Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery
Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stim...
Saved in:
Published in | Journal of the American Chemical Society Vol. 137; no. 48; pp. 15217 - 15224 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.5b09602 |
Cover
Abstract | Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth. |
---|---|
AbstractList | Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHₑ) is the most universal and practical. However, the design of pHₑ-sensitive system is problematic because of the subtle differences between the pHₑ and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dₘ-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHₑ responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dₘ-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth. Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth. Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth. Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth. |
Author | Sun, Chun-Yang Li, Hong-Jun Cao, Zhi-Ting Xia, Jin-Xing Shen, Song Liu, Yang Yang, Xian-Zhu Wang, Jun Xu, Cong-Fei |
AuthorAffiliation | University of Science and Technology of China The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center Innovation Center for Cell Signaling Network University of Science & Technology of China Hefei National Laboratory for Physical Sciences at Microscale |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Innovation Center for Cell Signaling Network – name: The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center – name: University of Science & Technology of China – name: Hefei National Laboratory for Physical Sciences at Microscale |
Author_xml | – sequence: 1 givenname: Chun-Yang surname: Sun fullname: Sun, Chun-Yang – sequence: 2 givenname: Song surname: Shen fullname: Shen, Song – sequence: 3 givenname: Cong-Fei surname: Xu fullname: Xu, Cong-Fei – sequence: 4 givenname: Hong-Jun surname: Li fullname: Li, Hong-Jun – sequence: 5 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 6 givenname: Zhi-Ting surname: Cao fullname: Cao, Zhi-Ting – sequence: 7 givenname: Xian-Zhu surname: Yang fullname: Yang, Xian-Zhu – sequence: 8 givenname: Jin-Xing surname: Xia fullname: Xia, Jin-Xing – sequence: 9 givenname: Jun surname: Wang fullname: Wang, Jun email: jwang699@ustc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26571079$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UlPxCAUB3BixjiL3jybHj3YEWgL5TgZ1zhRo6PXhsIbw6TLCNSk397Oogej8UR4_CCP9x-iXlVXgNAxwWOCKTlfSuXGSY4Fw3QPDUhCcZgQynpogDGmIU9Z1EdD55bdNqYpOUB9yhJOMBcDdDdvytoGE2W08W34DJUz3nxA8FgXbQnWqOAVlO_IYsM2Z3Np38CDDpx5up8EF1B0Vdseov2FLBwc7dYRerm6nE9vwtnD9e10MgtlTCMf6jxWAiIqEpkrLnSqmcpzDkzpWHKdMhwDZjwVuQYJqeCCx4mWImKU4Kj7zQidbt9d2fq9Aeez0jgFRSErqBuXUZEyEhPCk38p4TGPMGNdYyN0sqNNXoLOVtaU0rbZ16w6cLYFytbOWVh8E4KzdRTZOopsF0XH6Q-ujJfe1JW30hR_Xdr1uy4u68ZW3SB_p59NbpjW |
CitedBy_id | crossref_primary_10_1021_acsami_7b04447 crossref_primary_10_1016_j_ccr_2019_04_004 crossref_primary_10_1021_acsami_9b12492 crossref_primary_10_1007_s41061_017_0112_0 crossref_primary_10_1039_D1BM01788H crossref_primary_10_1007_s11706_017_0401_0 crossref_primary_10_1016_j_nxmate_2024_100405 crossref_primary_10_1021_acsnano_8b03476 crossref_primary_10_1021_acsnano_9b05749 crossref_primary_10_1039_D1BM01154E crossref_primary_10_1080_10717544_2016_1228716 crossref_primary_10_1039_C6BM00600K crossref_primary_10_1016_j_biomaterials_2021_120945 crossref_primary_10_1007_s11307_019_01340_7 crossref_primary_10_1039_C8PY01577E crossref_primary_10_1039_D0NR08487E crossref_primary_10_1007_s42247_021_00236_z crossref_primary_10_1039_C7BM01025G crossref_primary_10_1002_polb_24596 crossref_primary_10_1080_10717544_2019_1606363 crossref_primary_10_1016_j_omtn_2023_04_006 crossref_primary_10_1021_acs_nanolett_6b02536 crossref_primary_10_1002_pola_28766 crossref_primary_10_1002_adma_202500883 crossref_primary_10_1088_1748_605X_abffb5 crossref_primary_10_1021_acsbiomaterials_1c01244 crossref_primary_10_1039_D4PY00660G crossref_primary_10_1002_adhm_202301861 crossref_primary_10_1016_j_nantod_2021_101313 crossref_primary_10_1039_D0TB00289E crossref_primary_10_1007_s00249_016_1145_y crossref_primary_10_1021_acsami_1c24588 crossref_primary_10_1016_j_chempr_2023_06_011 crossref_primary_10_1016_j_jiec_2018_10_013 crossref_primary_10_1016_j_biomaterials_2022_121748 crossref_primary_10_1039_D2BM00611A crossref_primary_10_1021_acs_langmuir_2c00905 crossref_primary_10_1016_j_actbio_2023_03_014 crossref_primary_10_1002_adma_201706220 crossref_primary_10_1038_s41428_021_00542_7 crossref_primary_10_1016_j_apsb_2021_11_004 crossref_primary_10_1002_jbm_b_34516 crossref_primary_10_1039_C7NR06689A crossref_primary_10_1007_s40843_024_3048_0 crossref_primary_10_3390_nano9060860 crossref_primary_10_1021_acs_biomac_7b01696 crossref_primary_10_1007_s40820_023_01018_4 crossref_primary_10_1039_C8TB02496K crossref_primary_10_3390_ijms17050626 crossref_primary_10_1002_chem_201702945 crossref_primary_10_1002_adma_201903277 crossref_primary_10_1021_acsami_9b18144 crossref_primary_10_1002_adma_201601498 crossref_primary_10_3389_fphar_2018_01230 crossref_primary_10_1007_s11426_022_1311_3 crossref_primary_10_3390_nano12101692 crossref_primary_10_3389_fbioe_2022_916952 crossref_primary_10_3390_molecules28237750 crossref_primary_10_1016_j_ijpharm_2017_12_018 crossref_primary_10_1016_j_cej_2021_130590 crossref_primary_10_1039_D0SC02937H crossref_primary_10_1016_j_apsb_2022_09_021 crossref_primary_10_1016_j_giant_2021_100052 crossref_primary_10_1039_C8PY00333E crossref_primary_10_1002_advs_202308659 crossref_primary_10_1002_ange_201814289 crossref_primary_10_1021_acs_nanolett_9b00737 crossref_primary_10_1021_acsami_8b06299 crossref_primary_10_1002_adtp_201800059 crossref_primary_10_1002_adfm_201705622 crossref_primary_10_1021_acsnano_6b02326 crossref_primary_10_1002_mabi_201600295 crossref_primary_10_1021_acs_langmuir_0c01636 crossref_primary_10_1016_j_ajps_2024_100949 crossref_primary_10_1021_acs_nanolett_7b01571 crossref_primary_10_1002_pola_28673 crossref_primary_10_1021_acsbiomaterials_7b00869 crossref_primary_10_3390_pharmaceutics13121995 crossref_primary_10_1002_wnan_1742 crossref_primary_10_1021_acsami_8b13059 crossref_primary_10_1039_C8BM01454J crossref_primary_10_1002_smll_201902022 crossref_primary_10_1007_s11426_022_1243_5 crossref_primary_10_1021_acs_nanolett_6b05396 crossref_primary_10_1021_acsami_6b15853 crossref_primary_10_1039_D3NR05635J crossref_primary_10_1002_adfm_201600170 crossref_primary_10_1002_advs_202303597 crossref_primary_10_1002_anie_201914511 crossref_primary_10_1021_acsnano_9b05425 crossref_primary_10_1002_smll_202006223 crossref_primary_10_3390_polym14061188 crossref_primary_10_1039_D3NJ01764H crossref_primary_10_1016_j_actbio_2016_04_007 crossref_primary_10_1002_adma_202000416 crossref_primary_10_1039_C7NP00037E crossref_primary_10_1016_j_nantod_2022_101738 crossref_primary_10_1002_smll_202000809 crossref_primary_10_1021_acs_chemmater_6b05120 crossref_primary_10_1021_acsnano_8b07746 crossref_primary_10_1016_j_actbio_2024_07_012 crossref_primary_10_1016_j_biomaterials_2023_122016 crossref_primary_10_1016_j_ajps_2019_08_003 crossref_primary_10_1007_s10118_018_2035_9 crossref_primary_10_2174_2468187308666180307152049 crossref_primary_10_1002_mame_201800060 crossref_primary_10_1039_C9TB01527B crossref_primary_10_1039_D0QM00025F crossref_primary_10_1002_marc_201800072 crossref_primary_10_1016_j_actbio_2019_05_047 crossref_primary_10_1021_acsami_9b12198 crossref_primary_10_1021_acsnano_7b00216 crossref_primary_10_1021_acsnano_6b03874 crossref_primary_10_1016_j_cej_2018_02_055 crossref_primary_10_1007_s12274_016_1309_1 crossref_primary_10_1016_j_msec_2017_10_004 crossref_primary_10_1039_C8OB00953H crossref_primary_10_1016_j_mtadv_2022_100266 crossref_primary_10_3390_ph11040133 crossref_primary_10_1007_s11051_024_06198_7 crossref_primary_10_1016_j_jcis_2018_12_035 crossref_primary_10_1093_nsr_nwx062 crossref_primary_10_1016_j_biomaterials_2017_02_036 crossref_primary_10_1039_C6TB02364A crossref_primary_10_3390_polym12091953 crossref_primary_10_1007_s11706_019_0469_9 crossref_primary_10_1016_j_jconrel_2022_11_039 crossref_primary_10_1016_j_actbio_2017_01_031 crossref_primary_10_1007_s12274_018_1965_4 crossref_primary_10_1016_j_nantod_2021_101083 crossref_primary_10_1002_adma_201707240 crossref_primary_10_1021_acsami_3c05007 crossref_primary_10_1021_jacs_6b12108 crossref_primary_10_1002_macp_201900309 crossref_primary_10_1002_smll_202207973 crossref_primary_10_1039_D1BM01723C crossref_primary_10_1016_j_ijbiomac_2023_126912 crossref_primary_10_1002_pola_28586 crossref_primary_10_1021_acsanm_3c01520 crossref_primary_10_1016_j_actbio_2017_06_037 crossref_primary_10_1016_j_cej_2020_127808 crossref_primary_10_1021_acs_nanolett_6b02915 crossref_primary_10_1080_17425247_2023_2292678 crossref_primary_10_1002_mabi_202100025 crossref_primary_10_1021_acsami_7b14963 crossref_primary_10_1002_VIW_20200026 crossref_primary_10_1039_C9BM00055K crossref_primary_10_1021_jacs_8b13889 crossref_primary_10_1021_acsanm_1c03966 crossref_primary_10_1021_acsnano_8b03726 crossref_primary_10_1016_j_bioactmat_2021_03_021 crossref_primary_10_1038_s41467_021_24191_9 crossref_primary_10_1021_acsami_6b14730 crossref_primary_10_1002_adma_201606628 crossref_primary_10_1016_j_biomaterials_2021_120737 crossref_primary_10_1021_acsami_7b06306 crossref_primary_10_1038_s41392_023_01536_y crossref_primary_10_1021_acs_nanolett_7b05292 crossref_primary_10_1021_acscentsci_8b00363 crossref_primary_10_1002_macp_202100212 crossref_primary_10_1021_acs_bioconjchem_5b00666 crossref_primary_10_1002_advs_202103498 crossref_primary_10_1016_j_coph_2019_01_008 crossref_primary_10_1039_C7BM00747G crossref_primary_10_1016_j_biomaterials_2016_05_023 crossref_primary_10_1021_jacs_8b05341 crossref_primary_10_1007_s11426_016_0466_x crossref_primary_10_1021_acs_chemrev_3c00705 crossref_primary_10_1007_s10853_018_2689_2 crossref_primary_10_1007_s41061_017_0128_5 crossref_primary_10_1007_s11427_019_1569_4 crossref_primary_10_1007_s12274_019_2274_2 crossref_primary_10_1177_0885328219894695 crossref_primary_10_1021_acsami_0c16110 crossref_primary_10_1021_jacs_8b04929 crossref_primary_10_1016_j_jscs_2021_101361 crossref_primary_10_1021_acs_accounts_1c00635 crossref_primary_10_1021_jacs_8b06309 crossref_primary_10_1016_j_ejpb_2019_10_009 crossref_primary_10_1016_j_jconrel_2017_02_019 crossref_primary_10_1002_jgm_3090 crossref_primary_10_1002_jgm_3092 crossref_primary_10_1039_D1TB00537E crossref_primary_10_1038_s41467_018_06093_5 crossref_primary_10_1039_C9BM00825J crossref_primary_10_1002_ange_201914511 crossref_primary_10_2147_IJN_S504644 crossref_primary_10_1021_acs_biomac_1c00267 crossref_primary_10_1021_acsnano_9b05493 crossref_primary_10_3390_ijms23179698 crossref_primary_10_1002_adfm_201602963 crossref_primary_10_1021_acsnano_0c00269 crossref_primary_10_1016_j_jconrel_2018_04_033 crossref_primary_10_1039_C6BM00787B crossref_primary_10_1039_C6TB01865C crossref_primary_10_1002_anie_201814289 crossref_primary_10_1002_jgm_3088 crossref_primary_10_1002_adfm_201910168 crossref_primary_10_3390_gels8050298 crossref_primary_10_1038_s41467_018_05906_x crossref_primary_10_1039_C6CS00592F crossref_primary_10_1039_C6RA23173J crossref_primary_10_1016_j_biomaterials_2016_02_031 crossref_primary_10_1016_j_nantod_2021_101160 crossref_primary_10_1021_acs_nanolett_9b02501 crossref_primary_10_1021_acs_chemrev_3c00611 crossref_primary_10_1021_acs_nanolett_9b01660 crossref_primary_10_1002_smtd_202401263 crossref_primary_10_1039_D0PY00234H crossref_primary_10_1039_C7TB02804K crossref_primary_10_1039_C8CC09956A crossref_primary_10_1002_anie_201711354 crossref_primary_10_1016_j_polymer_2017_01_054 crossref_primary_10_1039_C9SC01841G crossref_primary_10_1002_ange_201711354 crossref_primary_10_1016_j_jconrel_2020_10_013 crossref_primary_10_26599_NR_2025_94907030 crossref_primary_10_1039_D3BM00889D crossref_primary_10_1016_j_actbio_2018_09_040 crossref_primary_10_1016_j_nantod_2023_102102 crossref_primary_10_1002_advs_202309583 crossref_primary_10_1016_j_xpro_2023_102138 crossref_primary_10_1021_acsami_0c02769 crossref_primary_10_1039_D0BM00794C crossref_primary_10_1021_acs_chemrev_3c00062 crossref_primary_10_1039_C8TB02843E crossref_primary_10_1186_s13045_024_01535_8 crossref_primary_10_2217_nnm_2023_0302 crossref_primary_10_1021_acs_chemrev_8b00199 crossref_primary_10_1002_marc_201800139 crossref_primary_10_1039_C6PY00177G crossref_primary_10_1021_acs_accounts_8b00195 crossref_primary_10_1080_17425247_2019_1665021 crossref_primary_10_1093_rb_rbae135 crossref_primary_10_1002_adfm_201704806 crossref_primary_10_1007_s12274_017_1736_7 crossref_primary_10_1021_acsami_7b10098 crossref_primary_10_1021_acs_molpharmaceut_9b00261 crossref_primary_10_1007_s13346_019_00631_4 crossref_primary_10_1016_j_nantod_2023_102031 crossref_primary_10_1021_acsabm_9b01052 crossref_primary_10_1021_acsami_1c05079 crossref_primary_10_1016_j_jconrel_2018_09_029 crossref_primary_10_1002_adfm_201700220 crossref_primary_10_1002_adma_201803926 crossref_primary_10_1021_acsami_8b16395 crossref_primary_10_1016_j_cej_2020_127747 crossref_primary_10_1002_wnan_1595 crossref_primary_10_1002_cjoc_201900064 crossref_primary_10_1007_s10118_018_2078_y crossref_primary_10_2147_IJN_S322901 crossref_primary_10_1016_j_biomaterials_2017_09_013 crossref_primary_10_1016_j_ejpb_2024_114378 crossref_primary_10_1016_j_mtcomm_2022_103659 crossref_primary_10_1016_j_ajps_2022_100773 crossref_primary_10_1039_C6BM00960C crossref_primary_10_1016_j_reactfunctpolym_2021_104970 crossref_primary_10_1021_acs_bioconjchem_7b00598 crossref_primary_10_1007_s12274_022_5184_7 crossref_primary_10_1039_C8NR08271E crossref_primary_10_1002_nano_202100072 crossref_primary_10_1016_j_cej_2020_126891 crossref_primary_10_1039_C9BM00724E crossref_primary_10_1021_accountsmr_2c00072 crossref_primary_10_1039_C9CC03846A crossref_primary_10_1016_j_addr_2017_03_004 crossref_primary_10_1016_j_drudis_2018_01_042 crossref_primary_10_1016_j_actbio_2017_10_034 crossref_primary_10_1016_j_actbio_2021_05_013 crossref_primary_10_1002_adfm_201801840 crossref_primary_10_1016_j_biomaterials_2017_11_038 crossref_primary_10_1016_j_nantod_2023_102137 crossref_primary_10_1002_smll_202104632 crossref_primary_10_1021_acs_biomac_7b01659 crossref_primary_10_1016_j_cej_2018_09_076 crossref_primary_10_1021_jacs_2c06877 crossref_primary_10_1021_acs_nanolett_8b03828 crossref_primary_10_2147_IJN_S249144 crossref_primary_10_2147_IJN_S360488 crossref_primary_10_1039_C5RA27777A crossref_primary_10_1002_adma_202007426 crossref_primary_10_1021_jacs_3c04454 crossref_primary_10_1039_C9BM00039A crossref_primary_10_1039_D0TB01836H crossref_primary_10_1002_adma_201703285 crossref_primary_10_1016_j_pmatsci_2023_101170 crossref_primary_10_1039_C7TB02513K crossref_primary_10_1186_s12951_025_03223_2 crossref_primary_10_1016_j_ijpharm_2019_06_023 crossref_primary_10_1039_C6PY00427J crossref_primary_10_1021_acs_langmuir_0c02532 crossref_primary_10_1002_adhm_201701070 crossref_primary_10_1039_C8PY00579F crossref_primary_10_1021_acs_biomac_8b00425 crossref_primary_10_1016_j_reactfunctpolym_2019_04_021 crossref_primary_10_1080_17425247_2018_1526922 crossref_primary_10_1016_j_bioactmat_2021_01_034 crossref_primary_10_1016_j_colsurfb_2019_110428 |
Cites_doi | 10.1021/mp100223d 10.1021/nn101638u 10.1021/bc900144m 10.1007/s11095-007-9348-7 10.1016/S0927-7765(99)00156-3 10.1016/0003-2697(78)90029-5 10.1073/pnas.1303958110 10.1021/ja302705v 10.1038/7933 10.1002/adfm.201202992 10.1002/anie.201411615 10.1016/j.bmcl.2014.03.057 10.1002/adfm.201501548 10.1021/nn300524f 10.1002/anie.200902672 10.1074/jbc.M303938200 10.1038/nrc1713 10.1021/ja0711617 10.1021/ja908124g 10.1038/nrd2591 10.1016/S0168-3659(99)00248-5 10.1111/j.1365-2796.2009.02189.x 10.1021/ja207150n 10.1021/nn301148e 10.2147/IJN.S76092 10.1016/j.jconrel.2015.04.038 10.1039/c3cs60048c 10.1038/nature08956 10.1002/anie.201300178 10.3390/cancers3010408 10.1021/ja5088024 10.1002/adma.201205088 10.1038/nbt1171 10.1073/pnas.0607705103 10.1038/nmat3819 10.1016/j.addr.2015.01.007 10.1073/pnas.1200718109 10.1039/C5TB00031A 10.1021/mp100253e 10.1038/nmat3765 10.1016/j.cell.2009.03.017 10.1002/adma.201403877 10.1016/j.addr.2010.09.001 10.1038/mt.2014.18 10.1021/ja303737a 10.1016/j.jconrel.2008.04.024 10.1073/pnas.1304987110 10.1002/adma.201303360 10.1038/nbt.1807 10.1038/ncomms5280 10.1016/j.colsurfb.2006.02.006 10.1038/sj.gt.3302843 10.1021/nl0479987 10.1038/nrd2742 10.1021/ja311180x 10.1016/j.biotechadv.2013.08.002 10.1021/jacs.5b01435 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.5b09602 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 15224 |
ExternalDocumentID | 26571079 10_1021_jacs_5b09602 b813769856 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-db4c9e3295abc79d8d6cbb7e6cd4a7d8604e06789bdeae8979745da9362103863 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Sep 04 21:39:48 EDT 2025 Thu Sep 04 17:31:44 EDT 2025 Mon Jul 21 05:48:07 EDT 2025 Tue Jul 01 04:33:20 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-db4c9e3295abc79d8d6cbb7e6cd4a7d8604e06789bdeae8979745da9362103863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26571079 |
PQID | 1747306642 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2986141175 proquest_miscellaneous_1747306642 pubmed_primary_26571079 crossref_primary_10_1021_jacs_5b09602 crossref_citationtrail_10_1021_jacs_5b09602 acs_journals_10_1021_jacs_5b09602 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-09 |
PublicationDateYYYYMMDD | 2015-12-09 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1021/mp100223d – ident: ref33/cit33 doi: 10.1021/nn101638u – ident: ref41/cit41 doi: 10.1021/bc900144m – ident: ref48/cit48 doi: 10.1007/s11095-007-9348-7 – ident: ref50/cit50 doi: 10.1016/S0927-7765(99)00156-3 – ident: ref44/cit44 doi: 10.1016/0003-2697(78)90029-5 – ident: ref45/cit45 doi: 10.1073/pnas.1303958110 – ident: ref34/cit34 doi: 10.1021/ja302705v – ident: ref54/cit54 doi: 10.1038/7933 – ident: ref30/cit30 doi: 10.1002/adfm.201202992 – ident: ref24/cit24 doi: 10.1002/anie.201411615 – ident: ref32/cit32 doi: 10.1016/j.bmcl.2014.03.057 – ident: ref40/cit40 doi: 10.1002/adfm.201501548 – ident: ref17/cit17 doi: 10.1021/nn300524f – ident: ref9/cit9 doi: 10.1002/anie.200902672 – ident: ref12/cit12 doi: 10.1074/jbc.M303938200 – ident: ref25/cit25 doi: 10.1038/nrc1713 – ident: ref38/cit38 doi: 10.1021/ja0711617 – ident: ref42/cit42 doi: 10.1021/ja908124g – ident: ref57/cit57 doi: 10.1038/nrd2591 – ident: ref39/cit39 doi: 10.1016/S0168-3659(99)00248-5 – ident: ref53/cit53 doi: 10.1111/j.1365-2796.2009.02189.x – ident: ref28/cit28 doi: 10.1021/ja207150n – ident: ref10/cit10 doi: 10.1021/nn301148e – ident: ref46/cit46 doi: 10.2147/IJN.S76092 – ident: ref43/cit43 doi: 10.1016/j.jconrel.2015.04.038 – ident: ref14/cit14 doi: 10.1039/c3cs60048c – ident: ref7/cit7 doi: 10.1038/nature08956 – ident: ref35/cit35 doi: 10.1002/anie.201300178 – ident: ref18/cit18 doi: 10.3390/cancers3010408 – ident: ref4/cit4 doi: 10.1021/ja5088024 – ident: ref11/cit11 doi: 10.1002/adma.201205088 – ident: ref19/cit19 doi: 10.1038/nbt1171 – ident: ref20/cit20 doi: 10.1073/pnas.0607705103 – ident: ref22/cit22 doi: 10.1038/nmat3819 – ident: ref6/cit6 doi: 10.1016/j.addr.2015.01.007 – ident: ref56/cit56 doi: 10.1073/pnas.1200718109 – ident: ref47/cit47 doi: 10.1039/C5TB00031A – ident: ref21/cit21 doi: 10.1021/mp100253e – ident: ref5/cit5 doi: 10.1038/nmat3765 – ident: ref52/cit52 doi: 10.1016/j.cell.2009.03.017 – ident: ref8/cit8 doi: 10.1002/adma.201403877 – ident: ref36/cit36 doi: 10.1016/j.addr.2010.09.001 – ident: ref51/cit51 doi: 10.1038/mt.2014.18 – ident: ref55/cit55 doi: 10.1021/ja303737a – ident: ref26/cit26 doi: 10.1016/j.jconrel.2008.04.024 – ident: ref16/cit16 doi: 10.1073/pnas.1304987110 – ident: ref29/cit29 doi: 10.1002/adma.201303360 – ident: ref1/cit1 doi: 10.1038/nbt.1807 – ident: ref15/cit15 doi: 10.1038/ncomms5280 – ident: ref49/cit49 doi: 10.1016/j.colsurfb.2006.02.006 – ident: ref37/cit37 doi: 10.1038/sj.gt.3302843 – ident: ref27/cit27 doi: 10.1021/nl0479987 – ident: ref3/cit3 doi: 10.1038/nrd2742 – ident: ref23/cit23 doi: 10.1021/ja311180x – ident: ref31/cit31 doi: 10.1016/j.biotechadv.2013.08.002 – ident: ref2/cit2 doi: 10.1021/jacs.5b01435 |
SSID | ssj0004281 |
Score | 2.6132755 |
Snippet | Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15217 |
SubjectTerms | adsorption blood circulation chemical bonding composite polymers lung neoplasms Micelles nanoparticles neoplasm cells Neoplasms - metabolism polyethylene glycol Polymers - chemistry reticuloendothelial system RNA, Small Interfering - administration & dosage RNA, Small Interfering - pharmacokinetics small interfering RNA Tissue Distribution |
Title | Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery |
URI | http://dx.doi.org/10.1021/jacs.5b09602 https://www.ncbi.nlm.nih.gov/pubmed/26571079 https://www.proquest.com/docview/1747306642 https://www.proquest.com/docview/2986141175 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8MPuiL3x_4lZHokxmBbW3XR4Ii0UiMgOFt6dcSIg4D4wH_eq9lg4hZ9HW7be311vtd79crQtdK4rrwFXUBqjI3EDFzuaSxyxgXLAhjEWizoP_cIe1-8DjAgxVBdj2D75n6QHJaxcJAbZhqNz0CFmYgULO72v_ohfUc5tKQ-BnBff1p44Dk9KcDKkCV1ru0dtFDvkdnQSp5r85SUZVfv0s2_tHwPbSTAUynsbCIfbShkwO01czPdTtET73Zx3jiNORQAQJ3u4bBbuY852U8mtv8jfNml_Kd2IrZez1LGNfKmQ5fOw3nTo8Mn2N-hPqt-16z7WZHKrgccFPqKhFIpn2PYS4kZSpURApBNZEq4FSFpBZo47-YUJrrkFEIN7DiDNycqaRO_GNUSsaJPkWOEn5Nkjr3ZcwDHvu8XoO30RhrgjFRtIwqoIAo-yWmkc12exBtmKuZWsroNh-LSGY1yc3RGKMC6Zul9OeiFkeBXCUf1gh0azIgPNHjGbQBLBJiJIi5imU8FgJkMRVMy-hkYRPLr3kEAyKj7OwffTtH2wCusKW-sAtUSiczfQkAJhVX1nq_AQYI6bc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb8IwDI6m7cAuez_Ys0jbaSqijyTNEbEhNh6aBkzcqrwqoTGYKBzYr58TCmhISFxTN3USN_4cOzZCD0piTwSKugBVmRuKhLlc0sRljAsWRokItTnQb7ZIrRu-9XAvu6xu7sIAEyn0lFon_iq7gEkTBI1YGMQNO-4e4BDfVGooV9qra5B-5C3QLo1IkMW5r79t9JBM_-uhDeDSKpnqIWot2bOxJV_F6UQU5e9a5sat-T9CBxncdMpz-ThGO3p4gnKVRZW3U1TvTL9HY6cs-wrwuNs28exmB3TeR4OZ9eY4n_Zg30ksmX3WseHjWjlp_6NVdp71wER3zM5Qt_rSqdTcrMCCywFFTVwlQsl04DPMhaRMRYpIIagmUoWcqoiUQm20GRNKcx0xCsYHVpyB0jN51UlwjnaHo6G-RI4SQUkSjwcy4SFPAu6VoDeaYE0wJormUQEmIM5-kDS2vm8fbA_Tmk1LHj0tliSWWYZyUyhjsIH6cUn9M8_MsYGusFjdGObW-EP4UI-mwAPIJ1hMYIFtpvFZBADG5DPNo4u5aCy_5hMM-Iyyqy3Gdo9ytU6zETdeW_VrtA-wC9ugGHaDdifjqb4FaDMRd1ag_wClcfIY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5EQX3xPuq5gj7JSvdIsnks1VKvUmorvi25FsTaits-6K93ku5WFAr6uplkc0wy32QmMwCnWpFARpr5CFW5H8uM-0KxzOdcSB4nmYyNvdC_b9FmL755Ik9zEJRvYbATObaUOyO-3dVvOisiDNhQQVhApEXdeOouWIudzdZQqz98P4UMk6BEvCyhUeHr_ru2lUUq_ymLZgBMJ2gaq9CZdtH5l7xcjEfyQn3-it74rzGswUoBO73ahE_WYc4MNmCpXmZ724Tb7vh1-O7V1LNGXO4_WL92exJ67WH_w1l1vEd3we9ljsyVdZ0budFe_txp1bxL07deHh9b0GtcdetNv0i04AtEUyNfy1hxE4WcCKkY14mmSkpmqNKxYDqh1dhYqcalNsIknKESQrTgKPxsfHUabcP8YDgwu-BpGVUVDUSkMhGLLBJBFVtjGTGUEKpZBU5wAtJio-Sps4GHqIPYr8W0VOC8XJZUFZHKbcKM_gzqsyn12yRCxwy6k3KFU5xbaxcRAzMcYx-QT1FzQk1sNk3IEwQyNq5pBXYm7DH9W4h8iFo03_vD2I5hsX3ZSO-uW7f7sIzoizjfGH4A86P3sTlEhDOSR46nvwCXl_Sb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Acidity-Sensitive+Polymeric+Vector+for+Active+Targeted+siRNA+Delivery&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sun%2C+Chun-Yang&rft.au=Shen%2C+Song&rft.au=Xu%2C+Cong-Fei&rft.au=Li%2C+Hong-Jun&rft.date=2015-12-09&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=137&rft.issue=48&rft.spage=15217&rft.epage=15224&rft_id=info:doi/10.1021%2Fjacs.5b09602&rft.externalDocID=b813769856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |