBE_2024_9290061
crossref_primary_10_1039_D0CB00225A
crossref_primary_10_1007_s40242_024_3256_9
crossref_primary_10_1016_j_chempr_2019_07_015
crossref_primary_10_1039_C8CS00234G
crossref_primary_10_1021_acsapm_0c00715
crossref_primary_10_1016_j_dyepig_2020_108756
crossref_primary_10_1021_acsnano_8b05825
crossref_primary_10_1002_advs_202100228
crossref_primary_10_1002_adtp_202000170
crossref_primary_10_1016_j_cej_2023_146433
crossref_primary_10_1002_adtp_201800055
crossref_primary_10_1016_j_trechm_2021_01_002
crossref_primary_10_1002_cmdc_202100142
crossref_primary_10_1016_j_apt_2021_09_043
crossref_primary_10_1021_acsnano_0c00043
crossref_primary_10_1002_chem_202004793
crossref_primary_10_1021_acs_jmedchem_8b01682
crossref_primary_10_1007_s12272_021_01313_x
crossref_primary_10_1016_j_ccr_2020_213318
crossref_primary_10_3788_CJL230819
crossref_primary_10_1007_s12274_018_2175_9
crossref_primary_10_3390_ijms20020427
crossref_primary_10_3390_nano11010070
crossref_primary_10_1002_adfm_202401325
crossref_primary_10_1039_D0CS00771D
crossref_primary_10_3390_polym11101693
crossref_primary_10_1002_anie_202109048
crossref_primary_10_1002_ange_202000108
crossref_primary_10_1002_EXP_20220011
crossref_primary_10_1016_j_dyepig_2021_109480
crossref_primary_10_1002_adma_202209647
crossref_primary_10_1021_acs_analchem_9b00107
crossref_primary_10_1021_acsnano_8b02452
crossref_primary_10_1002_adma_201802394
crossref_primary_10_1002_ange_202109048
crossref_primary_10_1039_C8SC03751E
crossref_primary_10_1002_smll_202007566
crossref_primary_10_1007_s12274_022_4592_z
crossref_primary_10_1295_koron_2018_0017
crossref_primary_10_1002_cbic_202100107
crossref_primary_10_1016_j_biomaterials_2020_120219
crossref_primary_10_1016_j_bios_2019_112000
crossref_primary_10_1021_acssensors_2c02342
crossref_primary_10_1016_j_cej_2020_127658
crossref_primary_10_1002_adma_202402452
crossref_primary_10_1021_acsapm_0c00637
crossref_primary_10_1016_j_dyepig_2022_110932
crossref_primary_10_1002_adma_202006902
crossref_primary_10_2217_nnm_2022_0124
crossref_primary_10_1016_j_jconrel_2020_07_017
crossref_primary_10_1016_j_jmst_2022_05_027
crossref_primary_10_1021_acs_analchem_8b00603
crossref_primary_10_1016_j_inoche_2019_04_007
crossref_primary_10_1039_C9CC02120E
crossref_primary_10_1039_D3PY00461A
crossref_primary_10_1002_EXP_20230063
crossref_primary_10_1021_acsami_9b04294
crossref_primary_10_1021_acs_analchem_9b05162
crossref_primary_10_1016_j_bios_2022_114371
crossref_primary_10_1002_chem_201904675
crossref_primary_10_1039_D0BM00003E
crossref_primary_10_1088_1361_6528_abe437
crossref_primary_10_1002_adma_201904329
crossref_primary_10_1016_j_matchemphys_2022_126236
crossref_primary_10_1007_s00216_024_05267_z
crossref_primary_10_1039_D3TB01175E
crossref_primary_10_1002_cbic_202000514
crossref_primary_10_1021_acsbiomaterials_1c00578
crossref_primary_10_1038_s41551_019_0494_0
crossref_primary_10_1016_j_ccr_2024_215907
crossref_primary_10_1016_j_cej_2021_131913
Cites_doi 10.1021/am100530t
10.1038/ncomms5206
10.1002/adma.201605497
10.1158/1078-0432.CCR-12-3598
10.1371/journal.pone.0075533
10.1002/smll.201002291
10.1021/nn500188y
10.1038/srep01490
10.1038/nrc3566
10.1002/adma.201402972
10.1016/j.biomaterials.2016.06.063
10.1038/nnano.2013.302
10.1073/pnas.1014501108
10.1007/s10278-004-1014-6
10.1038/nmat4476
10.1039/C7SC00251C
10.1162/153535003322556877
10.1002/adfm.201700995
10.1158/1078-0432.CCR-12-3061
10.1021/ja412001e
10.1038/mt.2010.296
10.1126/science.1077194
10.1038/nphoton.2007.146
10.1021/acs.nanolett.7b03070
10.1038/ncomms14702
10.2967/jnumed.111.100842
10.1039/C6SC01561A
10.1039/C6SC04897H
10.1002/anie.201706974
10.1038/s41551-016-0010
10.1021/mp5003043
10.1038/nmat2442
10.1038/nm.2995
10.1038/nrclinonc.2013.123
10.1097/00004032-200010000-00013
10.1016/j.biomaterials.2013.01.014
10.1038/nm.2721
10.1073/pnas.1617990114
10.1038/nphoton.2009.157
10.1038/nbt.3330
10.1002/asia.200900596
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Stanford Univ., CA (United States)
CorporateAuthor_xml – name: Stanford Univ., CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1021/acsnano.7b05966
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1936-086X
EndPage 12291
ExternalDocumentID 1539570
29202225
10_1021_acsnano_7b05966
c941771273
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a426t-7b69d0b1b802b9aa0ae2383e78ab20060a2520ae75b632725ad628951f568e4e3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri May 19 02:14:15 EDT 2023
Fri Jul 11 15:13:11 EDT 2025
Mon Jul 21 05:48:04 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Tue Jul 01 01:34:13 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords donor−acceptor chromophore
near-infrared window II
thyroid carcinoma
photoacoustic imaging
epidermal growth factor receptor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a426t-7b69d0b1b802b9aa0ae2383e78ab20060a2520ae75b632725ad628951f568e4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0008397
USDOE Office of Science (SC)
ORCID 0000-0001-8177-9463
0000000181779463
PMID 29202225
PQID 1973021875
PQPubID 23479
PageCount 16
ParticipantIDs osti_scitechconnect_1539570
proquest_miscellaneous_1973021875
pubmed_primary_29202225
crossref_citationtrail_10_1021_acsnano_7b05966
crossref_primary_10_1021_acsnano_7b05966
acs_journals_10_1021_acsnano_7b05966
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-26
PublicationDateYYYYMMDD 2017-12-26
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1021/am100530t
– ident: ref14/cit14
  doi: 10.1038/ncomms5206
– ident: ref10/cit10
  doi: 10.1002/adma.201605497
– ident: ref2/cit2
  doi: 10.1158/1078-0432.CCR-12-3598
– ident: ref32/cit32
  doi: 10.1371/journal.pone.0075533
– ident: ref26/cit26
  doi: 10.1002/smll.201002291
– ident: ref39/cit39
  doi: 10.1021/nn500188y
– ident: ref6/cit6
  doi: 10.1038/srep01490
– ident: ref1/cit1
  doi: 10.1038/nrc3566
– ident: ref5/cit5
  doi: 10.1002/adma.201402972
– ident: ref40/cit40
  doi: 10.1016/j.biomaterials.2016.06.063
– ident: ref7/cit7
  doi: 10.1038/nnano.2013.302
– ident: ref34/cit34
  doi: 10.1073/pnas.1014501108
– ident: ref37/cit37
  doi: 10.1007/s10278-004-1014-6
– ident: ref11/cit11
  doi: 10.1038/nmat4476
– ident: ref21/cit21
  doi: 10.1039/C7SC00251C
– ident: ref36/cit36
  doi: 10.1162/153535003322556877
– ident: ref18/cit18
  doi: 10.1002/adfm.201700995
– ident: ref35/cit35
  doi: 10.1158/1078-0432.CCR-12-3061
– ident: ref8/cit8
  doi: 10.1021/ja412001e
– ident: ref25/cit25
  doi: 10.1038/mt.2010.296
– ident: ref27/cit27
  doi: 10.1126/science.1077194
– ident: ref38/cit38
  doi: 10.1038/nphoton.2007.146
– ident: ref16/cit16
  doi: 10.1021/acs.nanolett.7b03070
– ident: ref17/cit17
  doi: 10.1038/ncomms14702
– ident: ref24/cit24
  doi: 10.2967/jnumed.111.100842
– ident: ref20/cit20
  doi: 10.1039/C6SC01561A
– ident: ref22/cit22
  doi: 10.1039/C6SC04897H
– ident: ref15/cit15
  doi: 10.1002/anie.201706974
– ident: ref12/cit12
  doi: 10.1038/s41551-016-0010
– ident: ref31/cit31
  doi: 10.1021/mp5003043
– ident: ref28/cit28
  doi: 10.1038/nmat2442
– ident: ref13/cit13
  doi: 10.1038/nm.2995
– ident: ref3/cit3
  doi: 10.1038/nrclinonc.2013.123
– ident: ref41/cit41
  doi: 10.1097/00004032-200010000-00013
– ident: ref30/cit30
  doi: 10.1016/j.biomaterials.2013.01.014
– ident: ref4/cit4
  doi: 10.1038/nm.2721
– ident: ref23/cit23
  doi: 10.1073/pnas.1617990114
– ident: ref9/cit9
  doi: 10.1038/nphoton.2009.157
– ident: ref33/cit33
  doi: 10.1038/nbt.3330
– ident: ref19/cit19
  doi: 10.1002/asia.200900596
SSID ssj0057876
Score 2.5930903
Snippet Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm)...
Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm)...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12276
SubjectTerms Animals
Biomedical Technology
Cells, Cultured
Chemistry
Female
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Humans
Infrared Rays
Materials Science
Mice
Mice, Nude
Nanoparticles - chemistry
Neoplasms, Experimental - diagnostic imaging
Optical Imaging
Photoacoustic Techniques
Principal Component Analysis
Science & Technology - Other Topics
Title Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe
URI http://dx.doi.org/10.1021/acsnano.7b05966
https://www.ncbi.nlm.nih.gov/pubmed/29202225
https://www.proquest.com/docview/1973021875
https://www.osti.gov/biblio/1539570
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXODA-1EWkJE4cFiX2I3t5FgK1RZpV0i7K-3N8isCURLUpAf4G_xhZpy0LKwquEaOI9vz-CYz_oaQV7aqgitKxYQIjuUqc2gHI3M-AED1Arwi3h0-PlFH5_mHC3nxmyz67wy-4G-sb2tbNxPtsFOMuk5uCFVwjLNm89Ot0UW5U30CGQJkQBE7Fp8rE6Ab8u0fbmjUgDrth5jJ1Szu9EVabWIoxAqTL5NN5yb-x1X-xn-v4i65PQBOOusl5B65Fuv75NYlGsIH5Ofp9xpwYPu5PaTzHYFzfz_zkNo60Lfpkj6eJ51dynjTpqKWnqVi8hjou41dseMmwKgTUCC2rKs11rez5ZIuVptmnaijfExTfvzUdA2Y49RNjC6_pm5JFIx9gz1u4kNyvnh_Nj9iQ7MGZsHJd0w7VYbMcVdkwpXWZjYCGphGXViHvy0yK6SAh1o6NRVaSBsUBHuSV1IVMY_TR2RUN3V8QqgMiCt58E6F3Gld-CpOleWx5EVQPh-DiPnWDMrWmpRHF9wMe2yGPR6TyfaIjR8Iz7Hvxmr_C693L3zruT72Dz1AmTEAU5Br12NRku8MuI9S6mxMXm5FyYC2YgrG1hE21PASLCqgKi3H5HEvY7tPYd8wjL6f_t_yDshNgRCDCybUMzLq1pv4HABS514k1fgFN5oMpA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jj9MwFLaGcgAOww5lWIzEgcO4JG7iJMehUDUwrUDTkeZmeYtmRElQkx6Gv8Ef5j0nDQOoElwt2_Hyls959vcIeaWKwuo0E4xzq1kkAo120DFtLABUw8Er4tvh-ULMTqMPZ_HZHgm2b2FgEDX0VPsg_i92gfANlJWqrEaJxoQx4hq57nlQEAxNTra2F8VPtHFkOCcDmOjJfP7qAL2RqX_zRoMKtGo30vQeZ3qbfO7H6i-afBltGj0y3_-gcfyfydwh-x38pEetvNwle668R25dISW8T36cXJaACuuL-pBOejrn9rXmIVWlpW_9k33cXXp0Jf5Nq4IquvRXy52l7zZqxeaVhVoLUCeWl8Uab7uzPKfT1aZaeyIp43yXn86rpgLj7HOL0fyrz51EwfRXmPHGPSCn0_fLyYx1qRuYApffsESLzAY61GnAdaZUoBxgg7FLUqXxJ0ageMyhMIm1GPOEx8oKOPrFYRGL1EVu_JAMyqp0jwmNLaLM0BotbKSTJDWFGwsVuixMrTDREATO1LJTvVr6qDoPZbfGslvjIRltd1qajv4cs3Csdjd43Tf41jJ_7K56gKIjAbQg867BK0qmkeBMsjgJhuTlVqIk6C4GZFTpYEFlmIF9BYyVxEPyqBW1_lOYRQzP4k_-bXovyI3Zcn4sj_PFxwNykyP4CDnj4ikZNOuNewbQqdHPvbb8BKA3FQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagSAgOvB9leRiJA4d1N3FjJzkuXaoNsNVKu5X2ZvkVgSjJqkkP8Df4w8w4abSAKsHVsh0_ZjyfM55vCHmjy9KZLJeMc2dYIiOD56BnxjoAqJaDVcTY4ZOFPF4mHy7ERR8UhrEwMIgGemqCEx-1-tKVPcNAfADlla7qSWowaYy8Tm4IJIBDQDQ7256_KIKy8yXDXRkAxUDo81cHaJFs85tFGtWgWbvRZrA687tkOYw3PDb5Otm0ZmJ__EHl-L8Tukfu9DCUHnZyc59c89UDcvsKOeFD8vPsewXosPnS7NPZQOvcRW3uU105-i6E7uMu08MrfnBal1TT8_DE3Dt6tNErdlI7qLUAtWJFVa7x1TsrCjpfbep1IJSyPnR5-rluazikQ44xWnwLOZQomIAaM9_4R2Q5f38-O2Z9CgemwfS3LDUyd5GJTRZxk2sdaQ8YYerTTBv8mRFpLjgUpsLIKU-50E7CFVDEpZCZT_z0MRlVdeWfEiocos3YWSNdYtI0s6WfSh37PM6ctMkYBM82qlfBRgXvOo9Vv8aqX-MxmWx3W9meBh2zcax2N3g7NLjsGEB2V91D8VEAXpCB1-JTJdsqMCq5SKMxeb2VKgU6jI4ZXXlYUBXncM4C1krFmDzpxG34FGYTwzv5s3-b3ity8_Rorj4Vi4975BZHDBJzxuVzMmrXG_8CEFRrXgaF-QVkjReJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis%2C+Characterization%2C+and+Biomedical+Applications+of+a+Targeted+Dual-Modal+Near-Infrared-II+Fluorescence+and+Photoacoustic+Imaging+Nanoprobe&rft.jtitle=ACS+nano&rft.au=Cheng%2C+Kai&rft.au=Chen%2C+Hao&rft.au=Jenkins%2C+Cesare+H&rft.au=Zhang%2C+Guanglei&rft.date=2017-12-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=11&rft.issue=12&rft.spage=12276&rft_id=info:doi/10.1021%2Facsnano.7b05966&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon