Forecasting Lakes' Chlorophyll Concentrations Using Satellite Images and Generative Adversarial Networks

Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, w...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 10
Main Authors Nagkoulis, Nikolaos, Vasiloudis, Giorgos, Moumtzidou, Anastasia, Gialampoukidis, Ilias, Vrochidis, Stefanos, Kompatsiaris, Ioannis
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.10.2024
Wiley
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
1944-7973
DOI10.1029/2024WR037138

Cover

Abstract Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α $\alpha $ (Chl‐α $\alpha $) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α $\alpha $ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α $\alpha $ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼ ${\sim} $1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α $\alpha $ maps to future Chl‐α $\alpha $ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α $\alpha $ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Key Points Use of Sentinel 2 data for creating inland water bodies' Chlorophyll‐α $\alpha $ time‐series Generative Adversarial Networks are trained to recognize Chlorophyll‐α $\alpha $ spatio‐temporal patterns A continental‐scale model is created for Chlorophyll‐α $\alpha $ short term predictions
AbstractList Abstract Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α (Chl‐α) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α maps to future Chl‐α maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body.
Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α $\alpha $ (Chl‐α $\alpha $) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α $\alpha $ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α $\alpha $ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼ ${\sim} $1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α $\alpha $ maps to future Chl‐α $\alpha $ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α $\alpha $ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body.
Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐ (Chl‐) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐ maps to future Chl‐ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Use of Sentinel 2 data for creating inland water bodies' Chlorophyll‐ time‐series Generative Adversarial Networks are trained to recognize Chlorophyll‐ spatio‐temporal patterns A continental‐scale model is created for Chlorophyll‐ short term predictions
Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α $\alpha $ (Chl‐α $\alpha $) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α $\alpha $ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α $\alpha $ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼ ${\sim} $1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α $\alpha $ maps to future Chl‐α $\alpha $ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α $\alpha $ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Key Points Use of Sentinel 2 data for creating inland water bodies' Chlorophyll‐α $\alpha $ time‐series Generative Adversarial Networks are trained to recognize Chlorophyll‐α $\alpha $ spatio‐temporal patterns A continental‐scale model is created for Chlorophyll‐α $\alpha $ short term predictions
Author Nagkoulis, Nikolaos
Vrochidis, Stefanos
Vasiloudis, Giorgos
Moumtzidou, Anastasia
Gialampoukidis, Ilias
Kompatsiaris, Ioannis
Author_xml – sequence: 1
  givenname: Nikolaos
  orcidid: 0000-0002-1900-2634
  surname: Nagkoulis
  fullname: Nagkoulis, Nikolaos
  organization: Information Technologies Institute (ITI)
– sequence: 2
  givenname: Giorgos
  orcidid: 0000-0002-1467-5311
  surname: Vasiloudis
  fullname: Vasiloudis, Giorgos
  organization: Information Technologies Institute (ITI)
– sequence: 3
  givenname: Anastasia
  orcidid: 0000-0001-7615-8400
  surname: Moumtzidou
  fullname: Moumtzidou, Anastasia
  email: moumtzid@iti.gr
  organization: Information Technologies Institute (ITI)
– sequence: 4
  givenname: Ilias
  orcidid: 0000-0002-5234-9795
  surname: Gialampoukidis
  fullname: Gialampoukidis, Ilias
  organization: Information Technologies Institute (ITI)
– sequence: 5
  givenname: Stefanos
  orcidid: 0000-0002-2505-9178
  surname: Vrochidis
  fullname: Vrochidis, Stefanos
  organization: Information Technologies Institute (ITI)
– sequence: 6
  givenname: Ioannis
  orcidid: 0000-0001-6447-9020
  surname: Kompatsiaris
  fullname: Kompatsiaris, Ioannis
  organization: Information Technologies Institute (ITI)
BookMark eNp90s9r2zAUB3AxWlja7bY_wLDDdpg3_bIlH4tpu0BoIVvpUTxbz4lTRcokpyH__Zx522GMnh6ID1_B970LcuaDR0LeMfqZUV594ZTLxyUVign9isxYJWWuKiXOyIxSKXImKvWaXKS0oZTJolQzsr4JEVtIQ-9X2QKeMH3I6rULMezWR-eyOvgW_RBh6INP2UM6uW8woHP9gNl8CytMGXib3aLHE3vG7Mo-Y0wQe3DZHQ6HEJ_SG3LegUv49ve8JA8319_rr_ni_nZeXy1ykFyWecE1A1kqsE3RWbS2Y9QKaHWjmqKRwgolRWcb4KWyUpZYUISm1MzqthIlFZdkPuXaABuzi_0W4tEE6M2vhxBXBuLQtw6N0FgVFdUtoJIgtZbK0pLZgkvdUgpjVj5l7f0Ojgdw7m8go-ZUuTlVfohT5aP_OPldDD_2mAaz7VM7VgUewz4ZwQqhZVExMdL3_9BN2Ec_NjMqzqRipeaj-jSpNoaUInb__f_PykcuJn7oHR5ftOZxWS-5Go9A_ARP7q1E
Cites_doi 10.1016/j.cageo.2020.104473
10.1063/5.0051213
10.1029/2017wr022437
10.1109/lgrs.2020.3023137
10.1016/j.hal.2009.02.004
10.1029/2023wr036342
10.1109/lgrs.2021.3095731
10.1038/srep15159
10.3390/ijerph15071322
10.1016/j.ese.2022.100231
10.1016/j.rse.2019.111604
10.1080/22797254.2021.2010605
10.1016/j.ecolind.2021.107416
10.1016/j.isprsjprs.2014.06.011
10.1016/j.ecoinf.2020.101131
10.1109/tgrs.2021.3131035
10.1515/jwld‐2017‐0065
10.5194/bg‐18‐6213‐2021
10.1016/j.jag.2021.102547
10.1016/j.hal.2022.102268
10.1109/lgrs.2020.3023170
10.1029/2019wr024883
10.1145/3422622
10.3389/frwa.2022.784441
10.1007/bf02804901
10.1109/CVPR.2017.632
10.1007/s42452‐024‐05787‐4
10.1029/2006jc004061
10.2166/wpt.2022.046
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1029/2024WR037138
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_38e95908cae74a48847d061d5248c00a
10.1029/2024wr037138
10_1029_2024WR037138
WRCR27456
Genre researchArticle
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GrantInformation_xml – fundername: HORIZON EUROPE Climate, Energy and Mobility
  funderid: 101118286
– fundername: Horizon 2020 Framework Programme
  funderid: 883484
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
PUEGO
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-a4246-5281a467adb5fdeddf10d3ac8b7b5b43d3743fdba267d446e50eab681d8c93603
IEDL.DBID DOA
ISSN 0043-1397
1944-7973
IngestDate Tue Oct 14 18:18:53 EDT 2025
Sun Oct 26 04:38:01 EDT 2025
Fri Sep 05 12:16:26 EDT 2025
Wed Aug 13 07:33:05 EDT 2025
Wed Oct 01 06:42:48 EDT 2025
Wed Jan 22 17:13:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4246-5281a467adb5fdeddf10d3ac8b7b5b43d3743fdba267d446e50eab681d8c93603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1467-5311
0000-0002-2505-9178
0000-0002-5234-9795
0000-0001-6447-9020
0000-0001-7615-8400
0000-0002-1900-2634
OpenAccessLink https://doaj.org/article/38e95908cae74a48847d061d5248c00a
PQID 3121471682
PQPubID 105507
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_38e95908cae74a48847d061d5248c00a
unpaywall_primary_10_1029_2024wr037138
proquest_miscellaneous_3153845913
proquest_journals_3121471682
crossref_primary_10_1029_2024WR037138
wiley_primary_10_1029_2024WR037138_WRCR27456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 14
2015; 5
2021; 124
2020; 240
2020; 63
2021; 104
2019; 55
2024; 60
2016; 740
2020; 59
2024
2022; 117
2020; 19
1999
2002; 25
2007; 112
2021; 33
2024; 6
2022; 4
2021; 18
2017; 35
2021; 19
2020; 139
2018
2009; 8
2017
2022; 55
2014; 96
2021; 60
2018; 54
2022; 17
2018; 15
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Brockmann C. (e_1_2_8_5_1) 2016
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Romas E. (e_1_2_8_30_1) 2018
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
Falconer I. (e_1_2_8_11_1) 1999
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – start-page: 155
  year: 1999
  end-page: 178
  article-title: Safe levels and safe practices
  publication-title: Toxic Cyanobacteria in Water
– volume: 124
  year: 2021
  article-title: Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences
  publication-title: Ecological Indicators
– volume: 4
  year: 2022
  article-title: Realistic river image synthesis using deep generative adversarial networks
  publication-title: Frontiers in Water
– volume: 5
  issue: 1
  year: 2015
  article-title: Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces
  publication-title: Scientific Reports
– volume: 96
  start-page: 224
  year: 2014
  end-page: 235
  article-title: An effective thin cloud removal procedure for visible remote sensing images
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 25
  start-page: 704
  issue: 4
  year: 2002
  end-page: 726
  article-title: Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences
  publication-title: Estuaries
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– year: 2024
– volume: 35
  start-page: 27
  issue: 1
  year: 2017
  end-page: 40
  article-title: Spatio‐temporal changes in water quality in an eutrophic lake with artificial aeration
  publication-title: Journal of Water and Land Development
– volume: 55
  start-page: 10
  issue: 1
  year: 2022
  end-page: 22
  article-title: Self‐attention and generative adversarial networks for algae monitoring
  publication-title: European Journal of Remote Sensing
– start-page: 7090
  year: 2018
– volume: 112
  issue: C8
  year: 2007
  article-title: Wind speed influence on phytoplankton bloom dynamics in the southern ocean marginal ice zone
  publication-title: Journal of Geophysical Research
– volume: 33
  issue: 5
  year: 2021
  article-title: A real‐time flow forecasting with deep convolutional generative adversarial network: Application to flooding event in Denmark
  publication-title: Physics of Fluids
– volume: 60
  start-page: 1
  year: 2021
  end-page: 9
  article-title: Cloud removal in remote sensing images using generative adversarial networks and SAR‐to‐optical image translation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 14
  year: 2023
  article-title: Generative adversarial networks for detecting contamination events in water distribution systems using multi‐parameter, multi‐site water quality monitoring
  publication-title: Environmental Science and Ecotechnology
– volume: 240
  year: 2020
  article-title: Seamless retrievals of chlorophyll‐a from Sentinel‐2 (MSI) and Sentinel‐3 (OLCI) in inland and coastal waters: A machine‐learning approach
  publication-title: Remote Sensing of Environment
– volume: 740
  start-page: 54
  year: 2016
– volume: 117
  year: 2022
  article-title: Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts
  publication-title: Harmful Algae
– volume: 139
  year: 2020
  article-title: “sen2r”: An R toolbox for automatically downloading and preprocessing Sentinel‐2 satellite data
  publication-title: Computers & Geosciences
– volume: 104
  year: 2021
  article-title: Analysis of recurring patchiness in satellite‐derived chlorophyll a to aid the selection of representative sites for lake water quality monitoring
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 59
  year: 2020
  article-title: A novel method based on time series satellite data analysis to detect algal blooms
  publication-title: Ecological Informatics
– volume: 55
  start-page: 10012
  issue: 11
  year: 2019
  end-page: 10025
  article-title: AquaSat: A data set to enable remote sensing of water quality for inland waters
  publication-title: Water Resources Research
– volume: 17
  start-page: 1230
  issue: 5
  year: 2022
  end-page: 1252
  article-title: Forecasting water quality using seasonal ARIMA model by integrating in‐situ measurements and remote sensing techniques in Krishnagiri reservoir, India
  publication-title: Water Practice and Technology
– volume: 8
  start-page: 715
  issue: 5
  year: 2009
  end-page: 725
  article-title: The effects of temperature and nutrients on the growth and dynamics of toxic and non‐toxic strains of microcystis during cyanobacteria blooms
  publication-title: Harmful Algae
– volume: 54
  start-page: 9724
  issue: 12
  year: 2018
  end-page: 9758
  article-title: Satellite remote sensing for water resources management: Potential for supporting sustainable development in data‐poor regions
  publication-title: Water Resources Research
– volume: 19
  start-page: 1
  year: 2020
  end-page: 4
  article-title: Synthesis of satellite‐like urban images from historical maps using conditional GAN
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 19
  start-page: 1
  year: 2020
  end-page: 5
  article-title: Cropland change detection with harmonic function and generative adversarial network
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 60
  issue: 3
  year: 2024
  article-title: Spatiotemporal data augmentation of MODIS‐landsat water bodies using adversarial networks
  publication-title: Water Resources Research
– volume: 18
  start-page: 6213
  issue: 23
  year: 2021
  end-page: 6227
  article-title: Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Proper
  publication-title: Biogeosciences
– volume: 6
  issue: 3
  year: 2024
  article-title: Water depth prediction in combined sewer networks, application of generative adversarial networks
  publication-title: Discover Applied Sciences
– start-page: 1125
  year: 2017
  end-page: 1134
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  article-title: A correlation context‐driven method for sea fog detection in meteorological satellite imagery
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 15
  issue: 7
  year: 2018
  article-title: Improved prediction of harmful algal blooms in four major South Korea’s rivers using deep learning models
  publication-title: International Journal of Environmental Research and Public Health
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cageo.2020.104473
– ident: e_1_2_8_7_1
  doi: 10.1063/5.0051213
– ident: e_1_2_8_32_1
  doi: 10.1029/2017wr022437
– ident: e_1_2_8_6_1
  doi: 10.1109/lgrs.2020.3023137
– ident: e_1_2_8_10_1
  doi: 10.1016/j.hal.2009.02.004
– start-page: 54
  volume-title: Living planet symposium
  year: 2016
  ident: e_1_2_8_5_1
– ident: e_1_2_8_13_1
  doi: 10.1029/2023wr036342
– ident: e_1_2_8_19_1
  doi: 10.1109/lgrs.2021.3095731
– ident: e_1_2_8_34_1
  doi: 10.1038/srep15159
– ident: e_1_2_8_23_1
  doi: 10.3390/ijerph15071322
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ese.2022.100231
– ident: e_1_2_8_27_1
  doi: 10.1016/j.rse.2019.111604
– ident: e_1_2_8_20_1
  doi: 10.1080/22797254.2021.2010605
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ecolind.2021.107416
– start-page: 7090
  volume-title: EGU general assembly conference abstracts
  year: 2018
  ident: e_1_2_8_30_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.isprsjprs.2014.06.011
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ecoinf.2020.101131
– ident: e_1_2_8_9_1
  doi: 10.1109/tgrs.2021.3131035
– ident: e_1_2_8_12_1
  doi: 10.1515/jwld‐2017‐0065
– ident: e_1_2_8_18_1
  doi: 10.5194/bg‐18‐6213‐2021
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jag.2021.102547
– start-page: 155
  year: 1999
  ident: e_1_2_8_11_1
  article-title: Safe levels and safe practices
  publication-title: Toxic Cyanobacteria in Water
– ident: e_1_2_8_28_1
  doi: 10.1016/j.hal.2022.102268
– ident: e_1_2_8_4_1
  doi: 10.1109/lgrs.2020.3023170
– ident: e_1_2_8_8_1
– ident: e_1_2_8_31_1
  doi: 10.1029/2019wr024883
– ident: e_1_2_8_17_1
  doi: 10.1145/3422622
– ident: e_1_2_8_15_1
  doi: 10.3389/frwa.2022.784441
– ident: e_1_2_8_3_1
  doi: 10.1007/bf02804901
– ident: e_1_2_8_21_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_8_22_1
  doi: 10.1007/s42452‐024‐05787‐4
– ident: e_1_2_8_14_1
  doi: 10.1029/2006jc004061
– ident: e_1_2_8_2_1
  doi: 10.2166/wpt.2022.046
SSID ssj0014567
Score 2.466317
Snippet Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past...
Abstract Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling....
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Atmospheric correction
C2RCC
Chlorophyll
Chlorophylls
chlorophyll‐a
Computing costs
data collection
Data sampling
Datasets
Europe
forecasting
generative
Generative adversarial networks
Image quality
Lakes
Natural phenomena
Pattern recognition
remote sensing
Satellite data
Satellite imagery
satellites
Sentinel‐2
surface water
Training
Water bodies
Water monitoring
Water quality
Water quality management
Water quality monitoring
Water resources
Water resources management
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7mFPML5E0IaMNOCFTElsx_HjqDYNBBUqVBtP0Tm2VWklnZZW0_jrOeejUicEvEWxHdm-s_273Pl3AEdO-sQZUcVSKR-L1Ou44ChjZZ33Smvlbfjf8WWSn8_Ep0t5uQNHw12YLf99poNtLm5vAq8cLx7Abi4JcY9gdzb5evJjcB4HENM6j4WIlVa8j2-_33zr5GkJ-rdQ5d66vsa7W1wstnFqe9CcPYLToYtdfMnV8Xpljqtf99gb_zWGfXjYI0120qnGY9hx9RPYGy4iN_TcJ0Cf3z2FeUjRWWETgqDZZ7xyzTs2npMtv6TixYKNw-3GuqfYbVgbaMC-YUvnuXLs40_alhqGtWUdj3XYRFmb7LnBoOJs0oWbN89gdnb6fXwe90kYYhSZyMlQLVKk3RStkd46a32aWI5VYZSRRnDLCYN4azDLlSXb0snEockJBheV5nnCn8OoXtbuBTCUlUNFFnHgL821MDzRmFFbJa1zWkfwZhBQed1xbZStjzzTZZjDi2k3hxF8CNLb1AkM2e0LmvSyX3AlL5wO-dwrdEogbVNCWcIuVmaiqJIEIzgYZF_2y7YpeRrSNqV5kUXwelNMCy54UbB2y3WoQ2eEkDrlEbzd6MwfOzwIPYL3rUL9dVTlxXQ8zRQB2pf_-90DGK1u1u6QYNHKvOpXxW-8cAWH
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96Ppwvh59Y75QIfrxYbJukaR518ThFD1k97t7KpEldcO0em12O---dST-4BRF8K00CbSYz-U1m8hvGXnrVZt7KJlVat6nMW5NWAlSqnW9bbYxuHZ13fD0tT87k5wt1MRy40V2Ynh9iOnAjzYj2mhQcbBjIBogjE712eT4nxjlR3WZ3coQytMIL-W2KIiA40GOEmZDOkPiO49_dHL2zJUXm_h24ub_tLuH6CpbLXQAbd6Dje-xggI78fS_r--yW7x6w_fFmccDnoaL54vohW1DNzQYCZTXzL_DLhzd8tkDnfIXNyyWf0XXFbuDMDTxmDvDvEPk5N55_-o12JnDoHO-Jqckq8li9OQCtWX7a54-HR-zs-OOP2Uk6VFVIQRayRM-zygHNIzirWueda_PMCWgqq62yUjiBoKJ1FopSO3QWvco82BJxbdUYUWbiMdvrVp1_wjioxoNGF5cISUsjrcgMFDhWK-e9MQl7NU5sfdmTZ9Qx6F2Y-qYAEvaBZn3qQ5TX8cVq_bMeNKgWlTdUoL0BryWg3ZHaIRhxqpBVk2WQsKNRZvWgh6EWOdVhysuqSNiLqRk1iMIi0PnVlvqg0ZfK5CJhrydZ__WDr9bjB7-NC-Gff1Wfz2dzdPpV-fT_uh-yu9TQpwwesb3NeuufIfTZ2Odxff8BlVL6EQ
  priority: 102
  providerName: Wiley-Blackwell
Title Forecasting Lakes' Chlorophyll Concentrations Using Satellite Images and Generative Adversarial Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037138
https://www.proquest.com/docview/3121471682
https://www.proquest.com/docview/3153845913
https://doi.org/10.1029/2024wr037138
https://doaj.org/article/38e95908cae74a48847d061d5248c00a
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtekgvpU_qNllU6ONSU9uSLOuYLglpaZew7ZL0ZMaWxEK33hDvEvLvMyPbywZCesnNWLLRYzT6RjP6hrH3TvnEVbKOldY-lqk3cSFAxdo677Ux2ls67_g5yY9n8vuZOttK9UUxYR09cDdwX0ThDOXlrsFpCShuUlvcg6zKZFEnSYBGSWEGY6r3HyAs0INvmTBOH_KeZIasfXk6JaY6upOytRkFzv4bQHN33ZzD1SUsFjeha9h7jp6yJz1o5AddY5-xB655znaHO8UtPve5zOdXL9icsm3W0FI8M_8Bf137iY_naJYvsXix4GO6qNj0bLktDzED_BcEZs6V49_-oYZpOTSWd5TUpA95yNvcAkkrn3SR4-1LNjs6_D0-jvt8CjHITOZocxYpoGIEWylvnbU-TayAuqh0pSoprEA44W0FWa4tmolOJQ6qHBFtURuRJ-IV22mWjXvNOKjagUbjlqhIcyMrkRjI8FutrHPGROzDMLDleUebUQZ3d2bK7QmI2Fca9U0dIrsOL1AEyl4Eyv-JQMT2hjkr-xXYliKlDExpXmQRe7cpxrVDDhFo3HJNdVDdS2VSEbGPm7m-tcGXF0ODPwdBuLNX5el0PEVzX-Vv7qN_b9lj-nsXQrjHdlYXa7ePUGhVjdjDTJ6MguyP2KPZ5OTgzzVhTwNp
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgPJQXxKcIDDASHy9EJPFX_AgVUwddhcqm7S26xA6VKOnUtJr233PnJNUqISTeouQsObbv_Dvf-XeMvfGqTnwpq1gZU8cyrW2cC1Cxcb6ujbWmdnTecTLTkzP59UJd9HVO6S5Mxw-xO3AjzQj2mhScDqR7tgEiyUS3XZ7PiXJO5LfZHalTTd5XJr_vwgiIDswQYiao02e-Y_uPN1vv7UmBun8Pb462zSVcX8FyuY9gwxZ0dJ_d67Ej_9RN9gN2yzcP2Wi4Wtzic1_SfHH9iC2o6GYFLaU18yn88u17Pl6gd77Cz8slH9N9xaYnzW15SB3gPyAQdG48P_6Nhqbl0DjeMVOTWeShfHMLtGj5rEsgbx-zs6Mvp-NJ3JdViEFmUqPrmaeA9hFcqWrnnavTxAmo8tKUqpTCCUQVtSsh08aht-hV4qHUCGzzygqdiCfsoFk1_injoCoPBn1cYiTVVpYisZBhW6Oc99ZG7O0wsMVlx55RhKh3ZoubExCxzzTqOxnivA4vVuufRa9Chci9pQrtFXgjAQ2PNA7RiFOZzKskgYgdDnNW9IrYFiKlQkypzrOIvd59RhWiuAg0frUlGbT6UtlUROzdbq7_2uGr9dDhD2Eh_POvivP5eI5ev9LP_k_8FRtNTk-mxfR49u05u0tCXf7gITvYrLf-BeKgTfkyrPU_HPz9fQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIwXxKcIDDASHy9ES2I7jh-hUG0wqqkwbW_RJbapREmrptW0_547J41WCSHxFiW25Ph859_5zr9j7LVTPnGVrGOltY9l6k1cCFCxts57bYz2ls47vk3yozP55UJd9HVO6S5Mxw8xHLiRZgR7TQrultb3bANEkoluuzyfEuWcKG6yW1LhZkjUzvJ0CCMgOtDbEDNBnT7zHfsfXu-9sycF6v4dvLm_aZZwdQnz-S6CDVvQ-B6722NH_qET9n12wzUP2P72anGLz31J89nVQzajops1tJTWzE_gl2vf8dEMvfMFfp7P-YjuKzY9aW7LQ-oA_w6BoHPt-PFvNDQth8byjpmazCIP5ZtboEXLJ10CefuInY0__xgdxX1ZhRhkJnN0PYsU0D6CrZS3zlqfJlZAXVS6UpUUVuBEeltBlmuL3qJTiYMqR2Bb1EbkiXjM9ppF454wDqp2oNHHJUbS3MhKJAYy7KuVdc6YiL3ZTmy57NgzyhD1zkx5XQAR-0izPrQhzuvwYrH6WfYqVIrCGarQXoPTEtDwSG0RjViVyaJOEojYwVZmZa-IbSlSKsSU5kUWsVfDZ1QhiotA4xYbaoNWXyqTioi9HWT91wFfrrYDfh8Wwj__qjyfjqbo9av86f81f8lun34alyfHk6_P2B1q06UPHrC99WrjniMMWlcvwlL_A9lm_Qw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7mFPML5E0IaMNOCFTElsx_HjqDYNBBUqVBtP0Tm2VWklnZZW0_jrOeejUicEvEWxHdm-s_273Pl3AEdO-sQZUcVSKR-L1Ou44ChjZZ33Smvlbfjf8WWSn8_Ep0t5uQNHw12YLf99poNtLm5vAq8cLx7Abi4JcY9gdzb5evJjcB4HENM6j4WIlVa8j2-_33zr5GkJ-rdQ5d66vsa7W1wstnFqe9CcPYLToYtdfMnV8Xpljqtf99gb_zWGfXjYI0120qnGY9hx9RPYGy4iN_TcJ0Cf3z2FeUjRWWETgqDZZ7xyzTs2npMtv6TixYKNw-3GuqfYbVgbaMC-YUvnuXLs40_alhqGtWUdj3XYRFmb7LnBoOJs0oWbN89gdnb6fXwe90kYYhSZyMlQLVKk3RStkd46a32aWI5VYZSRRnDLCYN4azDLlSXb0snEockJBheV5nnCn8OoXtbuBTCUlUNFFnHgL821MDzRmFFbJa1zWkfwZhBQed1xbZStjzzTZZjDi2k3hxF8CNLb1AkM2e0LmvSyX3AlL5wO-dwrdEogbVNCWcIuVmaiqJIEIzgYZF_2y7YpeRrSNqV5kUXwelNMCy54UbB2y3WoQ2eEkDrlEbzd6MwfOzwIPYL3rUL9dVTlxXQ8zRQB2pf_-90DGK1u1u6QYNHKvOpXxW-8cAWH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Lakes%27+Chlorophyll+Concentrations+Using+Satellite+Images+and+Generative+Adversarial+Networks&rft.jtitle=Water+resources+research&rft.au=Nagkoulis%2C+Nikolaos&rft.au=Vasiloudis%2C+Giorgos&rft.au=Moumtzidou%2C+Anastasia&rft.au=Gialampoukidis%2C+Ilias&rft.date=2024-10-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=10&rft_id=info:doi/10.1029%2F2024WR037138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024WR037138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon