Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery

Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stim...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 137; no. 48; pp. 15217 - 15224
Main Authors Sun, Chun-Yang, Shen, Song, Xu, Cong-Fei, Li, Hong-Jun, Liu, Yang, Cao, Zhi-Ting, Yang, Xian-Zhu, Xia, Jin-Xing, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.12.2015
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.5b09602

Cover

Abstract Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly­(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.
AbstractList Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHₑ) is the most universal and practical. However, the design of pHₑ-sensitive system is problematic because of the subtle differences between the pHₑ and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dₘ-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHₑ responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dₘ-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.
Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly­(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.
Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.
Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.
Author Sun, Chun-Yang
Li, Hong-Jun
Cao, Zhi-Ting
Xia, Jin-Xing
Shen, Song
Liu, Yang
Yang, Xian-Zhu
Wang, Jun
Xu, Cong-Fei
AuthorAffiliation University of Science and Technology of China
The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center
Innovation Center for Cell Signaling Network
University of Science & Technology of China
Hefei National Laboratory for Physical Sciences at Microscale
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Innovation Center for Cell Signaling Network
– name: The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center
– name: University of Science & Technology of China
– name: Hefei National Laboratory for Physical Sciences at Microscale
Author_xml – sequence: 1
  givenname: Chun-Yang
  surname: Sun
  fullname: Sun, Chun-Yang
– sequence: 2
  givenname: Song
  surname: Shen
  fullname: Shen, Song
– sequence: 3
  givenname: Cong-Fei
  surname: Xu
  fullname: Xu, Cong-Fei
– sequence: 4
  givenname: Hong-Jun
  surname: Li
  fullname: Li, Hong-Jun
– sequence: 5
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 6
  givenname: Zhi-Ting
  surname: Cao
  fullname: Cao, Zhi-Ting
– sequence: 7
  givenname: Xian-Zhu
  surname: Yang
  fullname: Yang, Xian-Zhu
– sequence: 8
  givenname: Jin-Xing
  surname: Xia
  fullname: Xia, Jin-Xing
– sequence: 9
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  email: jwang699@ustc.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26571079$$D View this record in MEDLINE/PubMed
BookMark eNqF0UlPxCAUB3BixjiL3jybHj3YEWgL5TgZ1zhRo6PXhsIbw6TLCNSk397Oogej8UR4_CCP9x-iXlVXgNAxwWOCKTlfSuXGSY4Fw3QPDUhCcZgQynpogDGmIU9Z1EdD55bdNqYpOUB9yhJOMBcDdDdvytoGE2W08W34DJUz3nxA8FgXbQnWqOAVlO_IYsM2Z3Np38CDDpx5up8EF1B0Vdseov2FLBwc7dYRerm6nE9vwtnD9e10MgtlTCMf6jxWAiIqEpkrLnSqmcpzDkzpWHKdMhwDZjwVuQYJqeCCx4mWImKU4Kj7zQidbt9d2fq9Aeez0jgFRSErqBuXUZEyEhPCk38p4TGPMGNdYyN0sqNNXoLOVtaU0rbZ16w6cLYFytbOWVh8E4KzdRTZOopsF0XH6Q-ujJfe1JW30hR_Xdr1uy4u68ZW3SB_p59NbpjW
CitedBy_id crossref_primary_10_1021_acsami_7b04447
crossref_primary_10_1016_j_ccr_2019_04_004
crossref_primary_10_1021_acsami_9b12492
crossref_primary_10_1007_s41061_017_0112_0
crossref_primary_10_1039_D1BM01788H
crossref_primary_10_1007_s11706_017_0401_0
crossref_primary_10_1016_j_nxmate_2024_100405
crossref_primary_10_1021_acsnano_8b03476
crossref_primary_10_1021_acsnano_9b05749
crossref_primary_10_1039_D1BM01154E
crossref_primary_10_1080_10717544_2016_1228716
crossref_primary_10_1039_C6BM00600K
crossref_primary_10_1016_j_biomaterials_2021_120945
crossref_primary_10_1007_s11307_019_01340_7
crossref_primary_10_1039_C8PY01577E
crossref_primary_10_1039_D0NR08487E
crossref_primary_10_1007_s42247_021_00236_z
crossref_primary_10_1039_C7BM01025G
crossref_primary_10_1002_polb_24596
crossref_primary_10_1080_10717544_2019_1606363
crossref_primary_10_1016_j_omtn_2023_04_006
crossref_primary_10_1021_acs_nanolett_6b02536
crossref_primary_10_1002_pola_28766
crossref_primary_10_1002_adma_202500883
crossref_primary_10_1088_1748_605X_abffb5
crossref_primary_10_1021_acsbiomaterials_1c01244
crossref_primary_10_1039_D4PY00660G
crossref_primary_10_1002_adhm_202301861
crossref_primary_10_1016_j_nantod_2021_101313
crossref_primary_10_1039_D0TB00289E
crossref_primary_10_1007_s00249_016_1145_y
crossref_primary_10_1021_acsami_1c24588
crossref_primary_10_1016_j_chempr_2023_06_011
crossref_primary_10_1016_j_jiec_2018_10_013
crossref_primary_10_1016_j_biomaterials_2022_121748
crossref_primary_10_1039_D2BM00611A
crossref_primary_10_1021_acs_langmuir_2c00905
crossref_primary_10_1016_j_actbio_2023_03_014
crossref_primary_10_1002_adma_201706220
crossref_primary_10_1038_s41428_021_00542_7
crossref_primary_10_1016_j_apsb_2021_11_004
crossref_primary_10_1002_jbm_b_34516
crossref_primary_10_1039_C7NR06689A
crossref_primary_10_1007_s40843_024_3048_0
crossref_primary_10_3390_nano9060860
crossref_primary_10_1021_acs_biomac_7b01696
crossref_primary_10_1007_s40820_023_01018_4
crossref_primary_10_1039_C8TB02496K
crossref_primary_10_3390_ijms17050626
crossref_primary_10_1002_chem_201702945
crossref_primary_10_1002_adma_201903277
crossref_primary_10_1021_acsami_9b18144
crossref_primary_10_1002_adma_201601498
crossref_primary_10_3389_fphar_2018_01230
crossref_primary_10_1007_s11426_022_1311_3
crossref_primary_10_3390_nano12101692
crossref_primary_10_3389_fbioe_2022_916952
crossref_primary_10_3390_molecules28237750
crossref_primary_10_1016_j_ijpharm_2017_12_018
crossref_primary_10_1016_j_cej_2021_130590
crossref_primary_10_1039_D0SC02937H
crossref_primary_10_1016_j_apsb_2022_09_021
crossref_primary_10_1016_j_giant_2021_100052
crossref_primary_10_1039_C8PY00333E
crossref_primary_10_1002_advs_202308659
crossref_primary_10_1002_ange_201814289
crossref_primary_10_1021_acs_nanolett_9b00737
crossref_primary_10_1021_acsami_8b06299
crossref_primary_10_1002_adtp_201800059
crossref_primary_10_1002_adfm_201705622
crossref_primary_10_1021_acsnano_6b02326
crossref_primary_10_1002_mabi_201600295
crossref_primary_10_1021_acs_langmuir_0c01636
crossref_primary_10_1016_j_ajps_2024_100949
crossref_primary_10_1021_acs_nanolett_7b01571
crossref_primary_10_1002_pola_28673
crossref_primary_10_1021_acsbiomaterials_7b00869
crossref_primary_10_3390_pharmaceutics13121995
crossref_primary_10_1002_wnan_1742
crossref_primary_10_1021_acsami_8b13059
crossref_primary_10_1039_C8BM01454J
crossref_primary_10_1002_smll_201902022
crossref_primary_10_1007_s11426_022_1243_5
crossref_primary_10_1021_acs_nanolett_6b05396
crossref_primary_10_1021_acsami_6b15853
crossref_primary_10_1039_D3NR05635J
crossref_primary_10_1002_adfm_201600170
crossref_primary_10_1002_advs_202303597
crossref_primary_10_1002_anie_201914511
crossref_primary_10_1021_acsnano_9b05425
crossref_primary_10_1002_smll_202006223
crossref_primary_10_3390_polym14061188
crossref_primary_10_1039_D3NJ01764H
crossref_primary_10_1016_j_actbio_2016_04_007
crossref_primary_10_1002_adma_202000416
crossref_primary_10_1039_C7NP00037E
crossref_primary_10_1016_j_nantod_2022_101738
crossref_primary_10_1002_smll_202000809
crossref_primary_10_1021_acs_chemmater_6b05120
crossref_primary_10_1021_acsnano_8b07746
crossref_primary_10_1016_j_actbio_2024_07_012
crossref_primary_10_1016_j_biomaterials_2023_122016
crossref_primary_10_1016_j_ajps_2019_08_003
crossref_primary_10_1007_s10118_018_2035_9
crossref_primary_10_2174_2468187308666180307152049
crossref_primary_10_1002_mame_201800060
crossref_primary_10_1039_C9TB01527B
crossref_primary_10_1039_D0QM00025F
crossref_primary_10_1002_marc_201800072
crossref_primary_10_1016_j_actbio_2019_05_047
crossref_primary_10_1021_acsami_9b12198
crossref_primary_10_1021_acsnano_7b00216
crossref_primary_10_1021_acsnano_6b03874
crossref_primary_10_1016_j_cej_2018_02_055
crossref_primary_10_1007_s12274_016_1309_1
crossref_primary_10_1016_j_msec_2017_10_004
crossref_primary_10_1039_C8OB00953H
crossref_primary_10_1016_j_mtadv_2022_100266
crossref_primary_10_3390_ph11040133
crossref_primary_10_1007_s11051_024_06198_7
crossref_primary_10_1016_j_jcis_2018_12_035
crossref_primary_10_1093_nsr_nwx062
crossref_primary_10_1016_j_biomaterials_2017_02_036
crossref_primary_10_1039_C6TB02364A
crossref_primary_10_3390_polym12091953
crossref_primary_10_1007_s11706_019_0469_9
crossref_primary_10_1016_j_jconrel_2022_11_039
crossref_primary_10_1016_j_actbio_2017_01_031
crossref_primary_10_1007_s12274_018_1965_4
crossref_primary_10_1016_j_nantod_2021_101083
crossref_primary_10_1002_adma_201707240
crossref_primary_10_1021_acsami_3c05007
crossref_primary_10_1021_jacs_6b12108
crossref_primary_10_1002_macp_201900309
crossref_primary_10_1002_smll_202207973
crossref_primary_10_1039_D1BM01723C
crossref_primary_10_1016_j_ijbiomac_2023_126912
crossref_primary_10_1002_pola_28586
crossref_primary_10_1021_acsanm_3c01520
crossref_primary_10_1016_j_actbio_2017_06_037
crossref_primary_10_1016_j_cej_2020_127808
crossref_primary_10_1021_acs_nanolett_6b02915
crossref_primary_10_1080_17425247_2023_2292678
crossref_primary_10_1002_mabi_202100025
crossref_primary_10_1021_acsami_7b14963
crossref_primary_10_1002_VIW_20200026
crossref_primary_10_1039_C9BM00055K
crossref_primary_10_1021_jacs_8b13889
crossref_primary_10_1021_acsanm_1c03966
crossref_primary_10_1021_acsnano_8b03726
crossref_primary_10_1016_j_bioactmat_2021_03_021
crossref_primary_10_1038_s41467_021_24191_9
crossref_primary_10_1021_acsami_6b14730
crossref_primary_10_1002_adma_201606628
crossref_primary_10_1016_j_biomaterials_2021_120737
crossref_primary_10_1021_acsami_7b06306
crossref_primary_10_1038_s41392_023_01536_y
crossref_primary_10_1021_acs_nanolett_7b05292
crossref_primary_10_1021_acscentsci_8b00363
crossref_primary_10_1002_macp_202100212
crossref_primary_10_1021_acs_bioconjchem_5b00666
crossref_primary_10_1002_advs_202103498
crossref_primary_10_1016_j_coph_2019_01_008
crossref_primary_10_1039_C7BM00747G
crossref_primary_10_1016_j_biomaterials_2016_05_023
crossref_primary_10_1021_jacs_8b05341
crossref_primary_10_1007_s11426_016_0466_x
crossref_primary_10_1021_acs_chemrev_3c00705
crossref_primary_10_1007_s10853_018_2689_2
crossref_primary_10_1007_s41061_017_0128_5
crossref_primary_10_1007_s11427_019_1569_4
crossref_primary_10_1007_s12274_019_2274_2
crossref_primary_10_1177_0885328219894695
crossref_primary_10_1021_acsami_0c16110
crossref_primary_10_1021_jacs_8b04929
crossref_primary_10_1016_j_jscs_2021_101361
crossref_primary_10_1021_acs_accounts_1c00635
crossref_primary_10_1021_jacs_8b06309
crossref_primary_10_1016_j_ejpb_2019_10_009
crossref_primary_10_1016_j_jconrel_2017_02_019
crossref_primary_10_1002_jgm_3090
crossref_primary_10_1002_jgm_3092
crossref_primary_10_1039_D1TB00537E
crossref_primary_10_1038_s41467_018_06093_5
crossref_primary_10_1039_C9BM00825J
crossref_primary_10_1002_ange_201914511
crossref_primary_10_2147_IJN_S504644
crossref_primary_10_1021_acs_biomac_1c00267
crossref_primary_10_1021_acsnano_9b05493
crossref_primary_10_3390_ijms23179698
crossref_primary_10_1002_adfm_201602963
crossref_primary_10_1021_acsnano_0c00269
crossref_primary_10_1016_j_jconrel_2018_04_033
crossref_primary_10_1039_C6BM00787B
crossref_primary_10_1039_C6TB01865C
crossref_primary_10_1002_anie_201814289
crossref_primary_10_1002_jgm_3088
crossref_primary_10_1002_adfm_201910168
crossref_primary_10_3390_gels8050298
crossref_primary_10_1038_s41467_018_05906_x
crossref_primary_10_1039_C6CS00592F
crossref_primary_10_1039_C6RA23173J
crossref_primary_10_1016_j_biomaterials_2016_02_031
crossref_primary_10_1016_j_nantod_2021_101160
crossref_primary_10_1021_acs_nanolett_9b02501
crossref_primary_10_1021_acs_chemrev_3c00611
crossref_primary_10_1021_acs_nanolett_9b01660
crossref_primary_10_1002_smtd_202401263
crossref_primary_10_1039_D0PY00234H
crossref_primary_10_1039_C7TB02804K
crossref_primary_10_1039_C8CC09956A
crossref_primary_10_1002_anie_201711354
crossref_primary_10_1016_j_polymer_2017_01_054
crossref_primary_10_1039_C9SC01841G
crossref_primary_10_1002_ange_201711354
crossref_primary_10_1016_j_jconrel_2020_10_013
crossref_primary_10_26599_NR_2025_94907030
crossref_primary_10_1039_D3BM00889D
crossref_primary_10_1016_j_actbio_2018_09_040
crossref_primary_10_1016_j_nantod_2023_102102
crossref_primary_10_1002_advs_202309583
crossref_primary_10_1016_j_xpro_2023_102138
crossref_primary_10_1021_acsami_0c02769
crossref_primary_10_1039_D0BM00794C
crossref_primary_10_1021_acs_chemrev_3c00062
crossref_primary_10_1039_C8TB02843E
crossref_primary_10_1186_s13045_024_01535_8
crossref_primary_10_2217_nnm_2023_0302
crossref_primary_10_1021_acs_chemrev_8b00199
crossref_primary_10_1002_marc_201800139
crossref_primary_10_1039_C6PY00177G
crossref_primary_10_1021_acs_accounts_8b00195
crossref_primary_10_1080_17425247_2019_1665021
crossref_primary_10_1093_rb_rbae135
crossref_primary_10_1002_adfm_201704806
crossref_primary_10_1007_s12274_017_1736_7
crossref_primary_10_1021_acsami_7b10098
crossref_primary_10_1021_acs_molpharmaceut_9b00261
crossref_primary_10_1007_s13346_019_00631_4
crossref_primary_10_1016_j_nantod_2023_102031
crossref_primary_10_1021_acsabm_9b01052
crossref_primary_10_1021_acsami_1c05079
crossref_primary_10_1016_j_jconrel_2018_09_029
crossref_primary_10_1002_adfm_201700220
crossref_primary_10_1002_adma_201803926
crossref_primary_10_1021_acsami_8b16395
crossref_primary_10_1016_j_cej_2020_127747
crossref_primary_10_1002_wnan_1595
crossref_primary_10_1002_cjoc_201900064
crossref_primary_10_1007_s10118_018_2078_y
crossref_primary_10_2147_IJN_S322901
crossref_primary_10_1016_j_biomaterials_2017_09_013
crossref_primary_10_1016_j_ejpb_2024_114378
crossref_primary_10_1016_j_mtcomm_2022_103659
crossref_primary_10_1016_j_ajps_2022_100773
crossref_primary_10_1039_C6BM00960C
crossref_primary_10_1016_j_reactfunctpolym_2021_104970
crossref_primary_10_1021_acs_bioconjchem_7b00598
crossref_primary_10_1007_s12274_022_5184_7
crossref_primary_10_1039_C8NR08271E
crossref_primary_10_1002_nano_202100072
crossref_primary_10_1016_j_cej_2020_126891
crossref_primary_10_1039_C9BM00724E
crossref_primary_10_1021_accountsmr_2c00072
crossref_primary_10_1039_C9CC03846A
crossref_primary_10_1016_j_addr_2017_03_004
crossref_primary_10_1016_j_drudis_2018_01_042
crossref_primary_10_1016_j_actbio_2017_10_034
crossref_primary_10_1016_j_actbio_2021_05_013
crossref_primary_10_1002_adfm_201801840
crossref_primary_10_1016_j_biomaterials_2017_11_038
crossref_primary_10_1016_j_nantod_2023_102137
crossref_primary_10_1002_smll_202104632
crossref_primary_10_1021_acs_biomac_7b01659
crossref_primary_10_1016_j_cej_2018_09_076
crossref_primary_10_1021_jacs_2c06877
crossref_primary_10_1021_acs_nanolett_8b03828
crossref_primary_10_2147_IJN_S249144
crossref_primary_10_2147_IJN_S360488
crossref_primary_10_1039_C5RA27777A
crossref_primary_10_1002_adma_202007426
crossref_primary_10_1021_jacs_3c04454
crossref_primary_10_1039_C9BM00039A
crossref_primary_10_1039_D0TB01836H
crossref_primary_10_1002_adma_201703285
crossref_primary_10_1016_j_pmatsci_2023_101170
crossref_primary_10_1039_C7TB02513K
crossref_primary_10_1186_s12951_025_03223_2
crossref_primary_10_1016_j_ijpharm_2019_06_023
crossref_primary_10_1039_C6PY00427J
crossref_primary_10_1021_acs_langmuir_0c02532
crossref_primary_10_1002_adhm_201701070
crossref_primary_10_1039_C8PY00579F
crossref_primary_10_1021_acs_biomac_8b00425
crossref_primary_10_1016_j_reactfunctpolym_2019_04_021
crossref_primary_10_1080_17425247_2018_1526922
crossref_primary_10_1016_j_bioactmat_2021_01_034
crossref_primary_10_1016_j_colsurfb_2019_110428
Cites_doi 10.1021/mp100223d
10.1021/nn101638u
10.1021/bc900144m
10.1007/s11095-007-9348-7
10.1016/S0927-7765(99)00156-3
10.1016/0003-2697(78)90029-5
10.1073/pnas.1303958110
10.1021/ja302705v
10.1038/7933
10.1002/adfm.201202992
10.1002/anie.201411615
10.1016/j.bmcl.2014.03.057
10.1002/adfm.201501548
10.1021/nn300524f
10.1002/anie.200902672
10.1074/jbc.M303938200
10.1038/nrc1713
10.1021/ja0711617
10.1021/ja908124g
10.1038/nrd2591
10.1016/S0168-3659(99)00248-5
10.1111/j.1365-2796.2009.02189.x
10.1021/ja207150n
10.1021/nn301148e
10.2147/IJN.S76092
10.1016/j.jconrel.2015.04.038
10.1039/c3cs60048c
10.1038/nature08956
10.1002/anie.201300178
10.3390/cancers3010408
10.1021/ja5088024
10.1002/adma.201205088
10.1038/nbt1171
10.1073/pnas.0607705103
10.1038/nmat3819
10.1016/j.addr.2015.01.007
10.1073/pnas.1200718109
10.1039/C5TB00031A
10.1021/mp100253e
10.1038/nmat3765
10.1016/j.cell.2009.03.017
10.1002/adma.201403877
10.1016/j.addr.2010.09.001
10.1038/mt.2014.18
10.1021/ja303737a
10.1016/j.jconrel.2008.04.024
10.1073/pnas.1304987110
10.1002/adma.201303360
10.1038/nbt.1807
10.1038/ncomms5280
10.1016/j.colsurfb.2006.02.006
10.1038/sj.gt.3302843
10.1021/nl0479987
10.1038/nrd2742
10.1021/ja311180x
10.1016/j.biotechadv.2013.08.002
10.1021/jacs.5b01435
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.5b09602
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 15224
ExternalDocumentID 26571079
10_1021_jacs_5b09602
b813769856
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-db4c9e3295abc79d8d6cbb7e6cd4a7d8604e06789bdeae8979745da9362103863
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Sep 04 21:39:48 EDT 2025
Thu Sep 04 17:31:44 EDT 2025
Mon Jul 21 05:48:07 EDT 2025
Tue Jul 01 04:33:20 EDT 2025
Thu Apr 24 23:05:44 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-db4c9e3295abc79d8d6cbb7e6cd4a7d8604e06789bdeae8979745da9362103863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26571079
PQID 1747306642
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2986141175
proquest_miscellaneous_1747306642
pubmed_primary_26571079
crossref_primary_10_1021_jacs_5b09602
crossref_citationtrail_10_1021_jacs_5b09602
acs_journals_10_1021_jacs_5b09602
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-09
PublicationDateYYYYMMDD 2015-12-09
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/mp100223d
– ident: ref33/cit33
  doi: 10.1021/nn101638u
– ident: ref41/cit41
  doi: 10.1021/bc900144m
– ident: ref48/cit48
  doi: 10.1007/s11095-007-9348-7
– ident: ref50/cit50
  doi: 10.1016/S0927-7765(99)00156-3
– ident: ref44/cit44
  doi: 10.1016/0003-2697(78)90029-5
– ident: ref45/cit45
  doi: 10.1073/pnas.1303958110
– ident: ref34/cit34
  doi: 10.1021/ja302705v
– ident: ref54/cit54
  doi: 10.1038/7933
– ident: ref30/cit30
  doi: 10.1002/adfm.201202992
– ident: ref24/cit24
  doi: 10.1002/anie.201411615
– ident: ref32/cit32
  doi: 10.1016/j.bmcl.2014.03.057
– ident: ref40/cit40
  doi: 10.1002/adfm.201501548
– ident: ref17/cit17
  doi: 10.1021/nn300524f
– ident: ref9/cit9
  doi: 10.1002/anie.200902672
– ident: ref12/cit12
  doi: 10.1074/jbc.M303938200
– ident: ref25/cit25
  doi: 10.1038/nrc1713
– ident: ref38/cit38
  doi: 10.1021/ja0711617
– ident: ref42/cit42
  doi: 10.1021/ja908124g
– ident: ref57/cit57
  doi: 10.1038/nrd2591
– ident: ref39/cit39
  doi: 10.1016/S0168-3659(99)00248-5
– ident: ref53/cit53
  doi: 10.1111/j.1365-2796.2009.02189.x
– ident: ref28/cit28
  doi: 10.1021/ja207150n
– ident: ref10/cit10
  doi: 10.1021/nn301148e
– ident: ref46/cit46
  doi: 10.2147/IJN.S76092
– ident: ref43/cit43
  doi: 10.1016/j.jconrel.2015.04.038
– ident: ref14/cit14
  doi: 10.1039/c3cs60048c
– ident: ref7/cit7
  doi: 10.1038/nature08956
– ident: ref35/cit35
  doi: 10.1002/anie.201300178
– ident: ref18/cit18
  doi: 10.3390/cancers3010408
– ident: ref4/cit4
  doi: 10.1021/ja5088024
– ident: ref11/cit11
  doi: 10.1002/adma.201205088
– ident: ref19/cit19
  doi: 10.1038/nbt1171
– ident: ref20/cit20
  doi: 10.1073/pnas.0607705103
– ident: ref22/cit22
  doi: 10.1038/nmat3819
– ident: ref6/cit6
  doi: 10.1016/j.addr.2015.01.007
– ident: ref56/cit56
  doi: 10.1073/pnas.1200718109
– ident: ref47/cit47
  doi: 10.1039/C5TB00031A
– ident: ref21/cit21
  doi: 10.1021/mp100253e
– ident: ref5/cit5
  doi: 10.1038/nmat3765
– ident: ref52/cit52
  doi: 10.1016/j.cell.2009.03.017
– ident: ref8/cit8
  doi: 10.1002/adma.201403877
– ident: ref36/cit36
  doi: 10.1016/j.addr.2010.09.001
– ident: ref51/cit51
  doi: 10.1038/mt.2014.18
– ident: ref55/cit55
  doi: 10.1021/ja303737a
– ident: ref26/cit26
  doi: 10.1016/j.jconrel.2008.04.024
– ident: ref16/cit16
  doi: 10.1073/pnas.1304987110
– ident: ref29/cit29
  doi: 10.1002/adma.201303360
– ident: ref1/cit1
  doi: 10.1038/nbt.1807
– ident: ref15/cit15
  doi: 10.1038/ncomms5280
– ident: ref49/cit49
  doi: 10.1016/j.colsurfb.2006.02.006
– ident: ref37/cit37
  doi: 10.1038/sj.gt.3302843
– ident: ref27/cit27
  doi: 10.1021/nl0479987
– ident: ref3/cit3
  doi: 10.1038/nrd2742
– ident: ref23/cit23
  doi: 10.1021/ja311180x
– ident: ref31/cit31
  doi: 10.1016/j.biotechadv.2013.08.002
– ident: ref2/cit2
  doi: 10.1021/jacs.5b01435
SSID ssj0004281
Score 2.6132755
Snippet Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15217
SubjectTerms adsorption
blood circulation
chemical bonding
composite polymers
lung neoplasms
Micelles
nanoparticles
neoplasm cells
Neoplasms - metabolism
polyethylene glycol
Polymers - chemistry
reticuloendothelial system
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - pharmacokinetics
small interfering RNA
Tissue Distribution
Title Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery
URI http://dx.doi.org/10.1021/jacs.5b09602
https://www.ncbi.nlm.nih.gov/pubmed/26571079
https://www.proquest.com/docview/1747306642
https://www.proquest.com/docview/2986141175
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8MPuiL3x_4lZHokxmBbW3XR4Ii0UiMgOFt6dcSIg4D4wH_eq9lg4hZ9HW7be311vtd79crQtdK4rrwFXUBqjI3EDFzuaSxyxgXLAhjEWizoP_cIe1-8DjAgxVBdj2D75n6QHJaxcJAbZhqNz0CFmYgULO72v_ohfUc5tKQ-BnBff1p44Dk9KcDKkCV1ru0dtFDvkdnQSp5r85SUZVfv0s2_tHwPbSTAUynsbCIfbShkwO01czPdTtET73Zx3jiNORQAQJ3u4bBbuY852U8mtv8jfNml_Kd2IrZez1LGNfKmQ5fOw3nTo8Mn2N-hPqt-16z7WZHKrgccFPqKhFIpn2PYS4kZSpURApBNZEq4FSFpBZo47-YUJrrkFEIN7DiDNycqaRO_GNUSsaJPkWOEn5Nkjr3ZcwDHvu8XoO30RhrgjFRtIwqoIAo-yWmkc12exBtmKuZWsroNh-LSGY1yc3RGKMC6Zul9OeiFkeBXCUf1gh0azIgPNHjGbQBLBJiJIi5imU8FgJkMRVMy-hkYRPLr3kEAyKj7OwffTtH2wCusKW-sAtUSiczfQkAJhVX1nq_AQYI6bc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb8IwDI6m7cAuez_Ys0jbaSqijyTNEbEhNh6aBkzcqrwqoTGYKBzYr58TCmhISFxTN3USN_4cOzZCD0piTwSKugBVmRuKhLlc0sRljAsWRokItTnQb7ZIrRu-9XAvu6xu7sIAEyn0lFon_iq7gEkTBI1YGMQNO-4e4BDfVGooV9qra5B-5C3QLo1IkMW5r79t9JBM_-uhDeDSKpnqIWot2bOxJV_F6UQU5e9a5sat-T9CBxncdMpz-ThGO3p4gnKVRZW3U1TvTL9HY6cs-wrwuNs28exmB3TeR4OZ9eY4n_Zg30ksmX3WseHjWjlp_6NVdp71wER3zM5Qt_rSqdTcrMCCywFFTVwlQsl04DPMhaRMRYpIIagmUoWcqoiUQm20GRNKcx0xCsYHVpyB0jN51UlwjnaHo6G-RI4SQUkSjwcy4SFPAu6VoDeaYE0wJormUQEmIM5-kDS2vm8fbA_Tmk1LHj0tliSWWYZyUyhjsIH6cUn9M8_MsYGusFjdGObW-EP4UI-mwAPIJ1hMYIFtpvFZBADG5DPNo4u5aCy_5hMM-Iyyqy3Gdo9ytU6zETdeW_VrtA-wC9ugGHaDdifjqb4FaDMRd1ag_wClcfIY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5EQX3xPuq5gj7JSvdIsnks1VKvUmorvi25FsTaits-6K93ku5WFAr6uplkc0wy32QmMwCnWpFARpr5CFW5H8uM-0KxzOdcSB4nmYyNvdC_b9FmL755Ik9zEJRvYbATObaUOyO-3dVvOisiDNhQQVhApEXdeOouWIudzdZQqz98P4UMk6BEvCyhUeHr_ru2lUUq_ymLZgBMJ2gaq9CZdtH5l7xcjEfyQn3-it74rzGswUoBO73ahE_WYc4MNmCpXmZ724Tb7vh1-O7V1LNGXO4_WL92exJ67WH_w1l1vEd3we9ljsyVdZ0budFe_txp1bxL07deHh9b0GtcdetNv0i04AtEUyNfy1hxE4WcCKkY14mmSkpmqNKxYDqh1dhYqcalNsIknKESQrTgKPxsfHUabcP8YDgwu-BpGVUVDUSkMhGLLBJBFVtjGTGUEKpZBU5wAtJio-Sps4GHqIPYr8W0VOC8XJZUFZHKbcKM_gzqsyn12yRCxwy6k3KFU5xbaxcRAzMcYx-QT1FzQk1sNk3IEwQyNq5pBXYm7DH9W4h8iFo03_vD2I5hsX3ZSO-uW7f7sIzoizjfGH4A86P3sTlEhDOSR46nvwCXl_Sb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Acidity-Sensitive+Polymeric+Vector+for+Active+Targeted+siRNA+Delivery&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sun%2C+Chun-Yang&rft.au=Shen%2C+Song&rft.au=Xu%2C+Cong-Fei&rft.au=Li%2C+Hong-Jun&rft.date=2015-12-09&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=137&rft.issue=48&rft.spage=15217&rft.epage=15224&rft_id=info:doi/10.1021%2Fjacs.5b09602&rft.externalDocID=b813769856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon