Numerical simulation of impact cratering on granular material

A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 180; no. 2; pp. 528 - 545
Main Authors Wada, Koji, Senshu, Hiroki, Matsui, Takafumi
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.02.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0019-1035
1090-2643
DOI10.1016/j.icarus.2005.10.002

Cover

Abstract A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the physical plausibility of this code, we conduct 3-D numerical simulations of vertical impact into granular material targets that consist of 384,000 particles, and compare the results with those from experimental studies. It is shown that the excavation stage of cratering derived from experimental studies is represented well by our simulation: the size of the crater cavity, and the ejecta velocity and angle distributions are consistent with those obtained in laboratory experiments. The impact simulation code developed in this study is thus suggested to be useful for the analysis of the impact cratering process on granular material.
AbstractList A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the physical plausibility of this code, we conduct 3-D numerical simulations of vertical impact into granular material targets that consist of 384,000 particles, and compare the results with those from experimental studies. It is shown that the excavation stage of cratering derived from experimental studies is represented well by our simulation: the size of the crater cavity, and the ejecta velocity and angle distributions are consistent with those obtained in laboratory experiments. The impact simulation code developed in this study is thus suggested to be useful for the analysis of the impact cratering process on granular material.
Author Senshu, Hiroki
Wada, Koji
Matsui, Takafumi
Author_xml – sequence: 1
  givenname: Koji
  surname: Wada
  fullname: Wada, Koji
  email: wada@neko.lowtem.hokudai.ac.jp
  organization: Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
– sequence: 2
  givenname: Hiroki
  surname: Senshu
  fullname: Senshu, Hiroki
  email: senshu@jamstec.go.jp
  organization: Institute for Research on Earth Evolution, Japan Agency for Marine–Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka 237-0061, Japan
– sequence: 3
  givenname: Takafumi
  surname: Matsui
  fullname: Matsui, Takafumi
  email: matsui@k.u-tokyo.ac.jp
  organization: Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17468483$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQhoOs4Lr6Dzz04rF1kqZNKyjI4hcsetFzmHx0ydKPJekK_nuzW0HwoKeBd553GJ5TMuuH3hJyQSGjQMurTeY0-l3IGEARowyAHZE5hRpSVvJ8RuYAtE4p5MUJOQ1hAxGs6nxObl52nfWx3ibBdbsWRzf0ydAkrtuiHhPtcYz7fp3EeO2xj4hPukOI7Rk5brAN9vx7Lsj7w_3b8ildvT4-L-9WKXJWjKkFZUxV69KUzHDBSqaY4AKqminBTJGjUBR40wjUqmBKFaJCoIXSSLkuab4gl9PdLYb4ahP_0C7IrXcd-k9JBS8rXuWR4xOn_RCCt80PAnKvSm7kpEruVe3TqCrWrn_VtBsPJkaPrv2vfDuVbRTw4ayXQTvba2uct3qUZnB_H_gCZreJUQ
CODEN ICRSA5
CitedBy_id crossref_primary_10_3208_jgssp_CPN_17
crossref_primary_10_2208_jscejam_73_I_527
crossref_primary_10_1016_j_icarus_2012_03_006
crossref_primary_10_1002_asna_201211712
crossref_primary_10_1007_s11038_015_9475_9
crossref_primary_10_1016_j_icarus_2018_06_021
crossref_primary_10_1103_PhysRevE_82_010301
crossref_primary_10_1088_0034_4885_76_6_066601
crossref_primary_10_1155_2017_7874543
crossref_primary_10_1103_PhysRevE_79_021301
crossref_primary_10_1016_j_icarus_2019_02_004
crossref_primary_10_1103_PhysRevE_76_041306
crossref_primary_10_4236_jfcmv_2018_63012
crossref_primary_10_1061__ASCE_EM_1943_7889_0001924
crossref_primary_10_1111_maps_12710
crossref_primary_10_1103_PhysRevE_98_012901
crossref_primary_10_1140_epjst_e2018_00071_3
crossref_primary_10_1016_j_ijimpeng_2021_103839
crossref_primary_10_1016_j_powtec_2021_02_065
crossref_primary_10_1103_PhysRevE_79_041306
crossref_primary_10_1103_PhysRevE_95_022906
crossref_primary_10_1016_j_ijimpeng_2016_02_001
crossref_primary_10_1016_j_icarus_2019_113590
crossref_primary_10_1016_j_ces_2013_09_023
crossref_primary_10_1061__ASCE_GM_1943_5622_0001586
crossref_primary_10_1155_2018_1838370
crossref_primary_10_1016_j_icarus_2013_05_007
crossref_primary_10_1016_j_icarus_2010_05_025
crossref_primary_10_3390_inventions6040083
crossref_primary_10_1007_s10035_023_01364_5
crossref_primary_10_1007_s42064_021_0127_8
crossref_primary_10_1103_PhysRevE_86_061304
crossref_primary_10_1103_PhysRevLett_120_264501
crossref_primary_10_1016_j_ijmecsci_2025_110096
crossref_primary_10_1016_j_pss_2015_03_017
crossref_primary_10_1061_JAEEEZ_ASENG_5326
crossref_primary_10_1016_j_pss_2019_07_004
crossref_primary_10_1007_s10035_020_01019_9
crossref_primary_10_1016_j_compgeo_2016_12_021
crossref_primary_10_1088_1755_1315_875_1_012023
crossref_primary_10_1086_514332
crossref_primary_10_1002_2015JE004879
crossref_primary_10_1086_518418
crossref_primary_10_1007_s10035_012_0364_x
crossref_primary_10_1007_s40571_018_0200_0
crossref_primary_10_3390_jmse12091479
crossref_primary_10_1016_j_icarus_2008_02_010
crossref_primary_10_1155_2017_8971353
crossref_primary_10_1038_s41598_017_10681_8
crossref_primary_10_1051_0004_6361_201118147
crossref_primary_10_7498_aps_65_104501
crossref_primary_10_1016_j_pss_2014_07_013
crossref_primary_10_1007_s10035_021_01136_z
crossref_primary_10_1007_s10035_018_0841_y
crossref_primary_10_1111_j_1945_5100_2006_tb00435_x
crossref_primary_10_1016_j_icarus_2011_09_008
crossref_primary_10_1111_maps_13143
crossref_primary_10_3389_feart_2022_835271
crossref_primary_10_1007_s10035_014_0529_x
crossref_primary_10_1016_j_mtcomm_2024_110324
crossref_primary_10_1016_j_powtec_2024_119772
crossref_primary_10_1017_jfm_2011_31
crossref_primary_10_1002_2017JE005295
crossref_primary_10_1016_j_asr_2006_10_010
crossref_primary_10_1016_j_powtec_2016_04_031
crossref_primary_10_1016_j_gca_2008_04_031
crossref_primary_10_1002_nme_6056
crossref_primary_10_1016_j_powtec_2015_11_022
crossref_primary_10_1061__ASCE_GM_1943_5622_0001679
crossref_primary_10_1016_j_icarus_2012_11_038
crossref_primary_10_1103_PhysRevE_99_032906
crossref_primary_10_3390_aerospace9110737
crossref_primary_10_1093_mnras_stab2365
crossref_primary_10_1093_mnras_stz3010
crossref_primary_10_3847_PSJ_ac779a
crossref_primary_10_1016_j_icarus_2010_11_030
crossref_primary_10_1093_mnras_stae1744
crossref_primary_10_1007_s12517_018_3481_y
crossref_primary_10_1111_j_1365_2966_2011_20259_x
crossref_primary_10_1016_j_icarus_2022_114882
crossref_primary_10_1103_PhysRevLett_121_208001
crossref_primary_10_1016_j_icarus_2021_114868
crossref_primary_10_1016_j_powtec_2024_120350
crossref_primary_10_1088_0004_637X_727_2_120
crossref_primary_10_1016_j_pss_2018_03_014
crossref_primary_10_1007_s11440_022_01598_2
crossref_primary_10_1007_s10035_012_0346_z
crossref_primary_10_2322_tastj_16_210
crossref_primary_10_1016_j_mtcomm_2024_109812
crossref_primary_10_1103_PhysRevE_77_021308
crossref_primary_10_2322_tastj_19_726
crossref_primary_10_32604_cmes_2021_016403
crossref_primary_10_1016_j_icarus_2012_01_014
crossref_primary_10_1016_j_ijimpeng_2013_12_004
crossref_primary_10_1093_mnras_stz633
crossref_primary_10_1093_mnras_stz3458
Cites_doi 10.1146/annurev.ea.21.050193.002001
10.1006/icar.1997.5713
10.1680/geot.1979.29.1.47
10.1103/PhysRevLett.92.194301
10.2208/jscej1969.1983.333_137
10.1006/icar.2000.6370
10.1038/370120a0
10.1111/j.1945-5100.1999.tb01367.x
10.1086/303996
10.1029/94JB00937
10.1006/icar.2002.6862
10.1029/2003JE002075
10.1016/0019-1035(85)90021-1
10.1029/1998JE000596
10.1016/0734-743X(87)90069-8
10.1029/93JE01330
10.1006/icar.2002.6822
10.1016/S0019-1035(03)00024-1
10.1029/JB080i029p04062
10.1016/j.icarus.2004.09.007
10.1029/98JE02496
10.1103/PhysRevLett.87.244301
10.1029/JB088iB03p02485
10.1029/2000JE001472
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.icarus.2005.10.002
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1090-2643
EndPage 545
ExternalDocumentID 17468483
10_1016_j_icarus_2005_10_002
S0019103505003611
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNCT
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
HME
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG5
LY3
LZ4
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PVJ
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SEP
SES
SEW
SHN
SPC
SPCBC
SSE
SSQ
SSZ
T5K
TAE
UQL
VOH
WUQ
XJT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-a425t-e0bdd89c6d62d47262b27470892b72d53a7b104ff7acb52bb578a015bca14c613
IEDL.DBID AIKHN
ISSN 0019-1035
IngestDate Mon Jul 21 09:18:06 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Wed Oct 01 00:48:41 EDT 2025
Fri Feb 23 02:29:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Impact processes
Cratering
Computer techniques
Granular materials
Digital simulation
Impact phenomena
Velocity distribution
Solar system
Experimental study
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a425t-e0bdd89c6d62d47262b27470892b72d53a7b104ff7acb52bb578a015bca14c613
PageCount 18
ParticipantIDs pascalfrancis_primary_17468483
crossref_primary_10_1016_j_icarus_2005_10_002
crossref_citationtrail_10_1016_j_icarus_2005_10_002
elsevier_sciencedirect_doi_10_1016_j_icarus_2005_10_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-02-01
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-01
  day: 01
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Icarus (New York, N.Y. 1962)
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Leinhardt, Richardson, Quinn (bib021) 2000; 146
Stöffler, Gault, Wedekind, Polkowski (bib035) 1975; 80
Housen, Holsapple (bib016) 2003; 163
Pierazzo, Kring, Melosh (bib031) 1998; 103
Hartmann (bib013) 1985; 63
Schmidt (bib033) 1980
Ahrens, O'Keefe (bib001) 1977
Cundall, Strack (bib009) 1979; 29
O'Keefe, Ahrens (bib026) 1993; 98
McGovern, Morgan (bib022) 2005
Kiyama, H., Fujimura, H., 1983. Application of Cundall's discrete block method to gravity flow analysis of rock-like granular materials. In: Proceedings of the Japan Society of Civil Engineers, vol. 333, pp. 137–146. In Japanese
Holsapple (bib015) 1993; 21
Ivanov, Badukov, Yakovlev, Gerasimov, Dikov, Pope, Ocampo (bib019) 1996
Andrews, R.J., 1975. Origin and distribution of ejecta from near-surface laboratory-scale cratering experiments. Report AFW-TR-74-314, Air Force Weapons Lab., Kirtland Air Force Base, NM
Mitani (bib024) 2003; 108
Yamamoto (bib037) 2002; 158
Forsyth, Hutton, Osborne, Rhodes (bib012) 2001; 87
Pica Ciamarra, Lara, Lee, Goldman, Vishik, Swinney (bib028) 2004; 92
Yamamoto, S., Wada, K., Matsui, T., 2003. An experimental study on transient craters. In: Proc. 36th ISAS Lunar and Planetary Symposium, pp. 270–273
Campbell, Cleary, Hopkins (bib005) 1995; 100
Hidaka, Shimosaka, Sakaguchi, Taguchi, Yoshida, Kano, Saito (bib014) 1998
Housen, Schmidt, Holsapple (bib017) 1983; 88
Richardson, Elankumaran, Sanderson (bib032) 2005; 173
O'Keefe, Ahrens (bib027) 1999; 104
O'Keefe, Ahrens (bib025) 1977
Timoshenko, Goodier (bib036) 1970
Asphaug, Benz (bib004) 1994; 370
Cintala, Berthoud, Hörz (bib006) 1999; 34
Duran (bib011) 2000
Piekutowski (bib029) 1980; 11
Melosh (bib023) 1989
Anderson, Schultz, Heineck (bib002) 2003; 108
Pierazzo, Vickery, Melosh (bib030) 1997; 127
Collins, Melosh, Morgan, Warner (bib007) 2002; 157
Ivanov, Artemieva (bib018) 2002
Dominik, Tielens (bib010) 1997; 480
Schmidt, Housen (bib034) 1987; 5
(bib008) 2002
Housen (10.1016/j.icarus.2005.10.002_bib017) 1983; 88
Leinhardt (10.1016/j.icarus.2005.10.002_bib021) 2000; 146
Mitani (10.1016/j.icarus.2005.10.002_bib024) 2003; 108
Pierazzo (10.1016/j.icarus.2005.10.002_bib030) 1997; 127
Hartmann (10.1016/j.icarus.2005.10.002_bib013) 1985; 63
Schmidt (10.1016/j.icarus.2005.10.002_bib033) 1980
Campbell (10.1016/j.icarus.2005.10.002_bib005) 1995; 100
Anderson (10.1016/j.icarus.2005.10.002_bib002) 2003; 108
10.1016/j.icarus.2005.10.002_bib003
Holsapple (10.1016/j.icarus.2005.10.002_bib015) 1993; 21
Ivanov (10.1016/j.icarus.2005.10.002_bib019) 1996
10.1016/j.icarus.2005.10.002_bib020
McGovern (10.1016/j.icarus.2005.10.002_bib022) 2005
O'Keefe (10.1016/j.icarus.2005.10.002_bib027) 1999; 104
Cintala (10.1016/j.icarus.2005.10.002_bib006) 1999; 34
Cundall (10.1016/j.icarus.2005.10.002_bib009) 1979; 29
Collins (10.1016/j.icarus.2005.10.002_bib007) 2002; 157
Duran (10.1016/j.icarus.2005.10.002_bib011) 2000
Ahrens (10.1016/j.icarus.2005.10.002_bib001) 1977
(10.1016/j.icarus.2005.10.002_bib008) 2002
Hidaka (10.1016/j.icarus.2005.10.002_bib014) 1998
Pica Ciamarra (10.1016/j.icarus.2005.10.002_bib028) 2004; 92
Yamamoto (10.1016/j.icarus.2005.10.002_bib037) 2002; 158
Schmidt (10.1016/j.icarus.2005.10.002_bib034) 1987; 5
Forsyth (10.1016/j.icarus.2005.10.002_bib012) 2001; 87
Asphaug (10.1016/j.icarus.2005.10.002_bib004) 1994; 370
Stöffler (10.1016/j.icarus.2005.10.002_bib035) 1975; 80
Dominik (10.1016/j.icarus.2005.10.002_bib010) 1997; 480
Ivanov (10.1016/j.icarus.2005.10.002_bib018) 2002
10.1016/j.icarus.2005.10.002_bib038
O'Keefe (10.1016/j.icarus.2005.10.002_bib026) 1993; 98
Piekutowski (10.1016/j.icarus.2005.10.002_bib029) 1980; 11
O'Keefe (10.1016/j.icarus.2005.10.002_bib025) 1977
Pierazzo (10.1016/j.icarus.2005.10.002_bib031) 1998; 103
Timoshenko (10.1016/j.icarus.2005.10.002_bib036) 1970
Melosh (10.1016/j.icarus.2005.10.002_bib023) 1989
Richardson (10.1016/j.icarus.2005.10.002_bib032) 2005; 173
Housen (10.1016/j.icarus.2005.10.002_bib016) 2003; 163
References_xml – volume: 163
  start-page: 102
  year: 2003
  end-page: 119
  ident: bib016
  article-title: Impact cratering on porous asteroids
  publication-title: Icarus
– volume: 5
  start-page: 543
  year: 1987
  end-page: 560
  ident: bib034
  article-title: Some recent advances in the scaling of impact and explosion cratering
  publication-title: Int. J. Impact Eng.
– volume: 80
  start-page: 4062
  year: 1975
  end-page: 4077
  ident: bib035
  article-title: Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta
  publication-title: J. Geophys. Res.
– year: 1989
  ident: bib023
  article-title: Impact Cratering: A Geologic Process
– start-page: 2099
  year: 1980
  end-page: 2128
  ident: bib033
  article-title: Meteor crater: Energy of formation—Implications of centrifuge scaling
  publication-title: Proc. Lunar Sci. Conf. 11
– volume: 29
  start-page: 47
  year: 1979
  end-page: 65
  ident: bib009
  article-title: A discrete numerical model for granular assemblies
  publication-title: Géotechnique
– volume: 98
  start-page: 17011
  year: 1993
  end-page: 17028
  ident: bib026
  article-title: Planetary cratering mechanics
  publication-title: J. Geophys. Res.
– reference: Kiyama, H., Fujimura, H., 1983. Application of Cundall's discrete block method to gravity flow analysis of rock-like granular materials. In: Proceedings of the Japan Society of Civil Engineers, vol. 333, pp. 137–146. In Japanese
– volume: 370
  start-page: 120
  year: 1994
  end-page: 124
  ident: bib004
  article-title: Density of Comet Shoemaker–Levy 9 deduced by modeling breakup of the ‘parent rubble pile.’
  publication-title: Nature
– volume: 100
  start-page: 8267
  year: 1995
  end-page: 8283
  ident: bib005
  article-title: Large-scale landslide simulations: Global deformation, velocities, and basal friction
  publication-title: J. Geophys. Res.
– volume: 34
  start-page: 605
  year: 1999
  end-page: 623
  ident: bib006
  article-title: Ejection-velocity distributions from impacts into coarse-grained sand
  publication-title: Meteorit. Planet. Sci.
– start-page: 639
  year: 1977
  end-page: 656
  ident: bib001
  article-title: Equations of state and impact-induced shock-wave attenuation on the Moon
  publication-title: Impact and Explosion Cratering
– volume: 157
  start-page: 24
  year: 2002
  end-page: 33
  ident: bib007
  article-title: Hydrocode simulations of Chicxulub crater collapse and peak-ring formation
  publication-title: Icarus
– volume: 11
  start-page: 2129
  year: 1980
  end-page: 2144
  ident: bib029
  article-title: Formation of bowl-shaped craters
  publication-title: Proc. Lunar Sci. Conf.
– volume: 146
  start-page: 133
  year: 2000
  end-page: 151
  ident: bib021
  article-title: Direct
  publication-title: Icarus
– volume: 158
  start-page: 87
  year: 2002
  end-page: 97
  ident: bib037
  article-title: Measurement of impact ejecta from regolith targets in oblique impacts
  publication-title: Icarus
– year: 1970
  ident: bib036
  article-title: Theory of Elasticity
– volume: 104
  start-page: 27091
  year: 1999
  end-page: 27104
  ident: bib027
  article-title: Complex craters: Relationship of stratigraphy and rings to impact conditions
  publication-title: J. Geophys. Res.
– reference: Yamamoto, S., Wada, K., Matsui, T., 2003. An experimental study on transient craters. In: Proc. 36th ISAS Lunar and Planetary Symposium, pp. 270–273
– year: 2005
  ident: bib022
  article-title: Spreading of the Olympus Mons volcanic edifice, Mars
  publication-title: Lunar Planet. Sci. 36
– reference: Andrews, R.J., 1975. Origin and distribution of ejecta from near-surface laboratory-scale cratering experiments. Report AFW-TR-74-314, Air Force Weapons Lab., Kirtland Air Force Base, NM
– volume: 108
  year: 2003
  ident: bib002
  article-title: Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry
  publication-title: J. Geophys. Res.
– volume: 480
  start-page: 647
  year: 1997
  end-page: 673
  ident: bib010
  article-title: The physics of dust coagulation and the structure of dust aggregates in space
  publication-title: Astrophys. J.
– start-page: 125
  year: 1996
  end-page: 139
  ident: bib019
  article-title: Degassing of sedimentary rocks due to Chicxulub impact: Hydrocode and physical simulations
  publication-title: The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, Spec. Pap
– volume: 92
  year: 2004
  ident: bib028
  article-title: Dynamics of drag and force distributions for projectile impact in a granular medium
  publication-title: Phys. Rev. Lett.
– volume: 127
  start-page: 408
  year: 1997
  end-page: 423
  ident: bib030
  article-title: A reevaluation of impact melt production
  publication-title: Icarus
– start-page: 3357
  year: 1977
  end-page: 3374
  ident: bib025
  article-title: Impact-induced energy partitioning, melting, and vaporization on terrestrial planets
  publication-title: Proc. Lunar Sci. Conf. 8
– volume: 87
  start-page: 244301
  year: 2001
  ident: bib012
  article-title: Effects on interparticle force on the packing of spherical granular material
  publication-title: Phys. Rev. Lett.
– volume: 173
  start-page: 349
  year: 2005
  end-page: 361
  ident: bib032
  article-title: Numerical experiments with rubble piles: Equilibrium shapes and spins
  publication-title: Icarus
– volume: 63
  start-page: 69
  year: 1985
  end-page: 98
  ident: bib013
  article-title: Impact experiments. 1. Ejecta velocity distributions and related results from regolith targets
  publication-title: Icarus
– start-page: 29
  year: 1998
  end-page: 82
  ident: bib014
  article-title: Numerical simulation by particle element method
  publication-title: Introduction to Numerical Simulation of Granular Materials (Huntai Shimyureshon Nyumon)
– year: 2002
  ident: bib008
  publication-title: Discrete Element Methods: Numerical Modeling of Discontinua
– start-page: 619
  year: 2002
  end-page: 630
  ident: bib018
  article-title: Numerical modeling of the formation of large impact craters
  publication-title: Catastrophic Events and Mass Extinctions: Impacts and Beyond, Spec. Pap
– volume: 88
  start-page: 2485
  year: 1983
  end-page: 2499
  ident: bib017
  article-title: Crater ejecta scaling laws: Fundamental forms based on dimensional analysis
  publication-title: J. Geophys. Res.
– year: 2000
  ident: bib011
  article-title: Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials
– volume: 103
  start-page: 28607
  year: 1998
  end-page: 28625
  ident: bib031
  article-title: Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 333
  year: 1993
  end-page: 373
  ident: bib015
  article-title: The scaling of impact processes in planetary sciences
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 108
  year: 2003
  ident: bib024
  article-title: Numerical simulations of shock attenuation in solids and reevaluation of scaling law
  publication-title: J. Geophys. Res.
– start-page: 639
  year: 1977
  ident: 10.1016/j.icarus.2005.10.002_bib001
  article-title: Equations of state and impact-induced shock-wave attenuation on the Moon
– volume: 21
  start-page: 333
  year: 1993
  ident: 10.1016/j.icarus.2005.10.002_bib015
  article-title: The scaling of impact processes in planetary sciences
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.ea.21.050193.002001
– volume: 127
  start-page: 408
  year: 1997
  ident: 10.1016/j.icarus.2005.10.002_bib030
  article-title: A reevaluation of impact melt production
  publication-title: Icarus
  doi: 10.1006/icar.1997.5713
– volume: 29
  start-page: 47
  issue: 1
  year: 1979
  ident: 10.1016/j.icarus.2005.10.002_bib009
  article-title: A discrete numerical model for granular assemblies
  publication-title: Géotechnique
  doi: 10.1680/geot.1979.29.1.47
– volume: 92
  year: 2004
  ident: 10.1016/j.icarus.2005.10.002_bib028
  article-title: Dynamics of drag and force distributions for projectile impact in a granular medium
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.194301
– ident: 10.1016/j.icarus.2005.10.002_bib020
  doi: 10.2208/jscej1969.1983.333_137
– year: 2002
  ident: 10.1016/j.icarus.2005.10.002_bib008
– volume: 146
  start-page: 133
  year: 2000
  ident: 10.1016/j.icarus.2005.10.002_bib021
  article-title: Direct N-body simulations of rubble pile collisions
  publication-title: Icarus
  doi: 10.1006/icar.2000.6370
– volume: 370
  start-page: 120
  year: 1994
  ident: 10.1016/j.icarus.2005.10.002_bib004
  article-title: Density of Comet Shoemaker–Levy 9 deduced by modeling breakup of the ‘parent rubble pile.’
  publication-title: Nature
  doi: 10.1038/370120a0
– volume: 34
  start-page: 605
  year: 1999
  ident: 10.1016/j.icarus.2005.10.002_bib006
  article-title: Ejection-velocity distributions from impacts into coarse-grained sand
  publication-title: Meteorit. Planet. Sci.
  doi: 10.1111/j.1945-5100.1999.tb01367.x
– volume: 480
  start-page: 647
  year: 1997
  ident: 10.1016/j.icarus.2005.10.002_bib010
  article-title: The physics of dust coagulation and the structure of dust aggregates in space
  publication-title: Astrophys. J.
  doi: 10.1086/303996
– volume: 100
  start-page: 8267
  issue: B5
  year: 1995
  ident: 10.1016/j.icarus.2005.10.002_bib005
  article-title: Large-scale landslide simulations: Global deformation, velocities, and basal friction
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB00937
– volume: 158
  start-page: 87
  year: 2002
  ident: 10.1016/j.icarus.2005.10.002_bib037
  article-title: Measurement of impact ejecta from regolith targets in oblique impacts
  publication-title: Icarus
  doi: 10.1006/icar.2002.6862
– volume: 108
  issue: E8
  year: 2003
  ident: 10.1016/j.icarus.2005.10.002_bib002
  article-title: Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JE002075
– volume: 63
  start-page: 69
  year: 1985
  ident: 10.1016/j.icarus.2005.10.002_bib013
  article-title: Impact experiments. 1. Ejecta velocity distributions and related results from regolith targets
  publication-title: Icarus
  doi: 10.1016/0019-1035(85)90021-1
– volume: 104
  start-page: 27091
  issue: E11
  year: 1999
  ident: 10.1016/j.icarus.2005.10.002_bib027
  article-title: Complex craters: Relationship of stratigraphy and rings to impact conditions
  publication-title: J. Geophys. Res.
  doi: 10.1029/1998JE000596
– volume: 5
  start-page: 543
  year: 1987
  ident: 10.1016/j.icarus.2005.10.002_bib034
  article-title: Some recent advances in the scaling of impact and explosion cratering
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/0734-743X(87)90069-8
– ident: 10.1016/j.icarus.2005.10.002_bib003
– ident: 10.1016/j.icarus.2005.10.002_bib038
– year: 1970
  ident: 10.1016/j.icarus.2005.10.002_bib036
– start-page: 619
  year: 2002
  ident: 10.1016/j.icarus.2005.10.002_bib018
  article-title: Numerical modeling of the formation of large impact craters
– volume: 98
  start-page: 17011
  issue: E9
  year: 1993
  ident: 10.1016/j.icarus.2005.10.002_bib026
  article-title: Planetary cratering mechanics
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JE01330
– start-page: 3357
  year: 1977
  ident: 10.1016/j.icarus.2005.10.002_bib025
  article-title: Impact-induced energy partitioning, melting, and vaporization on terrestrial planets
  publication-title: Proc. Lunar Sci. Conf. 8
– start-page: 125
  year: 1996
  ident: 10.1016/j.icarus.2005.10.002_bib019
  article-title: Degassing of sedimentary rocks due to Chicxulub impact: Hydrocode and physical simulations
– volume: 157
  start-page: 24
  year: 2002
  ident: 10.1016/j.icarus.2005.10.002_bib007
  article-title: Hydrocode simulations of Chicxulub crater collapse and peak-ring formation
  publication-title: Icarus
  doi: 10.1006/icar.2002.6822
– year: 2005
  ident: 10.1016/j.icarus.2005.10.002_bib022
  article-title: Spreading of the Olympus Mons volcanic edifice, Mars
  publication-title: Lunar Planet. Sci. 36
– volume: 163
  start-page: 102
  year: 2003
  ident: 10.1016/j.icarus.2005.10.002_bib016
  article-title: Impact cratering on porous asteroids
  publication-title: Icarus
  doi: 10.1016/S0019-1035(03)00024-1
– year: 1989
  ident: 10.1016/j.icarus.2005.10.002_bib023
– start-page: 29
  year: 1998
  ident: 10.1016/j.icarus.2005.10.002_bib014
  article-title: Numerical simulation by particle element method
– volume: 80
  start-page: 4062
  year: 1975
  ident: 10.1016/j.icarus.2005.10.002_bib035
  article-title: Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB080i029p04062
– start-page: 2099
  year: 1980
  ident: 10.1016/j.icarus.2005.10.002_bib033
  article-title: Meteor crater: Energy of formation—Implications of centrifuge scaling
  publication-title: Proc. Lunar Sci. Conf. 11
– volume: 173
  start-page: 349
  year: 2005
  ident: 10.1016/j.icarus.2005.10.002_bib032
  article-title: Numerical experiments with rubble piles: Equilibrium shapes and spins
  publication-title: Icarus
  doi: 10.1016/j.icarus.2004.09.007
– volume: 11
  start-page: 2129
  year: 1980
  ident: 10.1016/j.icarus.2005.10.002_bib029
  article-title: Formation of bowl-shaped craters
  publication-title: Proc. Lunar Sci. Conf.
– volume: 103
  start-page: 28607
  issue: E12
  year: 1998
  ident: 10.1016/j.icarus.2005.10.002_bib031
  article-title: Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JE02496
– year: 2000
  ident: 10.1016/j.icarus.2005.10.002_bib011
– volume: 87
  start-page: 244301
  year: 2001
  ident: 10.1016/j.icarus.2005.10.002_bib012
  article-title: Effects on interparticle force on the packing of spherical granular material
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.244301
– volume: 88
  start-page: 2485
  year: 1983
  ident: 10.1016/j.icarus.2005.10.002_bib017
  article-title: Crater ejecta scaling laws: Fundamental forms based on dimensional analysis
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB088iB03p02485
– volume: 108
  issue: E1
  year: 2003
  ident: 10.1016/j.icarus.2005.10.002_bib024
  article-title: Numerical simulations of shock attenuation in solids and reevaluation of scaling law
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JE001472
SSID ssj0005893
Score 2.156813
Snippet A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 528
SubjectTerms Astronomy
Computer techniques
Cratering
Earth, ocean, space
Exact sciences and technology
Impact processes
Solar system
Title Numerical simulation of impact cratering on granular material
URI https://dx.doi.org/10.1016/j.icarus.2005.10.002
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2643
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005893
  issn: 0019-1035
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2643
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005893
  issn: 0019-1035
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-2643
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005893
  issn: 0019-1035
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2643
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005893
  issn: 0019-1035
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKuyAhxFMtj8oDYjNNHMdxBoaqoiogOlGpW-RXUFFfatqBhd-OHTtAB1SJLTrl4uhs3_nO390BcJMqZtwKQRFJZI5ILiXiWDEURVxwrnXAtI1DvgzpYESexvG4BnpVLoyFVXrd73R6qa09peOl2VlOJjbH1_ga9mIstkVVbH5vw9gfxuqg0X18Hgx_kB7M194NU2QZqgy6EuZlRLHaFC64UsK88F8W6mDJCyO33DW8-GWF-kfg0B8fYdf94TGo6fkJaHYLG9BezD7gLSyfXbyiOAX3w427kpnCYjLzrbrgIocuOxJKWynChvagIb-ZMS0qFc5KIp-egVH_4bU3QL5jAuJm762RDoRSLJVUUaxIgikW1usMWIpFglUc8UQY_yvPEy5FjIUw-5WbA4GQPCTSWPZzUJ8v5roJYKwJSXMc8kCQsqa8NNMXhlQxhQPBaQtElZQy6cuJ264W06zCjb1nTra202VsqUa2LYC-uZaunMaO95NqArKtZZEZjb-Ds701Xz_DJYQywqKLf3_6Euy7QIwFtVyB-nq10dfmaLIWbbB39xm2_QL8AlFT4-8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMoCEEE-1PIoHxGaaOE7iDAxVRVWg7dRK3SI_ElTUl5p2YOG344sToAOqxBad_Iju7LPv_N0dQneR5saskAFhoUoJS5UigmpOPE9IIZLE4Qn4IfuDoDtiL2N_XEHtMhYGYJWF7rc6PdfWBaVZcLO5nEwgxtfYGvAw5kNSFYjv3WM-DcECe_j8hfPgReZdNyLQvIyfy0FehhGrTWZdKznIi_51Ph0uRWa4ltpyF7_OoM4xOiouj7hl_-8EVZL5Kaq1MnBnL2Yf-B7n39ZbkZ2hx8HGPshMcTaZFYW68CLFNjYSK8gTAY49bMhvZk7ApOJZThTTczTqPA3bXVLUSyDC7Lw1SRypNY9UoAOqWUgDKsHmdHhEZUi174lQGusrTUOhpE-lNLtVmOuAVMJlypzrF6g6X8yTGsJ-wliUUlc4kuUZ5ZURnusGmmvqSBHUkVdyKVZFMnGoaTGNS9TYe2x5C3UufaAa3tYR-e61tMk0drQPSwHEW4siNvp-R8_Glrx-pgtZwBn3Lv899C3a7w77vbj3PHi9QgfWJQPwlmtUXa82yY25pKxlI1-EXzWB5Lc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+impact+cratering+on+granular+material&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=WADA%2C+Koji&rft.au=SENSHU%2C+Hiroki&rft.au=MATSUI%2C+Takafumi&rft.date=2006-02-01&rft.pub=Elsevier&rft.issn=0019-1035&rft.volume=180&rft.issue=2&rft.spage=528&rft.epage=545&rft_id=info:doi/10.1016%2Fj.icarus.2005.10.002&rft.externalDBID=n%2Fa&rft.externalDocID=17468483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon