Forecasting Lakes' Chlorophyll Concentrations Using Satellite Images and Generative Adversarial Networks
Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, w...
Saved in:
| Published in | Water resources research Vol. 60; no. 10 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
John Wiley & Sons, Inc
01.10.2024
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0043-1397 1944-7973 1944-7973 |
| DOI | 10.1029/2024WR037138 |
Cover
| Abstract | Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α $\alpha $ (Chl‐α $\alpha $) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α $\alpha $ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α $\alpha $ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼ ${\sim} $1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α $\alpha $ maps to future Chl‐α $\alpha $ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α $\alpha $ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body.
Key Points
Use of Sentinel 2 data for creating inland water bodies' Chlorophyll‐α $\alpha $ time‐series
Generative Adversarial Networks are trained to recognize Chlorophyll‐α $\alpha $ spatio‐temporal patterns
A continental‐scale model is created for Chlorophyll‐α $\alpha $ short term predictions |
|---|---|
| AbstractList | Abstract Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α (Chl‐α) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α maps to future Chl‐α maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α $\alpha $ (Chl‐α $\alpha $) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α $\alpha $ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α $\alpha $ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼ ${\sim} $1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α $\alpha $ maps to future Chl‐α $\alpha $ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α $\alpha $ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐ (Chl‐) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐ maps to future Chl‐ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Use of Sentinel 2 data for creating inland water bodies' Chlorophyll‐ time‐series Generative Adversarial Networks are trained to recognize Chlorophyll‐ spatio‐temporal patterns A continental‐scale model is created for Chlorophyll‐ short term predictions Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past measurements to predict future conditions remains a challenging task, because of the complexity of the natural phenomena that are involved, with great potential in terms of water resources management. This paper proposes a model that can be used to forecast Chlorophyll‐α $\alpha $ (Chl‐α $\alpha $) values in water bodies, which are a common water quality indicator. The operation of the model lays on the fact that typically Chl‐α $\alpha $ increases and decreases periodically. First, we apply C2RCC, which is a common atmospheric correction algorithm, to Sentinel‐2 images to get Chl‐α $\alpha $ maps for 15 lakes for 12 consecutive months around Europe. Then, we use this data set (∼ ${\sim} $1,000 Sentinel‐2 images) to train a Generative Adversarial Network (GAN) to recognize spatiotemporal patterns. To accomplish this task, pix2pix algorithm is employed, matching consecutive past and current Chl‐α $\alpha $ maps to future Chl‐α $\alpha $ maps. This model has been applied to 3 water bodies around Europe that are not included in the 15‐lakes training data set and has been found to perform accurately, achieving high Pearson and Spearman correlations and low RMSE values. Overall, the model can be used to make Chl‐α $\alpha $ maps' predictions with low computational cost and without using any in situ data and without the requirement of training for every water body. Key Points Use of Sentinel 2 data for creating inland water bodies' Chlorophyll‐α $\alpha $ time‐series Generative Adversarial Networks are trained to recognize Chlorophyll‐α $\alpha $ spatio‐temporal patterns A continental‐scale model is created for Chlorophyll‐α $\alpha $ short term predictions |
| Author | Nagkoulis, Nikolaos Vrochidis, Stefanos Vasiloudis, Giorgos Moumtzidou, Anastasia Gialampoukidis, Ilias Kompatsiaris, Ioannis |
| Author_xml | – sequence: 1 givenname: Nikolaos orcidid: 0000-0002-1900-2634 surname: Nagkoulis fullname: Nagkoulis, Nikolaos organization: Information Technologies Institute (ITI) – sequence: 2 givenname: Giorgos orcidid: 0000-0002-1467-5311 surname: Vasiloudis fullname: Vasiloudis, Giorgos organization: Information Technologies Institute (ITI) – sequence: 3 givenname: Anastasia orcidid: 0000-0001-7615-8400 surname: Moumtzidou fullname: Moumtzidou, Anastasia email: moumtzid@iti.gr organization: Information Technologies Institute (ITI) – sequence: 4 givenname: Ilias orcidid: 0000-0002-5234-9795 surname: Gialampoukidis fullname: Gialampoukidis, Ilias organization: Information Technologies Institute (ITI) – sequence: 5 givenname: Stefanos orcidid: 0000-0002-2505-9178 surname: Vrochidis fullname: Vrochidis, Stefanos organization: Information Technologies Institute (ITI) – sequence: 6 givenname: Ioannis orcidid: 0000-0001-6447-9020 surname: Kompatsiaris fullname: Kompatsiaris, Ioannis organization: Information Technologies Institute (ITI) |
| BookMark | eNp90s9r2zAUB3AxWlja7bY_wLDDdpg3_bIlH4tpu0BoIVvpUTxbz4lTRcokpyH__Zx522GMnh6ID1_B970LcuaDR0LeMfqZUV594ZTLxyUVign9isxYJWWuKiXOyIxSKXImKvWaXKS0oZTJolQzsr4JEVtIQ-9X2QKeMH3I6rULMezWR-eyOvgW_RBh6INP2UM6uW8woHP9gNl8CytMGXib3aLHE3vG7Mo-Y0wQe3DZHQ6HEJ_SG3LegUv49ve8JA8319_rr_ni_nZeXy1ykFyWecE1A1kqsE3RWbS2Y9QKaHWjmqKRwgolRWcb4KWyUpZYUISm1MzqthIlFZdkPuXaABuzi_0W4tEE6M2vhxBXBuLQtw6N0FgVFdUtoJIgtZbK0pLZgkvdUgpjVj5l7f0Ojgdw7m8go-ZUuTlVfohT5aP_OPldDD_2mAaz7VM7VgUewz4ZwQqhZVExMdL3_9BN2Ec_NjMqzqRipeaj-jSpNoaUInb__f_PykcuJn7oHR5ftOZxWS-5Go9A_ARP7q1E |
| Cites_doi | 10.1016/j.cageo.2020.104473 10.1063/5.0051213 10.1029/2017wr022437 10.1109/lgrs.2020.3023137 10.1016/j.hal.2009.02.004 10.1029/2023wr036342 10.1109/lgrs.2021.3095731 10.1038/srep15159 10.3390/ijerph15071322 10.1016/j.ese.2022.100231 10.1016/j.rse.2019.111604 10.1080/22797254.2021.2010605 10.1016/j.ecolind.2021.107416 10.1016/j.isprsjprs.2014.06.011 10.1016/j.ecoinf.2020.101131 10.1109/tgrs.2021.3131035 10.1515/jwld‐2017‐0065 10.5194/bg‐18‐6213‐2021 10.1016/j.jag.2021.102547 10.1016/j.hal.2022.102268 10.1109/lgrs.2020.3023170 10.1029/2019wr024883 10.1145/3422622 10.3389/frwa.2022.784441 10.1007/bf02804901 10.1109/CVPR.2017.632 10.1007/s42452‐024‐05787‐4 10.1029/2006jc004061 10.2166/wpt.2022.046 |
| ContentType | Journal Article |
| Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1029/2024WR037138 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_38e95908cae74a48847d061d5248c00a 10.1029/2024wr037138 10_1029_2024WR037138 WRCR27456 |
| Genre | researchArticle |
| GeographicLocations | Europe |
| GeographicLocations_xml | – name: Europe |
| GrantInformation_xml | – fundername: HORIZON EUROPE Climate, Energy and Mobility funderid: 101118286 – fundername: Horizon 2020 Framework Programme funderid: 883484 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB PUEGO WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-a4246-5281a467adb5fdeddf10d3ac8b7b5b43d3743fdba267d446e50eab681d8c93603 |
| IEDL.DBID | DOA |
| ISSN | 0043-1397 1944-7973 |
| IngestDate | Tue Oct 14 18:18:53 EDT 2025 Sun Oct 26 04:38:01 EDT 2025 Fri Sep 05 12:16:26 EDT 2025 Wed Aug 13 07:33:05 EDT 2025 Wed Oct 01 06:42:48 EDT 2025 Wed Jan 22 17:13:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4246-5281a467adb5fdeddf10d3ac8b7b5b43d3743fdba267d446e50eab681d8c93603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1467-5311 0000-0002-2505-9178 0000-0002-5234-9795 0000-0001-6447-9020 0000-0001-7615-8400 0000-0002-1900-2634 |
| OpenAccessLink | https://doaj.org/article/38e95908cae74a48847d061d5248c00a |
| PQID | 3121471682 |
| PQPubID | 105507 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_38e95908cae74a48847d061d5248c00a unpaywall_primary_10_1029_2024wr037138 proquest_miscellaneous_3153845913 proquest_journals_3121471682 crossref_primary_10_1029_2024WR037138 wiley_primary_10_1029_2024WR037138_WRCR27456 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 20241001 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2023; 14 2015; 5 2021; 124 2020; 240 2020; 63 2021; 104 2019; 55 2024; 60 2016; 740 2020; 59 2024 2022; 117 2020; 19 1999 2002; 25 2007; 112 2021; 33 2024; 6 2022; 4 2021; 18 2017; 35 2021; 19 2020; 139 2018 2009; 8 2017 2022; 55 2014; 96 2021; 60 2018; 54 2022; 17 2018; 15 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Brockmann C. (e_1_2_8_5_1) 2016 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Romas E. (e_1_2_8_30_1) 2018 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 Falconer I. (e_1_2_8_11_1) 1999 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
| References_xml | – start-page: 155 year: 1999 end-page: 178 article-title: Safe levels and safe practices publication-title: Toxic Cyanobacteria in Water – volume: 124 year: 2021 article-title: Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences publication-title: Ecological Indicators – volume: 4 year: 2022 article-title: Realistic river image synthesis using deep generative adversarial networks publication-title: Frontiers in Water – volume: 5 issue: 1 year: 2015 article-title: Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces publication-title: Scientific Reports – volume: 96 start-page: 224 year: 2014 end-page: 235 article-title: An effective thin cloud removal procedure for visible remote sensing images publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 25 start-page: 704 issue: 4 year: 2002 end-page: 726 article-title: Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences publication-title: Estuaries – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 article-title: Generative adversarial networks publication-title: Communications of the ACM – year: 2024 – volume: 35 start-page: 27 issue: 1 year: 2017 end-page: 40 article-title: Spatio‐temporal changes in water quality in an eutrophic lake with artificial aeration publication-title: Journal of Water and Land Development – volume: 55 start-page: 10 issue: 1 year: 2022 end-page: 22 article-title: Self‐attention and generative adversarial networks for algae monitoring publication-title: European Journal of Remote Sensing – start-page: 7090 year: 2018 – volume: 112 issue: C8 year: 2007 article-title: Wind speed influence on phytoplankton bloom dynamics in the southern ocean marginal ice zone publication-title: Journal of Geophysical Research – volume: 33 issue: 5 year: 2021 article-title: A real‐time flow forecasting with deep convolutional generative adversarial network: Application to flooding event in Denmark publication-title: Physics of Fluids – volume: 60 start-page: 1 year: 2021 end-page: 9 article-title: Cloud removal in remote sensing images using generative adversarial networks and SAR‐to‐optical image translation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 14 year: 2023 article-title: Generative adversarial networks for detecting contamination events in water distribution systems using multi‐parameter, multi‐site water quality monitoring publication-title: Environmental Science and Ecotechnology – volume: 240 year: 2020 article-title: Seamless retrievals of chlorophyll‐a from Sentinel‐2 (MSI) and Sentinel‐3 (OLCI) in inland and coastal waters: A machine‐learning approach publication-title: Remote Sensing of Environment – volume: 740 start-page: 54 year: 2016 – volume: 117 year: 2022 article-title: Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts publication-title: Harmful Algae – volume: 139 year: 2020 article-title: “sen2r”: An R toolbox for automatically downloading and preprocessing Sentinel‐2 satellite data publication-title: Computers & Geosciences – volume: 104 year: 2021 article-title: Analysis of recurring patchiness in satellite‐derived chlorophyll a to aid the selection of representative sites for lake water quality monitoring publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 59 year: 2020 article-title: A novel method based on time series satellite data analysis to detect algal blooms publication-title: Ecological Informatics – volume: 55 start-page: 10012 issue: 11 year: 2019 end-page: 10025 article-title: AquaSat: A data set to enable remote sensing of water quality for inland waters publication-title: Water Resources Research – volume: 17 start-page: 1230 issue: 5 year: 2022 end-page: 1252 article-title: Forecasting water quality using seasonal ARIMA model by integrating in‐situ measurements and remote sensing techniques in Krishnagiri reservoir, India publication-title: Water Practice and Technology – volume: 8 start-page: 715 issue: 5 year: 2009 end-page: 725 article-title: The effects of temperature and nutrients on the growth and dynamics of toxic and non‐toxic strains of microcystis during cyanobacteria blooms publication-title: Harmful Algae – volume: 54 start-page: 9724 issue: 12 year: 2018 end-page: 9758 article-title: Satellite remote sensing for water resources management: Potential for supporting sustainable development in data‐poor regions publication-title: Water Resources Research – volume: 19 start-page: 1 year: 2020 end-page: 4 article-title: Synthesis of satellite‐like urban images from historical maps using conditional GAN publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 19 start-page: 1 year: 2020 end-page: 5 article-title: Cropland change detection with harmonic function and generative adversarial network publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 60 issue: 3 year: 2024 article-title: Spatiotemporal data augmentation of MODIS‐landsat water bodies using adversarial networks publication-title: Water Resources Research – volume: 18 start-page: 6213 issue: 23 year: 2021 end-page: 6227 article-title: Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Proper publication-title: Biogeosciences – volume: 6 issue: 3 year: 2024 article-title: Water depth prediction in combined sewer networks, application of generative adversarial networks publication-title: Discover Applied Sciences – start-page: 1125 year: 2017 end-page: 1134 – volume: 19 start-page: 1 year: 2021 end-page: 5 article-title: A correlation context‐driven method for sea fog detection in meteorological satellite imagery publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 15 issue: 7 year: 2018 article-title: Improved prediction of harmful algal blooms in four major South Korea’s rivers using deep learning models publication-title: International Journal of Environmental Research and Public Health – ident: e_1_2_8_29_1 doi: 10.1016/j.cageo.2020.104473 – ident: e_1_2_8_7_1 doi: 10.1063/5.0051213 – ident: e_1_2_8_32_1 doi: 10.1029/2017wr022437 – ident: e_1_2_8_6_1 doi: 10.1109/lgrs.2020.3023137 – ident: e_1_2_8_10_1 doi: 10.1016/j.hal.2009.02.004 – start-page: 54 volume-title: Living planet symposium year: 2016 ident: e_1_2_8_5_1 – ident: e_1_2_8_13_1 doi: 10.1029/2023wr036342 – ident: e_1_2_8_19_1 doi: 10.1109/lgrs.2021.3095731 – ident: e_1_2_8_34_1 doi: 10.1038/srep15159 – ident: e_1_2_8_23_1 doi: 10.3390/ijerph15071322 – ident: e_1_2_8_25_1 doi: 10.1016/j.ese.2022.100231 – ident: e_1_2_8_27_1 doi: 10.1016/j.rse.2019.111604 – ident: e_1_2_8_20_1 doi: 10.1080/22797254.2021.2010605 – ident: e_1_2_8_26_1 doi: 10.1016/j.ecolind.2021.107416 – start-page: 7090 volume-title: EGU general assembly conference abstracts year: 2018 ident: e_1_2_8_30_1 – ident: e_1_2_8_33_1 doi: 10.1016/j.isprsjprs.2014.06.011 – ident: e_1_2_8_16_1 doi: 10.1016/j.ecoinf.2020.101131 – ident: e_1_2_8_9_1 doi: 10.1109/tgrs.2021.3131035 – ident: e_1_2_8_12_1 doi: 10.1515/jwld‐2017‐0065 – ident: e_1_2_8_18_1 doi: 10.5194/bg‐18‐6213‐2021 – ident: e_1_2_8_24_1 doi: 10.1016/j.jag.2021.102547 – start-page: 155 year: 1999 ident: e_1_2_8_11_1 article-title: Safe levels and safe practices publication-title: Toxic Cyanobacteria in Water – ident: e_1_2_8_28_1 doi: 10.1016/j.hal.2022.102268 – ident: e_1_2_8_4_1 doi: 10.1109/lgrs.2020.3023170 – ident: e_1_2_8_8_1 – ident: e_1_2_8_31_1 doi: 10.1029/2019wr024883 – ident: e_1_2_8_17_1 doi: 10.1145/3422622 – ident: e_1_2_8_15_1 doi: 10.3389/frwa.2022.784441 – ident: e_1_2_8_3_1 doi: 10.1007/bf02804901 – ident: e_1_2_8_21_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_8_22_1 doi: 10.1007/s42452‐024‐05787‐4 – ident: e_1_2_8_14_1 doi: 10.1029/2006jc004061 – ident: e_1_2_8_2_1 doi: 10.2166/wpt.2022.046 |
| SSID | ssj0014567 |
| Score | 2.466317 |
| Snippet | Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling. Using past... Abstract Satellite data are extensively used for water quality monitoring purposes, offering a significantly reduced cost compared to in situ data sampling.... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Atmospheric correction C2RCC Chlorophyll Chlorophylls chlorophyll‐a Computing costs data collection Data sampling Datasets Europe forecasting generative Generative adversarial networks Image quality Lakes Natural phenomena Pattern recognition remote sensing Satellite data Satellite imagery satellites Sentinel‐2 surface water Training Water bodies Water monitoring Water quality Water quality management Water quality monitoring Water resources Water resources management |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7mFPML5E0IaMNOCFTElsx_HjqDYNBBUqVBtP0Tm2VWklnZZW0_jrOeejUicEvEWxHdm-s_273Pl3AEdO-sQZUcVSKR-L1Ou44ChjZZ33Smvlbfjf8WWSn8_Ep0t5uQNHw12YLf99poNtLm5vAq8cLx7Abi4JcY9gdzb5evJjcB4HENM6j4WIlVa8j2-_33zr5GkJ-rdQ5d66vsa7W1wstnFqe9CcPYLToYtdfMnV8Xpljqtf99gb_zWGfXjYI0120qnGY9hx9RPYGy4iN_TcJ0Cf3z2FeUjRWWETgqDZZ7xyzTs2npMtv6TixYKNw-3GuqfYbVgbaMC-YUvnuXLs40_alhqGtWUdj3XYRFmb7LnBoOJs0oWbN89gdnb6fXwe90kYYhSZyMlQLVKk3RStkd46a32aWI5VYZSRRnDLCYN4azDLlSXb0snEockJBheV5nnCn8OoXtbuBTCUlUNFFnHgL821MDzRmFFbJa1zWkfwZhBQed1xbZStjzzTZZjDi2k3hxF8CNLb1AkM2e0LmvSyX3AlL5wO-dwrdEogbVNCWcIuVmaiqJIEIzgYZF_2y7YpeRrSNqV5kUXwelNMCy54UbB2y3WoQ2eEkDrlEbzd6MwfOzwIPYL3rUL9dVTlxXQ8zRQB2pf_-90DGK1u1u6QYNHKvOpXxW-8cAWH priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96Ppwvh59Y75QIfrxYbJukaR518ThFD1k97t7KpEldcO0em12O---dST-4BRF8K00CbSYz-U1m8hvGXnrVZt7KJlVat6nMW5NWAlSqnW9bbYxuHZ13fD0tT87k5wt1MRy40V2Ynh9iOnAjzYj2mhQcbBjIBogjE712eT4nxjlR3WZ3coQytMIL-W2KIiA40GOEmZDOkPiO49_dHL2zJUXm_h24ub_tLuH6CpbLXQAbd6Dje-xggI78fS_r--yW7x6w_fFmccDnoaL54vohW1DNzQYCZTXzL_DLhzd8tkDnfIXNyyWf0XXFbuDMDTxmDvDvEPk5N55_-o12JnDoHO-Jqckq8li9OQCtWX7a54-HR-zs-OOP2Uk6VFVIQRayRM-zygHNIzirWueda_PMCWgqq62yUjiBoKJ1FopSO3QWvco82BJxbdUYUWbiMdvrVp1_wjioxoNGF5cISUsjrcgMFDhWK-e9MQl7NU5sfdmTZ9Qx6F2Y-qYAEvaBZn3qQ5TX8cVq_bMeNKgWlTdUoL0BryWg3ZHaIRhxqpBVk2WQsKNRZvWgh6EWOdVhysuqSNiLqRk1iMIi0PnVlvqg0ZfK5CJhrydZ__WDr9bjB7-NC-Gff1Wfz2dzdPpV-fT_uh-yu9TQpwwesb3NeuufIfTZ2Odxff8BlVL6EQ priority: 102 providerName: Wiley-Blackwell |
| Title | Forecasting Lakes' Chlorophyll Concentrations Using Satellite Images and Generative Adversarial Networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037138 https://www.proquest.com/docview/3121471682 https://www.proquest.com/docview/3153845913 https://doi.org/10.1029/2024wr037138 https://doaj.org/article/38e95908cae74a48847d061d5248c00a |
| UnpaywallVersion | publishedVersion |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: 24P dateStart: 20240101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtekgvpU_qNllU6ONSU9uSLOuYLglpaZew7ZL0ZMaWxEK33hDvEvLvMyPbywZCesnNWLLRYzT6RjP6hrH3TvnEVbKOldY-lqk3cSFAxdo677Ux2ls67_g5yY9n8vuZOttK9UUxYR09cDdwX0ThDOXlrsFpCShuUlvcg6zKZFEnSYBGSWEGY6r3HyAs0INvmTBOH_KeZIasfXk6JaY6upOytRkFzv4bQHN33ZzD1SUsFjeha9h7jp6yJz1o5AddY5-xB655znaHO8UtPve5zOdXL9icsm3W0FI8M_8Bf137iY_naJYvsXix4GO6qNj0bLktDzED_BcEZs6V49_-oYZpOTSWd5TUpA95yNvcAkkrn3SR4-1LNjs6_D0-jvt8CjHITOZocxYpoGIEWylvnbU-TayAuqh0pSoprEA44W0FWa4tmolOJQ6qHBFtURuRJ-IV22mWjXvNOKjagUbjlqhIcyMrkRjI8FutrHPGROzDMLDleUebUQZ3d2bK7QmI2Fca9U0dIrsOL1AEyl4Eyv-JQMT2hjkr-xXYliKlDExpXmQRe7cpxrVDDhFo3HJNdVDdS2VSEbGPm7m-tcGXF0ODPwdBuLNX5el0PEVzX-Vv7qN_b9lj-nsXQrjHdlYXa7ePUGhVjdjDTJ6MguyP2KPZ5OTgzzVhTwNp |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgPJQXxKcIDDASHy9EJPFX_AgVUwddhcqm7S26xA6VKOnUtJr233PnJNUqISTeouQsObbv_Dvf-XeMvfGqTnwpq1gZU8cyrW2cC1Cxcb6ujbWmdnTecTLTkzP59UJd9HVO6S5Mxw-xO3AjzQj2mhScDqR7tgEiyUS3XZ7PiXJO5LfZHalTTd5XJr_vwgiIDswQYiao02e-Y_uPN1vv7UmBun8Pb462zSVcX8FyuY9gwxZ0dJ_d67Ej_9RN9gN2yzcP2Wi4Wtzic1_SfHH9iC2o6GYFLaU18yn88u17Pl6gd77Cz8slH9N9xaYnzW15SB3gPyAQdG48P_6Nhqbl0DjeMVOTWeShfHMLtGj5rEsgbx-zs6Mvp-NJ3JdViEFmUqPrmaeA9hFcqWrnnavTxAmo8tKUqpTCCUQVtSsh08aht-hV4qHUCGzzygqdiCfsoFk1_injoCoPBn1cYiTVVpYisZBhW6Oc99ZG7O0wsMVlx55RhKh3ZoubExCxzzTqOxnivA4vVuufRa9Chci9pQrtFXgjAQ2PNA7RiFOZzKskgYgdDnNW9IrYFiKlQkypzrOIvd59RhWiuAg0frUlGbT6UtlUROzdbq7_2uGr9dDhD2Eh_POvivP5eI5ev9LP_k_8FRtNTk-mxfR49u05u0tCXf7gITvYrLf-BeKgTfkyrPU_HPz9fQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIwXxKcIDDASHy9ES2I7jh-hUG0wqqkwbW_RJbapREmrptW0_547J41WCSHxFiW25Ph859_5zr9j7LVTPnGVrGOltY9l6k1cCFCxts57bYz2ls47vk3yozP55UJd9HVO6S5Mxw8xHLiRZgR7TQrultb3bANEkoluuzyfEuWcKG6yW1LhZkjUzvJ0CCMgOtDbEDNBnT7zHfsfXu-9sycF6v4dvLm_aZZwdQnz-S6CDVvQ-B6722NH_qET9n12wzUP2P72anGLz31J89nVQzajops1tJTWzE_gl2vf8dEMvfMFfp7P-YjuKzY9aW7LQ-oA_w6BoHPt-PFvNDQth8byjpmazCIP5ZtboEXLJ10CefuInY0__xgdxX1ZhRhkJnN0PYsU0D6CrZS3zlqfJlZAXVS6UpUUVuBEeltBlmuL3qJTiYMqR2Bb1EbkiXjM9ppF454wDqp2oNHHJUbS3MhKJAYy7KuVdc6YiL3ZTmy57NgzyhD1zkx5XQAR-0izPrQhzuvwYrH6WfYqVIrCGarQXoPTEtDwSG0RjViVyaJOEojYwVZmZa-IbSlSKsSU5kUWsVfDZ1QhiotA4xYbaoNWXyqTioi9HWT91wFfrrYDfh8Wwj__qjyfjqbo9av86f81f8lun34alyfHk6_P2B1q06UPHrC99WrjniMMWlcvwlL_A9lm_Qw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7mFPML5E0IaMNOCFTElsx_HjqDYNBBUqVBtP0Tm2VWklnZZW0_jrOeejUicEvEWxHdm-s_273Pl3AEdO-sQZUcVSKR-L1Ou44ChjZZ33Smvlbfjf8WWSn8_Ep0t5uQNHw12YLf99poNtLm5vAq8cLx7Abi4JcY9gdzb5evJjcB4HENM6j4WIlVa8j2-_33zr5GkJ-rdQ5d66vsa7W1wstnFqe9CcPYLToYtdfMnV8Xpljqtf99gb_zWGfXjYI0120qnGY9hx9RPYGy4iN_TcJ0Cf3z2FeUjRWWETgqDZZ7xyzTs2npMtv6TixYKNw-3GuqfYbVgbaMC-YUvnuXLs40_alhqGtWUdj3XYRFmb7LnBoOJs0oWbN89gdnb6fXwe90kYYhSZyMlQLVKk3RStkd46a32aWI5VYZSRRnDLCYN4azDLlSXb0snEockJBheV5nnCn8OoXtbuBTCUlUNFFnHgL821MDzRmFFbJa1zWkfwZhBQed1xbZStjzzTZZjDi2k3hxF8CNLb1AkM2e0LmvSyX3AlL5wO-dwrdEogbVNCWcIuVmaiqJIEIzgYZF_2y7YpeRrSNqV5kUXwelNMCy54UbB2y3WoQ2eEkDrlEbzd6MwfOzwIPYL3rUL9dVTlxXQ8zRQB2pf_-90DGK1u1u6QYNHKvOpXxW-8cAWH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Lakes%27+Chlorophyll+Concentrations+Using+Satellite+Images+and+Generative+Adversarial+Networks&rft.jtitle=Water+resources+research&rft.au=Nagkoulis%2C+Nikolaos&rft.au=Vasiloudis%2C+Giorgos&rft.au=Moumtzidou%2C+Anastasia&rft.au=Gialampoukidis%2C+Ilias&rft.date=2024-10-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=10&rft_id=info:doi/10.1029%2F2024WR037138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024WR037138 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |