Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe
Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor–acceptor chromoph...
Saved in:
Published in | ACS nano Vol. 11; no. 12; pp. 12276 - 12291 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.12.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.7b05966 |
Cover
Abstract | Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor–acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D−π–A−π–D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody–DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody–DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner. |
---|---|
AbstractList | Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor–acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D−π–A−π–D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody–DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody–DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner. Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner. Not provided. Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-Z ) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner. |
Author | Zhao, Wei Han, Fei Yang, Meng Cheng, Zhen Jiang, Yuxin Zhang, Zhe Chen, Hao Cheng, Kai Jenkins, Cesare H Zhang, Guanglei Fung, Jonathan Xing, Lei |
AuthorAffiliation | Department of Radiation Oncology Stanford University Molecular Imaging Program at Stanford (MIPS), Bio-X Program, Department of Radiology Beijing Jiaotong University Department of Ultrasound Stanford University School of Medicine Chinese Academy of Medical Science, Peking Union Medical College Hospital School of Computer and Information Technology |
AuthorAffiliation_xml | – name: Department of Ultrasound – name: Department of Radiation Oncology – name: Stanford University School of Medicine – name: Molecular Imaging Program at Stanford (MIPS), Bio-X Program, Department of Radiology – name: Beijing Jiaotong University – name: School of Computer and Information Technology – name: Stanford University – name: Chinese Academy of Medical Science, Peking Union Medical College Hospital |
Author_xml | – sequence: 1 givenname: Kai surname: Cheng fullname: Cheng, Kai organization: Stanford University School of Medicine – sequence: 2 givenname: Hao surname: Chen fullname: Chen, Hao organization: Stanford University – sequence: 3 givenname: Cesare H surname: Jenkins fullname: Jenkins, Cesare H organization: Stanford University School of Medicine – sequence: 4 givenname: Guanglei surname: Zhang fullname: Zhang, Guanglei organization: Beijing Jiaotong University – sequence: 5 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: Stanford University School of Medicine – sequence: 6 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: Stanford University – sequence: 7 givenname: Fei surname: Han fullname: Han, Fei organization: Stanford University School of Medicine – sequence: 8 givenname: Jonathan surname: Fung fullname: Fung, Jonathan organization: Stanford University – sequence: 9 givenname: Meng surname: Yang fullname: Yang, Meng organization: Chinese Academy of Medical Science, Peking Union Medical College Hospital – sequence: 10 givenname: Yuxin surname: Jiang fullname: Jiang, Yuxin organization: Chinese Academy of Medical Science, Peking Union Medical College Hospital – sequence: 11 givenname: Lei surname: Xing fullname: Xing, Lei email: lei@stanford.edu organization: Stanford University School of Medicine – sequence: 12 givenname: Zhen orcidid: 0000-0001-8177-9463 surname: Cheng fullname: Cheng, Zhen email: zcheng@stanford.edu organization: Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29202225$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1539570$$D View this record in Osti.gov |
BookMark | eNp1kU9v1DAQxS1URP_AmRuyOCHRtLZT28mxLBQilYJEkbhZE2ey6yprb23nUL4GXxi3u-WA1JMtz--NZ947JHs-eCTkNWcnnAl-CjZ58OFE90y2Sj0jB7ytVcUa9Wvv313yfXKY0g1jUjdavSD7ohVMCCEPyJ8fdz6vMLl0TBcriGAzRvcbsgv-mIIf6AcX1jg4CxM932ymcrmvJRpGCvQa4hIzDvTjDFP1NQyFukKIVefHCBGHquvoxTSHiMmit_jQ8vsq5AA2zCk7S7s1LJ1f0quyyCaGHl-S5yNMCV_tziPy8-LT9eJLdfntc7c4v6zgTKhc6V61A-t53zDRtwAMUNRNjbqBXjCmGAgpyqOWvaqFFhIGJZpW8lGqBs-wPiJvt31DmcMk6zLalQ3eo82Gy7qVmhXo3RYqo93OmLJZu7LKNIHHsoDhra5LEo2WBX2zQ-e-WGY20a0h3plHtwsgt4CNIaWIoyl_PtiZI7jJcGbuUzW7VM0u1aI7_U_32PppxfutohTMTZijL0Y-Sf8FkIa1sw |
CitedBy_id | crossref_primary_10_1021_acs_analchem_9b03152 crossref_primary_10_1021_jacs_4c03406 crossref_primary_10_1002_adhm_201800477 crossref_primary_10_1021_acsnano_8b07283 crossref_primary_10_1002_adfm_201901480 crossref_primary_10_1016_j_addr_2023_114821 crossref_primary_10_1016_j_ccr_2022_214609 crossref_primary_10_1039_C9NR09999A crossref_primary_10_1002_1878_0261_12674 crossref_primary_10_1039_C9SC03504D crossref_primary_10_1039_C9QM00036D crossref_primary_10_1002_adma_201805875 crossref_primary_10_1021_acsabm_8b00116 crossref_primary_10_1007_s00339_020_03572_9 crossref_primary_10_1002_adom_202201067 crossref_primary_10_1021_acs_chemmater_3c02983 crossref_primary_10_1186_s12944_024_02429_x crossref_primary_10_3390_bios14060282 crossref_primary_10_1002_adma_202300413 crossref_primary_10_1039_D0NR01098G crossref_primary_10_1002_adom_202101634 crossref_primary_10_1152_ajpheart_00719_2020 crossref_primary_10_1039_D1TB02282B crossref_primary_10_1016_j_bioactmat_2025_02_040 crossref_primary_10_2147_IJN_S284520 crossref_primary_10_1002_adfm_202107624 crossref_primary_10_1021_acsmacrolett_9b00815 crossref_primary_10_1016_j_microc_2024_111368 crossref_primary_10_1016_j_jcis_2023_12_088 crossref_primary_10_1016_j_nano_2023_102677 crossref_primary_10_1039_C8NH00299A crossref_primary_10_1142_S1793545823300100 crossref_primary_10_1016_j_molmed_2020_02_003 crossref_primary_10_1002_adhm_202300537 crossref_primary_10_1002_smll_202007882 crossref_primary_10_1016_j_biomaterials_2021_120717 crossref_primary_10_1002_anbr_202200087 crossref_primary_10_1021_acsabm_1c00423 crossref_primary_10_1002_cphc_202200716 crossref_primary_10_1039_C9CC02148E crossref_primary_10_1002_cmdc_202100125 crossref_primary_10_1021_acsnano_1c00076 crossref_primary_10_1016_j_actbio_2021_12_013 crossref_primary_10_1016_j_cej_2019_123959 crossref_primary_10_1002_smll_201903382 crossref_primary_10_1039_C8RA08163H crossref_primary_10_1039_C9TB01381D crossref_primary_10_1016_j_cjche_2021_06_013 crossref_primary_10_1021_acsami_9b06824 crossref_primary_10_1007_s11426_019_9506_2 crossref_primary_10_1002_anie_202000108 crossref_primary_10_1002_adom_201900045 crossref_primary_10_1021_acsapm_9b00967 crossref_primary_10_1021_acsnano_3c12316 crossref_primary_10_1016_j_mtbio_2022_100441 crossref_primary_10_1002_adhm_201901470 crossref_primary_10_1073_pnas_1908761116 crossref_primary_10_1007_s11307_018_1239_2 crossref_primary_10_1021_acsabm_8b00265 crossref_primary_10_1002_adma_201900321 crossref_primary_10_1039_D2TB00626J crossref_primary_10_1002_wnan_1734 crossref_primary_10_26599_NBE_2024_9290061 crossref_primary_10_1039_D0CB00225A crossref_primary_10_1007_s40242_024_3256_9 crossref_primary_10_1016_j_chempr_2019_07_015 crossref_primary_10_1039_C8CS00234G crossref_primary_10_1021_acsapm_0c00715 crossref_primary_10_1016_j_dyepig_2020_108756 crossref_primary_10_1021_acsnano_8b05825 crossref_primary_10_1002_advs_202100228 crossref_primary_10_1002_adtp_202000170 crossref_primary_10_1016_j_cej_2023_146433 crossref_primary_10_1002_adtp_201800055 crossref_primary_10_1016_j_trechm_2021_01_002 crossref_primary_10_1002_cmdc_202100142 crossref_primary_10_1016_j_apt_2021_09_043 crossref_primary_10_1021_acsnano_0c00043 crossref_primary_10_1002_chem_202004793 crossref_primary_10_1021_acs_jmedchem_8b01682 crossref_primary_10_1007_s12272_021_01313_x crossref_primary_10_1016_j_ccr_2020_213318 crossref_primary_10_3788_CJL230819 crossref_primary_10_1007_s12274_018_2175_9 crossref_primary_10_3390_ijms20020427 crossref_primary_10_3390_nano11010070 crossref_primary_10_1002_adfm_202401325 crossref_primary_10_1039_D0CS00771D crossref_primary_10_3390_polym11101693 crossref_primary_10_1002_anie_202109048 crossref_primary_10_1002_ange_202000108 crossref_primary_10_1002_EXP_20220011 crossref_primary_10_1016_j_dyepig_2021_109480 crossref_primary_10_1002_adma_202209647 crossref_primary_10_1021_acs_analchem_9b00107 crossref_primary_10_1021_acsnano_8b02452 crossref_primary_10_1002_adma_201802394 crossref_primary_10_1002_ange_202109048 crossref_primary_10_1039_C8SC03751E crossref_primary_10_1002_smll_202007566 crossref_primary_10_1007_s12274_022_4592_z crossref_primary_10_1295_koron_2018_0017 crossref_primary_10_1002_cbic_202100107 crossref_primary_10_1016_j_biomaterials_2020_120219 crossref_primary_10_1016_j_bios_2019_112000 crossref_primary_10_1021_acssensors_2c02342 crossref_primary_10_1016_j_cej_2020_127658 crossref_primary_10_1002_adma_202402452 crossref_primary_10_1021_acsapm_0c00637 crossref_primary_10_1016_j_dyepig_2022_110932 crossref_primary_10_1002_adma_202006902 crossref_primary_10_2217_nnm_2022_0124 crossref_primary_10_1016_j_jconrel_2020_07_017 crossref_primary_10_1016_j_jmst_2022_05_027 crossref_primary_10_1021_acs_analchem_8b00603 crossref_primary_10_1016_j_inoche_2019_04_007 crossref_primary_10_1039_C9CC02120E crossref_primary_10_1039_D3PY00461A crossref_primary_10_1002_EXP_20230063 crossref_primary_10_1021_acsami_9b04294 crossref_primary_10_1021_acs_analchem_9b05162 crossref_primary_10_1016_j_bios_2022_114371 crossref_primary_10_1002_chem_201904675 crossref_primary_10_1039_D0BM00003E crossref_primary_10_1088_1361_6528_abe437 crossref_primary_10_1002_adma_201904329 crossref_primary_10_1016_j_matchemphys_2022_126236 crossref_primary_10_1007_s00216_024_05267_z crossref_primary_10_1039_D3TB01175E crossref_primary_10_1002_cbic_202000514 crossref_primary_10_1021_acsbiomaterials_1c00578 crossref_primary_10_1038_s41551_019_0494_0 crossref_primary_10_1016_j_ccr_2024_215907 crossref_primary_10_1016_j_cej_2021_131913 |
Cites_doi | 10.1021/am100530t 10.1038/ncomms5206 10.1002/adma.201605497 10.1158/1078-0432.CCR-12-3598 10.1371/journal.pone.0075533 10.1002/smll.201002291 10.1021/nn500188y 10.1038/srep01490 10.1038/nrc3566 10.1002/adma.201402972 10.1016/j.biomaterials.2016.06.063 10.1038/nnano.2013.302 10.1073/pnas.1014501108 10.1007/s10278-004-1014-6 10.1038/nmat4476 10.1039/C7SC00251C 10.1162/153535003322556877 10.1002/adfm.201700995 10.1158/1078-0432.CCR-12-3061 10.1021/ja412001e 10.1038/mt.2010.296 10.1126/science.1077194 10.1038/nphoton.2007.146 10.1021/acs.nanolett.7b03070 10.1038/ncomms14702 10.2967/jnumed.111.100842 10.1039/C6SC01561A 10.1039/C6SC04897H 10.1002/anie.201706974 10.1038/s41551-016-0010 10.1021/mp5003043 10.1038/nmat2442 10.1038/nm.2995 10.1038/nrclinonc.2013.123 10.1097/00004032-200010000-00013 10.1016/j.biomaterials.2013.01.014 10.1038/nm.2721 10.1073/pnas.1617990114 10.1038/nphoton.2009.157 10.1038/nbt.3330 10.1002/asia.200900596 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Stanford Univ., CA (United States) |
CorporateAuthor_xml | – name: Stanford Univ., CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
DOI | 10.1021/acsnano.7b05966 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1936-086X |
EndPage | 12291 |
ExternalDocumentID | 1539570 29202225 10_1021_acsnano_7b05966 c941771273 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a426t-7b69d0b1b802b9aa0ae2383e78ab20060a2520ae75b632725ad628951f568e4e3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri May 19 02:14:15 EDT 2023 Fri Jul 11 15:13:11 EDT 2025 Mon Jul 21 05:48:04 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Tue Jul 01 01:34:13 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | donor−acceptor chromophore near-infrared window II thyroid carcinoma photoacoustic imaging epidermal growth factor receptor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a426t-7b69d0b1b802b9aa0ae2383e78ab20060a2520ae75b632725ad628951f568e4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0008397 USDOE Office of Science (SC) |
ORCID | 0000-0001-8177-9463 0000000181779463 |
PMID | 29202225 |
PQID | 1973021875 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | osti_scitechconnect_1539570 proquest_miscellaneous_1973021875 pubmed_primary_29202225 crossref_citationtrail_10_1021_acsnano_7b05966 crossref_primary_10_1021_acsnano_7b05966 acs_journals_10_1021_acsnano_7b05966 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-26 |
PublicationDateYYYYMMDD | 2017-12-26 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1021/am100530t – ident: ref14/cit14 doi: 10.1038/ncomms5206 – ident: ref10/cit10 doi: 10.1002/adma.201605497 – ident: ref2/cit2 doi: 10.1158/1078-0432.CCR-12-3598 – ident: ref32/cit32 doi: 10.1371/journal.pone.0075533 – ident: ref26/cit26 doi: 10.1002/smll.201002291 – ident: ref39/cit39 doi: 10.1021/nn500188y – ident: ref6/cit6 doi: 10.1038/srep01490 – ident: ref1/cit1 doi: 10.1038/nrc3566 – ident: ref5/cit5 doi: 10.1002/adma.201402972 – ident: ref40/cit40 doi: 10.1016/j.biomaterials.2016.06.063 – ident: ref7/cit7 doi: 10.1038/nnano.2013.302 – ident: ref34/cit34 doi: 10.1073/pnas.1014501108 – ident: ref37/cit37 doi: 10.1007/s10278-004-1014-6 – ident: ref11/cit11 doi: 10.1038/nmat4476 – ident: ref21/cit21 doi: 10.1039/C7SC00251C – ident: ref36/cit36 doi: 10.1162/153535003322556877 – ident: ref18/cit18 doi: 10.1002/adfm.201700995 – ident: ref35/cit35 doi: 10.1158/1078-0432.CCR-12-3061 – ident: ref8/cit8 doi: 10.1021/ja412001e – ident: ref25/cit25 doi: 10.1038/mt.2010.296 – ident: ref27/cit27 doi: 10.1126/science.1077194 – ident: ref38/cit38 doi: 10.1038/nphoton.2007.146 – ident: ref16/cit16 doi: 10.1021/acs.nanolett.7b03070 – ident: ref17/cit17 doi: 10.1038/ncomms14702 – ident: ref24/cit24 doi: 10.2967/jnumed.111.100842 – ident: ref20/cit20 doi: 10.1039/C6SC01561A – ident: ref22/cit22 doi: 10.1039/C6SC04897H – ident: ref15/cit15 doi: 10.1002/anie.201706974 – ident: ref12/cit12 doi: 10.1038/s41551-016-0010 – ident: ref31/cit31 doi: 10.1021/mp5003043 – ident: ref28/cit28 doi: 10.1038/nmat2442 – ident: ref13/cit13 doi: 10.1038/nm.2995 – ident: ref3/cit3 doi: 10.1038/nrclinonc.2013.123 – ident: ref41/cit41 doi: 10.1097/00004032-200010000-00013 – ident: ref30/cit30 doi: 10.1016/j.biomaterials.2013.01.014 – ident: ref4/cit4 doi: 10.1038/nm.2721 – ident: ref23/cit23 doi: 10.1073/pnas.1617990114 – ident: ref9/cit9 doi: 10.1038/nphoton.2009.157 – ident: ref33/cit33 doi: 10.1038/nbt.3330 – ident: ref19/cit19 doi: 10.1002/asia.200900596 |
SSID | ssj0057876 |
Score | 2.5930903 |
Snippet | Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000–1700 nm)... Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm)... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12276 |
SubjectTerms | Animals Biomedical Technology Cells, Cultured Chemistry Female Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Humans Infrared Rays Materials Science Mice Mice, Nude Nanoparticles - chemistry Neoplasms, Experimental - diagnostic imaging Optical Imaging Photoacoustic Techniques Principal Component Analysis Science & Technology - Other Topics |
Title | Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe |
URI | http://dx.doi.org/10.1021/acsnano.7b05966 https://www.ncbi.nlm.nih.gov/pubmed/29202225 https://www.proquest.com/docview/1973021875 https://www.osti.gov/biblio/1539570 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXODA-1EWkJE4cFiX2I3t5FgK1RZpV0i7K-3N8isCURLUpAf4G_xhZpy0LKwquEaOI9vz-CYz_oaQV7aqgitKxYQIjuUqc2gHI3M-AED1Arwi3h0-PlFH5_mHC3nxmyz67wy-4G-sb2tbNxPtsFOMuk5uCFVwjLNm89Ot0UW5U30CGQJkQBE7Fp8rE6Ab8u0fbmjUgDrth5jJ1Szu9EVabWIoxAqTL5NN5yb-x1X-xn-v4i65PQBOOusl5B65Fuv75NYlGsIH5Ofp9xpwYPu5PaTzHYFzfz_zkNo60Lfpkj6eJ51dynjTpqKWnqVi8hjou41dseMmwKgTUCC2rKs11rez5ZIuVptmnaijfExTfvzUdA2Y49RNjC6_pm5JFIx9gz1u4kNyvnh_Nj9iQ7MGZsHJd0w7VYbMcVdkwpXWZjYCGphGXViHvy0yK6SAh1o6NRVaSBsUBHuSV1IVMY_TR2RUN3V8QqgMiCt58E6F3Gld-CpOleWx5EVQPh-DiPnWDMrWmpRHF9wMe2yGPR6TyfaIjR8Iz7Hvxmr_C693L3zruT72Dz1AmTEAU5Br12NRku8MuI9S6mxMXm5FyYC2YgrG1hE21PASLCqgKi3H5HEvY7tPYd8wjL6f_t_yDshNgRCDCybUMzLq1pv4HABS514k1fgFN5oMpA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jj9MwFLaGcgAOww5lWIzEgcO4JG7iJMehUDUwrUDTkeZmeYtmRElQkx6Gv8Ef5j0nDQOoElwt2_Hyls959vcIeaWKwuo0E4xzq1kkAo120DFtLABUw8Er4tvh-ULMTqMPZ_HZHgm2b2FgEDX0VPsg_i92gfANlJWqrEaJxoQx4hq57nlQEAxNTra2F8VPtHFkOCcDmOjJfP7qAL2RqX_zRoMKtGo30vQeZ3qbfO7H6i-afBltGj0y3_-gcfyfydwh-x38pEetvNwle668R25dISW8T36cXJaACuuL-pBOejrn9rXmIVWlpW_9k33cXXp0Jf5Nq4IquvRXy52l7zZqxeaVhVoLUCeWl8Uab7uzPKfT1aZaeyIp43yXn86rpgLj7HOL0fyrz51EwfRXmPHGPSCn0_fLyYx1qRuYApffsESLzAY61GnAdaZUoBxgg7FLUqXxJ0ageMyhMIm1GPOEx8oKOPrFYRGL1EVu_JAMyqp0jwmNLaLM0BotbKSTJDWFGwsVuixMrTDREATO1LJTvVr6qDoPZbfGslvjIRltd1qajv4cs3Csdjd43Tf41jJ_7K56gKIjAbQg867BK0qmkeBMsjgJhuTlVqIk6C4GZFTpYEFlmIF9BYyVxEPyqBW1_lOYRQzP4k_-bXovyI3Zcn4sj_PFxwNykyP4CDnj4ikZNOuNewbQqdHPvbb8BKA3FQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagSAgOvB9leRiJA4d1N3FjJzkuXaoNsNVKu5X2ZvkVgSjJqkkP8Df4w8w4abSAKsHVsh0_ZjyfM55vCHmjy9KZLJeMc2dYIiOD56BnxjoAqJaDVcTY4ZOFPF4mHy7ERR8UhrEwMIgGemqCEx-1-tKVPcNAfADlla7qSWowaYy8Tm4IJIBDQDQ7256_KIKy8yXDXRkAxUDo81cHaJFs85tFGtWgWbvRZrA687tkOYw3PDb5Otm0ZmJ__EHl-L8Tukfu9DCUHnZyc59c89UDcvsKOeFD8vPsewXosPnS7NPZQOvcRW3uU105-i6E7uMu08MrfnBal1TT8_DE3Dt6tNErdlI7qLUAtWJFVa7x1TsrCjpfbep1IJSyPnR5-rluazikQ44xWnwLOZQomIAaM9_4R2Q5f38-O2Z9CgemwfS3LDUyd5GJTRZxk2sdaQ8YYerTTBv8mRFpLjgUpsLIKU-50E7CFVDEpZCZT_z0MRlVdeWfEiocos3YWSNdYtI0s6WfSh37PM6ctMkYBM82qlfBRgXvOo9Vv8aqX-MxmWx3W9meBh2zcax2N3g7NLjsGEB2V91D8VEAXpCB1-JTJdsqMCq5SKMxeb2VKgU6jI4ZXXlYUBXncM4C1krFmDzpxG34FGYTwzv5s3-b3ity8_Rorj4Vi4975BZHDBJzxuVzMmrXG_8CEFRrXgaF-QVkjReJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis%2C+Characterization%2C+and+Biomedical+Applications+of+a+Targeted+Dual-Modal+Near-Infrared-II+Fluorescence+and+Photoacoustic+Imaging+Nanoprobe&rft.jtitle=ACS+nano&rft.au=Cheng%2C+Kai&rft.au=Chen%2C+Hao&rft.au=Jenkins%2C+Cesare+H&rft.au=Zhang%2C+Guanglei&rft.date=2017-12-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=11&rft.issue=12&rft.spage=12276&rft_id=info:doi/10.1021%2Facsnano.7b05966&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |