Human-Robot Mutual Adaptation in Shared Autonomy

Shared autonomy integrates user input with robot autonomy in order to control a robot and help the user to complete a task. Our work aims to improve the performance of such a human-robot team: the robot tries to guide the human towards an effective strategy, sometimes against the human's own pr...

Full description

Saved in:
Bibliographic Details
Published in2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI Vol. 2017; pp. 294 - 302
Main Authors Nikolaidis, Stefanos, Zhu, Yu Xiang, Hsu, David, Srinivasa, Siddhartha
Format Conference Proceeding Journal Article
LanguageEnglish
Published New York, NY, USA ACM 01.03.2017
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN9781450343367
1450343368
ISSN2167-2148
DOI10.1145/2909824.3020252

Cover

Abstract Shared autonomy integrates user input with robot autonomy in order to control a robot and help the user to complete a task. Our work aims to improve the performance of such a human-robot team: the robot tries to guide the human towards an effective strategy, sometimes against the human's own preference, while still retaining his trust. We achieve this through a principled human-robot mutual adaptation formalism. We integrate a bounded-memory adaptation model of the human into a partially observable stochastic decision model, which enables the robot to adapt to an adaptable human. When the human is adaptable, the robot guides the human towards a good strategy, maybe unknown to the human in advance. When the human is stubborn and not adaptable, the robot complies with the human's preference in order to retain their trust. In the shared autonomy setting, unlike many other common human-robot collaboration settings, only the robot actions can change the physical state of the world, and the human and robot goals are not fully observable. We address these challenges and show in a human subject experiment that the proposed mutual adaptation formalism improves human-robot team performance, while retaining a high level of user trust in the robot, compared to the common approach of having the robot strictly following participants' preference.
AbstractList Shared autonomy integrates user input with robot autonomy in order to control a robot and help the user to complete a task. Our work aims to improve the performance of such a human-robot team: the robot tries to guide the human towards an effective strategy, sometimes against the human's own preference, while still retaining his trust. We achieve this through a principled human-robot mutual adaptation formalism. We integrate a bounded-memory adaptation model of the human into a partially observable stochastic decision model, which enables the robot to adapt to an adaptable human. When the human is adaptable, the robot guides the human towards a good strategy, maybe unknown to the human in advance. When the human is stubborn and not adaptable, the robot complies with the human's preference in order to retain their trust. In the shared autonomy setting, unlike many other common human-robot collaboration settings, only the robot actions can change the physical state of the world, and the human and robot goals are not fully observable. We address these challenges and show in a human subject experiment that the proposed mutual adaptation formalism improves human-robot team performance, while retaining a high level of user trust in the robot, compared to the common approach of having the robot strictly following participants' preference.
Author Srinivasa, Siddhartha
Nikolaidis, Stefanos
Zhu, Yu Xiang
Hsu, David
Author_xml – sequence: 1
  givenname: Stefanos
  surname: Nikolaidis
  fullname: Nikolaidis, Stefanos
  email: snikolai@cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Yu Xiang
  surname: Zhu
  fullname: Zhu, Yu Xiang
  email: yuxiangz@cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: David
  surname: Hsu
  fullname: Hsu, David
  email: dyhsu@comp.nus.edu.sg
  organization: National University of Singapore, Singapore, Singapore
– sequence: 4
  givenname: Siddhartha
  surname: Srinivasa
  fullname: Srinivasa, Siddhartha
  email: siddh@cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31198909$$D View this record in MEDLINE/PubMed
BookMark eNqNkLlPwzAUxs0lWkpnBiSUkSXF9nN8jFUFFKkIiWO27NgWgSaucgz97zFqYWBiesPvO56-M3TcxMYjdEHwjBBW3FCFlaRsBphiWtADNFVCJoCBAXBxiMaUcJFTwuTRHzZC0677wDj5QAogp2gEhCiZEscIL4faNPlztLHPHod-MOts7symN30Vm6xqspd303qXzYc-NrHenqOTYNadn-7vBL3d3b4ulvnq6f5hMV_lhlHW50EFThwvoVBGWGtlqvShkKVzymEhAWMuSgsslNwB5zJwzgHLAIHKogCYoKtd7mawtXd601a1abf65_UkuNwJKu_9L5YFMEl4orMdNWWtbYyfnSZYf0-p91Pq_ZTatpUPyXD9TwN8AVgXa4M
ContentType Conference Proceeding
Journal Article
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
NPM
DOI 10.1145/2909824.3020252
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) - IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450343367
1450343368
EISSN 2167-2148
EndPage 302
ExternalDocumentID 31198909
8534816
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
OCL
RIE
RIL
AAWTH
ADZIZ
CHZPO
NPM
ID FETCH-LOGICAL-a424t-f9f61d6c359a7bbb8311ef58cdd9d07830067cb34fc6d3668f666308f3f285533
IEDL.DBID RIE
ISBN 9781450343367
1450343368
IngestDate Wed Feb 19 02:35:16 EST 2025
Wed Aug 27 02:52:32 EDT 2025
Wed Jan 31 06:48:21 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords human-robot mutual adaptation
shared autonomy
planning under uncertainty
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName HRI '17: ACM/IEEE International Conference on Human-Robot Interaction
MergedId FETCHMERGED-LOGICAL-a424t-f9f61d6c359a7bbb8311ef58cdd9d07830067cb34fc6d3668f666308f3f285533
PMID 31198909
PageCount 9
ParticipantIDs acm_books_10_1145_2909824_3020252_brief
acm_books_10_1145_2909824_3020252
pubmed_primary_31198909
ieee_primary_8534816
PublicationCentury 2000
PublicationDate 20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170301
  day: 1
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
– name: United States
PublicationSeriesTitle ACM Conferences
PublicationTitle 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI
PublicationTitleAbbrev HRI
PublicationTitleAlternate Proc ACM SIGCHI
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002538731
ssj0003204102
Score 2.049878
Snippet Shared autonomy integrates user input with robot autonomy in order to control a robot and help the user to complete a task. Our work aims to improve the...
SourceID pubmed
ieee
acm
SourceType Index Database
Publisher
StartPage 294
SubjectTerms Adaptation models
Collaboration
Computer systems organization -- Embedded and cyber-physical systems -- Robotics -- Robotic autonomy
Computer systems organization -- Embedded and cyber-physical systems -- Robotics -- Robotic control
Computing methodologies -- Artificial intelligence -- Planning and scheduling -- Planning under uncertainty
Computing methodologies -- Artificial intelligence -- Planning and scheduling -- Robotic planning
History
Manipulators
Task analysis
Uncertainty
Title Human-Robot Mutual Adaptation in Shared Autonomy
URI https://ieeexplore.ieee.org/document/8534816
https://www.ncbi.nlm.nih.gov/pubmed/31198909
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHP6x7aQXH5tzPkYFwYvd2iRN0-MQxxA2hjjYreQJQ1zHbC_-9SZtnTIEvbW0KcnXlt_z-wJwq3mgDJfUD2NuAxShY5-HRtsoJRQUkZgH3OU7pjM6WZCnZbRswP2OC6O1LpvP9MAdlrV8lcnCpcqG1rQQFtImNGNGK67WLp-C7J8b1xUtd45RQELXvNOtBHGjIUqChCEywNZDQo5o1OTyrd5UZc-pLI3L-AimX9OqekpeB0UuBvJjT7Hxv_M-hs43jc-b7wzUCTT0-hQOfygQtiEok_j-cyay3JsWjkzijRTfVAV6b7X2nKKzVt6oyEv6QwcW48eXh4lfb6Lgc4JI7pvE0FBRiaOEx0IIhsNQm4hJpRLlanjOXkmBiZFUYUqZsQENDpjBBrHIOoNn0Fpna30OHsIRl0nCmSJ2PSYSRglqhxoUcCp43IMbi2jqooP3tCI8R2mNelqj3oO7P-9JxXalTQ_aDsl0U6lupDWIPehWb2p3wS4oYfYJF78PuIQD5Exx2Td2Ba18W-hr60jkog_N2XzaL7-jT3SswKg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAGP2o9aBe3GtdIwheTE1my-RYxFKXikgLvYVZQcS21OTir3cmiVVE0FtCMmHmJeFb3xuAMyMibYViYZwIF6BIk4QitsZFKbFkiCQiEj7fMXhg_RG5HdNxAy4WXBhjTNl8Zjr-sKzl66kqfKrs0pkWwmO2BMuUEEIrttYio4Lcv5vUNS1_jlFEYt--06okceklSqOUI9LBzkdCnmq0JNRrva3KD7eyNC-9dRh8TqzqKnnpFLnsqPcfmo3_nfkG7HwR-YLHhYnahIaZbMHaNw3CbYjKNH74NJXTPBgUnk4SdLWYVSX64HkSeE1no4NukZcEiB0Y9a6HV_2w3kYhFASRPLSpZbFmCtNUJFJKjuPYWMqV1qn2VTxvsZTExCqmMWPcupAGR9xiizh17uAuNCfTidmDAGEqVJoKrolbj6XSasncUIsiwaRI2nDqEM18fPCWVZRnmtWoZzXqbTj_855Mzp-NbcO2RzKbVbobWQ1iG1rVm1pccAtKuXvC_u8DTmClPxzcZ_c3D3cHsIq8YS67yA6hmc8Lc-Tcilwel1_TBzH0wuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+ACM%2FIEEE+International+Conference+on+Human-Robot+Interaction&rft.atitle=Human-Robot+Mutual+Adaptation+in+Shared+Autonomy&rft.au=Nikolaidis%2C+Stefanos&rft.au=Zhu%2C+Yu+Xiang&rft.au=Hsu%2C+David&rft.au=Srinivasa%2C+Siddhartha&rft.series=ACM+Conferences&rft.date=2017-03-01&rft.pub=ACM&rft.isbn=9781450343367&rft.spage=294&rft.epage=302&rft_id=info:doi/10.1145%2F2909824.3020252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343367/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343367/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343367/sc.gif&client=summon&freeimage=true