Hindcasting Maximum Water Depths in Coastal Watersheds: The Importance of Incorporating Off‐Channel Data and Their Uncertainties in Machine Learning Models

In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach can be efficient for physics‐based models, which incorporate the underlying physical processes, but the efficiency for data‐driven models like...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 61; no. 4
Main Authors Pakdehi, Maryam, Ahmadisharaf, Ebrahim
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.04.2025
Wiley
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
1944-7973
DOI10.1029/2024WR039244

Cover

Abstract In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach can be efficient for physics‐based models, which incorporate the underlying physical processes, but the efficiency for data‐driven models like machine learning (ML) algorithms is unclear. The existing off‐channel observations like high‐water marks (HWMs) are also subject to uncertainty. This paper addressed three research questions: (a) how useful are ML models, trained with stream gauges, for hindcasting water depths in the off‐channel areas? (b) how does incorporating the uncertainty of HWMs improve the model performance? and (c) does the uncertainty incorporation improve the model transferability to other watersheds and events? To answer these questions, we evaluated the performance of ML models across three large coastal watersheds in the US during three hurricanes—Michael, Ida and Ian. The model was developed under three scenarios, which differed in terms of the flood observational data (stream gauges and HWMs) used for their training and validation. A loss function was proposed to incorporate the uncertainty of observations. We found that ML models trained solely by stream gauges performed well only for stream hindcasts. Satisfactory hindcasts on off‐channel areas were obtained by incorporating the HWMs' uncertainty via the loss function. This uncertainty incorporation reduced the model bias and resulted in the best transferability to other coastal watersheds and flood events. Our study provides insights about developing transferable ML models for hindcasting water depths on streams and off‐channel areas in coastal watersheds during extreme events. Key Points Hindcasting maximum water depths on streams and off‐channel in large coastal watersheds via machine learning (ML) models ML models trained by stream water depth data did not perform satisfactorily on hindcasting maximum water depths off‐channel Incorporating the HWMs' uncertainty improved the hindcasts, particularly in terms of bias and the transferability across watersheds
AbstractList In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach can be efficient for physics‐based models, which incorporate the underlying physical processes, but the efficiency for data‐driven models like machine learning (ML) algorithms is unclear. The existing off‐channel observations like high‐water marks (HWMs) are also subject to uncertainty. This paper addressed three research questions: (a) how useful are ML models, trained with stream gauges, for hindcasting water depths in the off‐channel areas? (b) how does incorporating the uncertainty of HWMs improve the model performance? and (c) does the uncertainty incorporation improve the model transferability to other watersheds and events? To answer these questions, we evaluated the performance of ML models across three large coastal watersheds in the US during three hurricanes—Michael, Ida and Ian. The model was developed under three scenarios, which differed in terms of the flood observational data (stream gauges and HWMs) used for their training and validation. A loss function was proposed to incorporate the uncertainty of observations. We found that ML models trained solely by stream gauges performed well only for stream hindcasts. Satisfactory hindcasts on off‐channel areas were obtained by incorporating the HWMs' uncertainty via the loss function. This uncertainty incorporation reduced the model bias and resulted in the best transferability to other coastal watersheds and flood events. Our study provides insights about developing transferable ML models for hindcasting water depths on streams and off‐channel areas in coastal watersheds during extreme events.
Abstract In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach can be efficient for physics‐based models, which incorporate the underlying physical processes, but the efficiency for data‐driven models like machine learning (ML) algorithms is unclear. The existing off‐channel observations like high‐water marks (HWMs) are also subject to uncertainty. This paper addressed three research questions: (a) how useful are ML models, trained with stream gauges, for hindcasting water depths in the off‐channel areas? (b) how does incorporating the uncertainty of HWMs improve the model performance? and (c) does the uncertainty incorporation improve the model transferability to other watersheds and events? To answer these questions, we evaluated the performance of ML models across three large coastal watersheds in the US during three hurricanes—Michael, Ida and Ian. The model was developed under three scenarios, which differed in terms of the flood observational data (stream gauges and HWMs) used for their training and validation. A loss function was proposed to incorporate the uncertainty of observations. We found that ML models trained solely by stream gauges performed well only for stream hindcasts. Satisfactory hindcasts on off‐channel areas were obtained by incorporating the HWMs' uncertainty via the loss function. This uncertainty incorporation reduced the model bias and resulted in the best transferability to other coastal watersheds and flood events. Our study provides insights about developing transferable ML models for hindcasting water depths on streams and off‐channel areas in coastal watersheds during extreme events.
In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach can be efficient for physics‐based models, which incorporate the underlying physical processes, but the efficiency for data‐driven models like machine learning (ML) algorithms is unclear. The existing off‐channel observations like high‐water marks (HWMs) are also subject to uncertainty. This paper addressed three research questions: (a) how useful are ML models, trained with stream gauges, for hindcasting water depths in the off‐channel areas? (b) how does incorporating the uncertainty of HWMs improve the model performance? and (c) does the uncertainty incorporation improve the model transferability to other watersheds and events? To answer these questions, we evaluated the performance of ML models across three large coastal watersheds in the US during three hurricanes—Michael, Ida and Ian. The model was developed under three scenarios, which differed in terms of the flood observational data (stream gauges and HWMs) used for their training and validation. A loss function was proposed to incorporate the uncertainty of observations. We found that ML models trained solely by stream gauges performed well only for stream hindcasts. Satisfactory hindcasts on off‐channel areas were obtained by incorporating the HWMs' uncertainty via the loss function. This uncertainty incorporation reduced the model bias and resulted in the best transferability to other coastal watersheds and flood events. Our study provides insights about developing transferable ML models for hindcasting water depths on streams and off‐channel areas in coastal watersheds during extreme events. Hindcasting maximum water depths on streams and off‐channel in large coastal watersheds via machine learning (ML) models ML models trained by stream water depth data did not perform satisfactorily on hindcasting maximum water depths off‐channel Incorporating the HWMs' uncertainty improved the hindcasts, particularly in terms of bias and the transferability across watersheds
In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach can be efficient for physics‐based models, which incorporate the underlying physical processes, but the efficiency for data‐driven models like machine learning (ML) algorithms is unclear. The existing off‐channel observations like high‐water marks (HWMs) are also subject to uncertainty. This paper addressed three research questions: (a) how useful are ML models, trained with stream gauges, for hindcasting water depths in the off‐channel areas? (b) how does incorporating the uncertainty of HWMs improve the model performance? and (c) does the uncertainty incorporation improve the model transferability to other watersheds and events? To answer these questions, we evaluated the performance of ML models across three large coastal watersheds in the US during three hurricanes—Michael, Ida and Ian. The model was developed under three scenarios, which differed in terms of the flood observational data (stream gauges and HWMs) used for their training and validation. A loss function was proposed to incorporate the uncertainty of observations. We found that ML models trained solely by stream gauges performed well only for stream hindcasts. Satisfactory hindcasts on off‐channel areas were obtained by incorporating the HWMs' uncertainty via the loss function. This uncertainty incorporation reduced the model bias and resulted in the best transferability to other coastal watersheds and flood events. Our study provides insights about developing transferable ML models for hindcasting water depths on streams and off‐channel areas in coastal watersheds during extreme events. Key Points Hindcasting maximum water depths on streams and off‐channel in large coastal watersheds via machine learning (ML) models ML models trained by stream water depth data did not perform satisfactorily on hindcasting maximum water depths off‐channel Incorporating the HWMs' uncertainty improved the hindcasts, particularly in terms of bias and the transferability across watersheds
Author Pakdehi, Maryam
Ahmadisharaf, Ebrahim
Author_xml – sequence: 1
  givenname: Maryam
  orcidid: 0009-0005-1989-3819
  surname: Pakdehi
  fullname: Pakdehi, Maryam
  organization: FAMU‐FSU College of Engineering
– sequence: 2
  givenname: Ebrahim
  orcidid: 0000-0002-9452-7975
  surname: Ahmadisharaf
  fullname: Ahmadisharaf, Ebrahim
  email: eahmadisharaf@eng.famu.fsu.edu, eascesharif@gmail.com
  organization: FAMU‐FSU College of Engineering
BookMark eNp9ks9uEzEQxleoSKSFGw9giQsHFvxv_5gbSqGNlKpS1CrH1ex63Dja2MHeKM2NR-AF-nI8CU4WOCDEydLo933zzYzPszPnHWbZa0bfM8rVB065XC6oUFzKZ9mEKSnzSlXiLJtQKkXOhKpeZOcxrillsiirSfZ0bZ3uIA7WPZAbeLSb3YYsYcBALnE7rCKxjkx9AqAf63GFOn4kdysks83WhwFch8QbMnOdD6kAJ69bY358-z5dgXPYk0sYgIDTR5kN5D5JktC6weKpww10K-uQzBGCO0XxGvv4MntuoI_46td7kd1_-Xw3vc7nt1ez6ad5DpKXLEdTGsoKVqUtsFqXsjbI04CA2Jay5FIbU1SUc5CmZqIrkbWMaUUZSJSSiotsNvpqD-tmG-wGwqHxYJtTwYeHBsJgux4bzVjXKmhL3tUSatNqUeoKakbbAqRSySsfvXZuC4c99P0fQ0ab452a4532YbxT4t-O_Db4rzuMQ7OxscO-B4d-FxvBJacpvWIJffMXuva74NJmGsFUUVSCi-Mw70aqCz7GgOaf_X__k4SLEd_bHg__ZZvlYrqo6DHKTyNkwBc
Cites_doi 10.1002/hyp.10082
10.25921/STKW‐7W73
10.3390/w10111536
10.1016/j.jhydrol.2005.11.026
10.1016/j.jhydrol.2009.01.026
10.1029/2022rg000788
10.1038/s44221‐023‐00106‐4
10.1016/j.scitotenv.2019.135161
10.1016/j.jenvman.2024.121284
10.5194/nhess‐21‐559‐2021
10.5194/nhess‐14‐713‐2014
10.1007/s11069‐009‐9452‐6
10.48550/arXiv.2307.02694
10.1007/s40745‐020‐00253‐5
10.1038/s41598‐020‐62188‐4
10.1109/INNOCIT.2017.8319150
10.1016/j.jhydrol.2020.125275
10.5194/nhess‐24‐3537‐2024
10.1029/2021WR031279
10.48550/arXiv.1412.6980
10.3133/tm3A24
10.1061/9780784413609.029
10.1175/JHM‐D‐20‐0238.1
10.1007/s11069‐021‐04715‐8
10.3133/sir20135193
10.1038/ngeo2203
10.1016/j.jhydrol.2005.10.027
10.1016/j.ocecoaman.2014.09.027
10.1016/j.envint.2025.109319
10.1146/annurev‐fluid‐030121‐113138
10.1038/s41558‐021‐01265‐6
10.1371/journal.pone.0248683
10.1111/1752‐1688.12987
10.5194/hess‐9‐412‐2005
10.3390/jmse12040668
10.1080/02626667909491834
10.1016/j.envsoft.2017.01.006
10.1080/02626667.2018.1525615
10.1002/hyp.1499
10.1111/1752‐1688.13143
10.1016/j.rse.2021.112357
10.1029/2004WR003826
10.3390/ijgi9120748
10.1175/JHM‐D‐20‐0218.1
10.1007/s12524‐009‐0002‐1
10.1016/j.ijdrr.2021.102614
10.1016/j.advwatres.2019.02.007
10.1038/s41598‐022‐23627‐6
10.3390/w15030566
10.1061/(ASCE)HE.1943‐5584.0002129
10.1002/hyp.5833
10.1111/j.1753‐318x.2009.01029.x
10.1007/s11269‐015‐0956‐4
10.4211/hs.73aaa3efcda2465ba6227f535400f36b
10.1016/j.hydroa.2019.100039
10.1061/(asce)1084‐0699(2008)13:7(608)
10.3390/w14040589
10.21203/rs.3.rs-3504678/v1
10.1016/j.jhydrol.2015.12.031
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1029/2024WR039244
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Physics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d11cb9ab62c84a8fbd36d7a810b5a499
10.1029/2024wr039244
10_1029_2024WR039244
WRCR70091
Genre researchArticle
GrantInformation_xml – fundername: National Academy of Sciences
  funderid: SCON‐10001211
– fundername: National Science Foundation
  funderid: 2203180
– fundername: Gulf Research Program
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
AIQQE
CITATION
PQGLB
PUEGO
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-a4261-ef6f0151710218d648fe2145aeeb64624dff57022a4f813c6e1b11d901a4e4403
IEDL.DBID DOA
ISSN 0043-1397
1944-7973
IngestDate Wed Aug 27 01:30:19 EDT 2025
Tue Aug 19 23:42:00 EDT 2025
Fri Aug 22 20:37:37 EDT 2025
Wed Aug 13 03:34:55 EDT 2025
Wed Oct 01 06:03:32 EDT 2025
Sun Jul 06 04:45:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4261-ef6f0151710218d648fe2145aeeb64624dff57022a4f813c6e1b11d901a4e4403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-1989-3819
0000-0002-9452-7975
OpenAccessLink https://doaj.org/article/d11cb9ab62c84a8fbd36d7a810b5a499
PQID 3195573230
PQPubID 105507
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_d11cb9ab62c84a8fbd36d7a810b5a499
unpaywall_primary_10_1029_2024wr039244
proquest_miscellaneous_3242057091
proquest_journals_3195573230
crossref_primary_10_1029_2024WR039244
wiley_primary_10_1029_2024WR039244_WRCR70091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
20250401
2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 26
2021; 21
2025; 196
2021; 66
2019; 126
1997; 1
2023; 1
2014; 28
2024
2020; 10
1979; 24
2009; 51
2020; 9
2014; 14
2024; 24
2006; 327
2014; 7
2006; 326
2009; 368
2011; 257
2019; 4
2011
2023; 59
2023; 15
2021; 108
2005; 41
2024; 362
2008; 13
2018; 63
2024; 12
2023; 61
2021; 16
2005; 19
2017; 90
2015; 29
2004; 18
2023
2022
2021
2005; 9
2020; 590
2022; 9
2022; 12
2019
2022; 14
2018
2022; 58
2020; 711
2017
2016
2016; 533
2022; 54
2014
2009; 2
2018; 10
2009; 37
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Bucci L. (e_1_2_7_14_1) 2023
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
Beven J. L. (e_1_2_7_11_1) 2022
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Latto A. (e_1_2_7_30_1) 2021
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Zarriello P. J. (e_1_2_7_71_1) 2011
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_65_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
NOAA (e_1_2_7_44_1) 2023
ERA5‐Land (e_1_2_7_18_1) 2022
e_1_2_7_72_1
Beven J. L. (e_1_2_7_10_1) 2019
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Tkach R. J. (e_1_2_7_61_1) 1997; 1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 327
  start-page: 186
  issue: 1–2
  year: 2006
  end-page: 199
  article-title: Modeling floods in a dense urban area using 2D shallow water equations
  publication-title: Journal of Hydrology
– volume: 59
  start-page: 1246
  issue: 6
  year: 2023
  end-page: 1272
  article-title: The Office of Water Prediction’s Analysis of Record for Calibration, version 1.1: Dataset description and precipitation evaluation
  publication-title: Journal of the American Water Resources Association
– volume: 1
  start-page: 566
  issue: 7
  year: 2023
  end-page: 567
  article-title: Fundamental limits to flood inundation modelling
  publication-title: Nature Water
– volume: 16
  issue: 3
  year: 2021
  article-title: Improving flood hazard datasets using a low‐complexity, probabilistic floodplain mapping approach
  publication-title: PLoS One
– volume: 41
  issue: 8
  year: 2005
  article-title: Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall‐runoff simulations
  publication-title: Water Resources Research
– volume: 29
  start-page: 2543
  issue: 8
  year: 2015
  end-page: 2561
  article-title: Evaluating the effects of inundation duration and velocity on selection of flood management alternatives using multi‐criteria decision making
  publication-title: Water Resources Management
– volume: 2
  start-page: 139
  issue: 2
  year: 2009
  end-page: 147
  article-title: Sources of uncertainty in flood inundation maps
  publication-title: Journal of Flood Risk Management
– year: 2021
– year: 2024
– volume: 126
  start-page: 79
  year: 2019
  end-page: 95
  article-title: PRIMo: Parallel raster inundation model
  publication-title: Advances in Water Resources
– volume: 10
  issue: 1
  year: 2020
  article-title: Sea‐level rise exponentially increases coastal flood frequency
  publication-title: Scientific Reports
– volume: 24
  start-page: 43
  issue: 1
  year: 1979
  end-page: 69
  article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant
  publication-title: Hydrological Sciences Bulletin
– year: 2018
– volume: 58
  issue: 10
  year: 2022
  article-title: A framework for mechanistic flood inundation forecasting at the metropolitan scale
  publication-title: Water Resources Research
– volume: 26
  issue: 12
  year: 2021
  article-title: Validation of urban flood inundation models applied using nationally available data sets: Novel analyses of observed high water information
  publication-title: Journal of Hydrologic Engineering
– year: 2014
– volume: 590
  year: 2020
  article-title: Flood susceptibility mapping with machine learning, multi‐criteria decision analysis and ensemble using Dempster Shafer Theory
  publication-title: Journal of Hydrology
– volume: 7
  start-page: 588
  issue: 8
  year: 2014
  end-page: 592
  article-title: River basin flood potential inferred using GRACE gravity observations at several months lead time
  publication-title: Nature Geoscience
– volume: 51
  start-page: 437
  issue: 3
  year: 2009
  end-page: 458
  article-title: Flood risk curves and uncertainty bounds
  publication-title: Natural Hazards
– year: 2022
– volume: 14
  issue: 4
  year: 2022
  article-title: Assessing numerical model skill at simulating coastal flooding using field observations of deposited debris and photographic evidence
  publication-title: Water
– volume: 14
  start-page: 713
  issue: 3
  year: 2014
  end-page: 730
  article-title: Recent human impacts and change in dynamics and morphology of ephemeral rivers
  publication-title: Natural Hazards and Earth System Sciences
– volume: 24
  start-page: 3537
  issue: 10
  year: 2024
  end-page: 3559
  article-title: Transferability of machine learning‐based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
  publication-title: Natural Hazards and Earth System Science
– volume: 10
  issue: 11
  year: 2018
  article-title: Flood prediction using machine learning models: Literature review
  publication-title: Water
– volume: 61
  issue: 2
  year: 2023
  article-title: Recent advances and new frontiers in riverine and coastal flood modeling
  publication-title: Reviews of Geophysics
– volume: 102
  start-page: 178
  year: 2014
  end-page: 190
  article-title: A state of the art review on High Water Mark (HWM) determination
  publication-title: Ocean & Coastal Management
– year: 2023
  article-title: NOAA tides & currents
  publication-title: CO‐OPS Map ‐ NOAA Tides & Currents
– volume: 18
  start-page: 3347
  issue: 17
  year: 2004
  end-page: 3370
  article-title: Bayesian updating of flood inundation likelihoods conditioned on flood extent data
  publication-title: Hydrological Processes
– volume: 13
  start-page: 608
  issue: 7
  year: 2008
  end-page: 620
  article-title: Uncertainty in flood inundation mapping: Current issues and future directions
  publication-title: Journal of Hydrologic Engineering
– volume: 196
  year: 2025
  article-title: Modeling the latent impacts of extreme floods on indoor mold spores in residential buildings: Application of machine learning algorithms
  publication-title: Environment International
– year: 2019
– volume: 66
  year: 2021
  article-title: Evaluating urban flood risk using hybrid method of TOPSIS and machine learning
  publication-title: International Journal of Disaster Risk Reduction
– volume: 368
  start-page: 42
  issue: 1
  year: 2009
  end-page: 55
  article-title: Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations
  publication-title: Journal of Hydrology
– volume: 54
  start-page: 287
  issue: 1
  year: 2022
  end-page: 315
  article-title: Flood inundation prediction
  publication-title: Annual Review of Fluid Mechanics
– volume: 12
  start-page: 156
  issue: 2
  year: 2022
  end-page: 162
  article-title: Inequitable patterns of US flood risk in the Anthropocene
  publication-title: Nature Climate Change
– year: 2024
  article-title: Loss functions and metrics in deep learning
  publication-title: arXiv
– volume: 362
  year: 2024
  article-title: Impacts of future climate and land use/land cover change on urban runoff using fine‐scale hydrologic modeling
  publication-title: Journal of Environmental Management
– volume: 12
  issue: 1
  year: 2022
  article-title: Machine learning‐based assessment of storm surge in the New York metropolitan area
  publication-title: Scientific Reports
– volume: 257
  year: 2011
  article-title: NLCD 2011 land cover (CONUS)
  publication-title: Remote Sensing of Environment
– volume: 711
  year: 2020
  article-title: Flash‐flood hazard assessment using ensembles and Bayesian‐based machine learning models: Application of the simulated annealing feature selection method
  publication-title: Science of the Total Environment
– volume: 37
  start-page: 107
  issue: 1
  year: 2009
  end-page: 118
  article-title: Flood inundation modeling using MIKE FLOOD and remote sensing data
  publication-title: Journal of the Indian Society of Remote Sensing
– start-page: 1
  year: 2017
  end-page: 5
– volume: 19
  start-page: 3081
  issue: 16
  year: 2005
  end-page: 3096
  article-title: Spatially distributed observations in constraining inundation modelling uncertainties
  publication-title: Hydrological Processes
– year: 2022
  article-title: ERA5‐Land [Text]
  publication-title: ECMWF
– year: 2016
– volume: 1
  start-page: 25
  issue: 1
  year: 1997
  end-page: 44
  article-title: A new approach to multi‐criteria decision making in water Resources
  publication-title: Journal of Geographic Information and Decision Analysis
– volume: 533
  start-page: 365
  year: 2016
  end-page: 378
  article-title: Spatial probabilistic multi‐criteria decision making for assessment of flood management alternatives
  publication-title: Journal of Hydrology
– volume: 326
  start-page: 153
  issue: 1
  year: 2006
  end-page: 165
  article-title: A methodology for the validation of uncertain flood inundation models
  publication-title: Journal of Hydrology
– volume: 63
  start-page: 1759
  issue: 12
  year: 2018
  end-page: 1775
  article-title: A probabilistic framework for floodplain mapping using hydrological modeling and unsteady hydraulic modeling
  publication-title: Hydrological Sciences Journal
– year: 2021
  article-title: A comprehensive flood inundation mapping for Hurricane Harvey using an integrated hydrological and hydraulic model
  publication-title: Journal of Hydrometeorology
– volume: 108
  start-page: 31
  issue: 1
  year: 2021
  end-page: 62
  article-title: A review on applications of urban flood models in flood mitigation strategies
  publication-title: Natural Hazards
– volume: 21
  start-page: 559
  issue: 2
  year: 2021
  end-page: 575
  article-title: Simulating historical flood events at the continental scale: Observational validation of a large‐scale hydrodynamic model
  publication-title: Natural Hazards and Earth System Sciences
– volume: 58
  start-page: 149
  issue: 2
  year: 2022
  end-page: 163
  article-title: Application of a large‐scale terrain‐analysis‐based flood mapping system to Hurricane Harvey
  publication-title: Journal of the American Water Resources Association
– volume: 9
  issue: 12
  year: 2020
  article-title: Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian Province, China
  publication-title: ISPRS International Journal of Geo‐Information
– volume: 9
  start-page: 412
  issue: 4
  year: 2005
  end-page: 430
  article-title: Utility of different data types for calibrating flood inundation models within a GLUE framework
  publication-title: Hydrology and Earth System Sciences
– volume: 12
  issue: 4
  year: 2024
  article-title: Hurricane Ian damage assessment using aerial imagery and LiDAR: A case study of Estero Island, Florida
  publication-title: Journal of Marine Science and Engineering
– volume: 28
  start-page: 5897
  issue: 24
  year: 2014
  end-page: 5918
  article-title: GLUE: 20 years on
  publication-title: Hydrological Processes
– year: 2023
– year: 2017
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv
– year: 2021
  article-title: Regional flood risk projections under climate change
  publication-title: Journal of Hydrometeorology
– volume: 9
  start-page: 187
  issue: 2
  year: 2022
  end-page: 212
  article-title: A comprehensive survey of loss functions in machine learning
  publication-title: Annals of Data Science
– volume: 90
  start-page: 201
  year: 2017
  end-page: 216
  article-title: Flood inundation modelling: A review of methods, recent advances and uncertainty analysis
  publication-title: Environmental Modelling & Software
– volume: 15
  issue: 3
  year: 2023
  article-title: A review of hydrodynamic and machine learning approaches for flood inundation modeling
  publication-title: Water
– volume: 4
  year: 2019
  article-title: A flood inundation forecast of Hurricane Harvey using a continental‐scale 2D hydrodynamic model
  publication-title: Journal of Hydrology X
– start-page: 279
  year: 2014
  end-page: 289
  article-title: The impact of scale on probabilistic flood inundation maps using a 2D hydraulic model with uncertain boundary conditions
  publication-title: Vulnerability, Uncertainty, and Risk
– ident: e_1_2_7_12_1
  doi: 10.1002/hyp.10082
– volume: 1
  start-page: 25
  issue: 1
  year: 1997
  ident: e_1_2_7_61_1
  article-title: A new approach to multi‐criteria decision making in water Resources
  publication-title: Journal of Geographic Information and Decision Analysis
– ident: e_1_2_7_45_1
  doi: 10.25921/STKW‐7W73
– ident: e_1_2_7_40_1
  doi: 10.3390/w10111536
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jhydrol.2005.11.026
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jhydrol.2009.01.026
– ident: e_1_2_7_26_1
  doi: 10.1029/2022rg000788
– ident: e_1_2_7_7_1
  doi: 10.1038/s44221‐023‐00106‐4
– ident: e_1_2_7_24_1
  doi: 10.1016/j.scitotenv.2019.135161
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jenvman.2024.121284
– ident: e_1_2_7_70_1
  doi: 10.5194/nhess‐21‐559‐2021
– ident: e_1_2_7_46_1
  doi: 10.5194/nhess‐14‐713‐2014
– ident: e_1_2_7_37_1
  doi: 10.1007/s11069‐009‐9452‐6
– ident: e_1_2_7_60_1
  doi: 10.48550/arXiv.2307.02694
– ident: e_1_2_7_65_1
  doi: 10.1007/s40745‐020‐00253‐5
– volume-title: Tropical Cyclone Report—HURRICANE Michael (AL142018)
  year: 2019
  ident: e_1_2_7_10_1
– ident: e_1_2_7_58_1
  doi: 10.1038/s41598‐020‐62188‐4
– ident: e_1_2_7_67_1
  doi: 10.1109/INNOCIT.2017.8319150
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jhydrol.2020.125275
– ident: e_1_2_7_47_1
  doi: 10.5194/nhess‐24‐3537‐2024
– ident: e_1_2_7_55_1
  doi: 10.1029/2021WR031279
– volume-title: Hurricane Ida
  year: 2022
  ident: e_1_2_7_11_1
– ident: e_1_2_7_28_1
  doi: 10.48550/arXiv.1412.6980
– ident: e_1_2_7_41_1
– ident: e_1_2_7_29_1
  doi: 10.3133/tm3A24
– ident: e_1_2_7_54_1
  doi: 10.1061/9780784413609.029
– ident: e_1_2_7_56_1
  doi: 10.1175/JHM‐D‐20‐0238.1
– ident: e_1_2_7_50_1
  doi: 10.1007/s11069‐021‐04715‐8
– ident: e_1_2_7_72_1
  doi: 10.3133/sir20135193
– year: 2022
  ident: e_1_2_7_18_1
  article-title: ERA5‐Land [Text]
  publication-title: ECMWF
– ident: e_1_2_7_52_1
  doi: 10.1038/ngeo2203
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jhydrol.2005.10.027
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ocecoaman.2014.09.027
– ident: e_1_2_7_48_1
  doi: 10.1016/j.envint.2025.109319
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev‐fluid‐030121‐113138
– ident: e_1_2_7_68_1
  doi: 10.1038/s41558‐021‐01265‐6
– ident: e_1_2_7_17_1
  doi: 10.1371/journal.pone.0248683
– volume-title: Tropical cyclone report—Hurricane Ian (AL092022)
  year: 2023
  ident: e_1_2_7_14_1
– ident: e_1_2_7_73_1
  doi: 10.1111/1752‐1688.12987
– ident: e_1_2_7_25_1
  doi: 10.5194/hess‐9‐412‐2005
– ident: e_1_2_7_62_1
– ident: e_1_2_7_22_1
  doi: 10.3390/jmse12040668
– ident: e_1_2_7_13_1
  doi: 10.1080/02626667909491834
– year: 2023
  ident: e_1_2_7_44_1
  article-title: NOAA tides & currents
  publication-title: CO‐OPS Map ‐ NOAA Tides & Currents
– ident: e_1_2_7_59_1
  doi: 10.1016/j.envsoft.2017.01.006
– volume-title: Open‐file report (Nos. 2011–1029)
  year: 2011
  ident: e_1_2_7_71_1
– volume-title: Hurricane Isaias
  year: 2021
  ident: e_1_2_7_30_1
– ident: e_1_2_7_2_1
  doi: 10.1080/02626667.2018.1525615
– ident: e_1_2_7_9_1
  doi: 10.1002/hyp.1499
– ident: e_1_2_7_19_1
  doi: 10.1111/1752‐1688.13143
– ident: e_1_2_7_64_1
  doi: 10.1016/j.rse.2021.112357
– ident: e_1_2_7_39_1
  doi: 10.1029/2004WR003826
– ident: e_1_2_7_63_1
– ident: e_1_2_7_15_1
  doi: 10.3390/ijgi9120748
– ident: e_1_2_7_16_1
  doi: 10.1175/JHM‐D‐20‐0218.1
– ident: e_1_2_7_49_1
  doi: 10.1007/s12524‐009‐0002‐1
– ident: e_1_2_7_51_1
  doi: 10.1016/j.ijdrr.2021.102614
– ident: e_1_2_7_53_1
  doi: 10.1016/j.advwatres.2019.02.007
– ident: e_1_2_7_5_1
  doi: 10.1038/s41598‐022‐23627‐6
– ident: e_1_2_7_27_1
  doi: 10.3390/w15030566
– ident: e_1_2_7_57_1
  doi: 10.1061/(ASCE)HE.1943‐5584.0002129
– ident: e_1_2_7_66_1
  doi: 10.1002/hyp.5833
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1753‐318x.2009.01029.x
– ident: e_1_2_7_3_1
  doi: 10.1007/s11269‐015‐0956‐4
– ident: e_1_2_7_33_1
  doi: 10.4211/hs.73aaa3efcda2465ba6227f535400f36b
– ident: e_1_2_7_69_1
  doi: 10.1016/j.hydroa.2019.100039
– ident: e_1_2_7_36_1
  doi: 10.1061/(asce)1084‐0699(2008)13:7(608)
– ident: e_1_2_7_42_1
– ident: e_1_2_7_20_1
  doi: 10.3390/w14040589
– ident: e_1_2_7_34_1
  doi: 10.21203/rs.3.rs-3504678/v1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jhydrol.2015.12.031
– ident: e_1_2_7_31_1
SSID ssj0014567
Score 2.480235
Snippet In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This approach...
Abstract In the absence of adequate observations on the off‐channel areas, flood models are typically trained and validated against stream water depths. This...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Coastal flooding
Coastal waters
coastal watersheds
Discharge measurement
flood hindcasting
Flood models
Floods
Gauges
high‐water marks (HWMs)
Hindcasting
Hurricanes
Learning algorithms
Machine learning
machine learning (ML)
model validation
observational studies
Performance evaluation
Physics
Questions
Rivers
Streams
Uncertainty
water
Water depth
Watersheds
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdgPIwXNP6JwEBGAp6IqBPHcXmDjqlDGqCKqnuLLrG9VlqTKmk19raPwBfgy_FJuHOTaJUQEm9Rck6cnC_3O9_5Z8ZepegHTCpNiNCf0oypDUHbJEwKDIG0cnpQ-CrfL2o8lZ_PkrN2wo3Wwmz5IfoJN7IM_78mA4e8ackGiCMTo3Y5mwzQv0t5m90R5PiJ2Vl-67MICA7SLsNMSKctfMf272623nFJnrl_B27ub8oVXF3CxcUugPUe6PiA3WuhI_-w1fV9dsuWD9h-t7K4weN2R_P51UP2a4zBdgENVTXzU_ixWG6WfIbAsuZHdrWeN3xR8lGFAnhLf76ZW9O85zhu-MnSo3IcD7xy_ISoLj3dMd3rq3O_r3_SogT8gPwI1sChNNRsUfMpNvElBkTTSk849bWalrc0rtgV2nmnecSmx5--j8ZhuxVDCBRjhdYph8BBEB4R2iipnSWOc7A2V1JF0jiXoN4jkE6LuFBW5EIYBBsgrZSD-DHbK6vSPmFcOB2jQIFIAjzZuwEjh7HJ81jlCQwC9rrTRrbaMm5kPlMeDbObWgvYR1JVL0M82f5EVZ9nrdllRogiH0KuokJL0C43sTIpaDHAR2GwF7DDTtFZa7xNhn-lJEljDM4C9rK_jGZHuRQobbVBGYQ2CHURbQXsTT9A_trhy7rr8Fs_ev75VtlsMpqkCHzF0_8Tf8buRrQ1sS8qOmR763pjnyNeWucvvFH8AdwlC40
  priority: 102
  providerName: Wiley-Blackwell
Title Hindcasting Maximum Water Depths in Coastal Watersheds: The Importance of Incorporating Off‐Channel Data and Their Uncertainties in Machine Learning Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR039244
https://www.proquest.com/docview/3195573230
https://www.proquest.com/docview/3242057091
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024WR039244
https://doaj.org/article/d11cb9ab62c84a8fbd36d7a810b5a499
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NjtMwEMct2MtyQXyKLMvKSMCJiDhxHJcbdFl1kRZQRdW9RePYViu1adW0WvbGI_ACvBxPwoybVFsJwYVblTqp0xnHv9FM_sPYiwL3AVtIGyP6U5qxcDFol8d5hSGQVl4nVajy_aQGI_nxMr-80eqLasK28sDbP-6NFaIyPTAqrbQE7Y3NlC1Ai8TkgLhOT1_cxrpgqs0fIBYUXW6ZGKcteU_SHkX7cjxMkAuk3NuMgmb_HmgebuolXF_BbLaPrmHvObvH7rbQyN9tJ3uf3XL1A3bYvVPc4Oe2l_nk-iH7OcAwu4KG6pn5BXybzjdzPkakXPFTt1xPGj6teX-BA_CS4XgzcbZ5y9Fj-Pk88Dh6Al94fk4il0HomK712ftf33_Q6wi1m_FTWAOH2tJp0xUf4SmhuIAEWukXLkKVpuOtgCtOhXruNI_Y6OzD1_4gbpswxEDRVey88ogMgkhEaKuk9o7UzcE5o6RKpfU-R4unIL0WWaWcMEJYxAyQTsoke8wO6kXtnjAuvM5wQIUMAUHm3YKVvcwakyk0ZhKxl501yuVWa6MMOfK0V960WsTek6l2Y0ghOxxAvylbvyn_5TcRO-4MXbbLtinxeZTnRYZhWcSe777GBUdZFKjdYoNjEGoQcpGzIvZq5yB_nPDVqpvw6-A9f72rcjzsDwtEXnH0P-7vKbuTUqviUGR0zA7Wq417hvy0Nifsdiq_nIQF8xs1EBT4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdgPJQXxF8RGGAk4ImIOHEcd2_QMbWwDlSt6t4iJ7bXSmtSJa22vfER-AJ8OT4Jd24SrRJC4q1Kz4mTu4t_lzv_jpA3CawDOuHaB-iPacbE-Eqa2I9zCIGksDLIXZXviRhO-Zez-Kzpc4p7Ybb8EN0HN_QM975GB8cP0g3bAJJkQtjOZ5MAFnjOb5M7XIQBmnXIv3dpBEAHSZtiRqjTVL7D-A83R--sSY66fwdv9jbFSl1fqouLXQTrlqCj--Regx3px62yH5BbpnhIeu3W4hp-Ny3N59ePyK8hRNu5qrGsmY7V1WK5WdIZIMuKHprVel7TRUEHJQjAKd3xem50fUDBcOho6WA5GAQtLR0h16XjO8ZzfbP294-fuCsBniA9VGtFVaFx2KKiUxjiagyQpxWvMHbFmoY2PK4wFWy9Uz8m06PPp4Oh3_Ri8BUGWb6xwgJyYAhImNSCS2uQ5FwZkwl49FxbG4PiQ8WtZFEuDMsY04A2FDecB9ETsleUhXlKKLMyAoEcoIRybO9aad6PdJZFIotV4JG3rTbS1ZZyI3Wp8rCf3tSaRz6hqjoZJMp2B8rqPG38LtWM5VlfZSLMJVfSZjoSOlGSBXApiPY8st8qOm28t07htRTHSQTRmUded3-D32EyRRWm3IAMYBvAugC3PPKuM5C_Tviyaif83lnPP-8qnU0GkwSQL3v2f-KvSG94Oj5Oj0cnX5-TuyH2KXYVRvtkb11tzAsAT-vspXOQP1f4Dvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdgSIyXib9aYICRgCci4sRxXN6gpWqBjami6t4iJ7ZppTWpklbb3vgIfAG-HJ-EOzeJVgkh8RY5Z8fJ-eLf-c4_E_IygXlAJ1z7AP0xzJgYX0kT-3EOLpAUVga5y_I9EaMp_3QWnzULbrgXZssP0S24oWW4_zUa-ErbhmwAOTLBa-ezSQDzO-c3yS2OrC3I7MxPuygCgIOkjTAj0mkS36H-2-u1d6Ykx9y_Azf3N8VKXV2o8_NdAOtmoOFdctBAR_p-q-t75IYp7pP9dmdxDdfNiebzqwfk1wic7VzVmNVMj9XlYrlZ0hkAy4oOzGo9r-mioP0SBKBJV17Pja7fURg3dLx0qBzGAy0tHSPVpaM7xra-Wvv7x0_clAAfkA7UWlFVaKy2qOgUqrgUA6RpxSccu1xNQxsaV-gKnrxTPyTT4cdv_ZHfHMXgK_SxfGOFBeDAEI8wqQWX1iDHuTImE1yEXFsbg95Dxa1kUS4MyxjTADYUN5wH0SOyV5SFOSSUWRmBQA5IQjmyd60070U6yyKRxSrwyKtWG-lqy7iRukh52Euva80jH1BVnQzyZLuCsvqeNmaXasbyrKcyEeaSK2kzHQmdKMkCeBQ4ex45ahWdNsZbp_BXiuMkAufMIy-622B2GEtRhSk3IAPQBqAuoC2PvO4GyF87fFG1HX7jRs8_3yqdTfqTBIAve_x_4s_J7dPBMP0yPvn8hNwJ8ZRil190RPbW1cY8Bei0zp45-_gDsgwOLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hindcasting+Maximum+Water+Depths+in+Coastal+Watersheds%3A+The+Importance+of+Incorporating+Off%E2%80%90Channel+Data+and+Their+Uncertainties+in+Machine+Learning+Models&rft.jtitle=Water+resources+research&rft.au=Maryam+Pakdehi&rft.au=Ebrahim+Ahmadisharaf&rft.date=2025-04-01&rft.pub=Wiley&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=61&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024WR039244&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d11cb9ab62c84a8fbd36d7a810b5a499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon