Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C 2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols i...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 13; pp. 7301 - 7312 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
05.04.2023
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.2c13295 |
Cover
Abstract | Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C 2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called “proton-transfer-coupled-dearomatization (PTCD)”, which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C 2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate’s helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N–H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs. |
---|---|
AbstractList | Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C ₂-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called “proton-transfer-coupled-dearomatization (PTCD)”, which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C ₂-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate’s helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N–H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs. Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible -symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined -symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs. Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoar-enes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is pre-dicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)center dot center dot center dot O halogen bond, N-H center dot center dot center dot O hydrogen bond, and pi center dot center dot center dot pi stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs. Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs. Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C 2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called “proton-transfer-coupled-dearomatization (PTCD)”, which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C 2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate’s helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N–H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs. |
Author | Ishihara, Kazuaki Pan, Ming Zheng, Hanliang Cai, Liu Xue, Xiao-Song Uyanik, Muhammet |
AuthorAffiliation | Department of Chemistry Chinese Academy of Sciences Zhejiang Normal University Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study Graduate School of Engineering University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Graduate School of Engineering – name: Department of Chemistry – name: Chinese Academy of Sciences – name: School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study – name: University of Chinese Academy of Sciences – name: Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences – name: Zhejiang Normal University |
Author_xml | – sequence: 1 givenname: Hanliang surname: Zheng fullname: Zheng, Hanliang organization: Zhejiang Normal University – sequence: 2 givenname: Liu surname: Cai fullname: Cai, Liu organization: Chinese Academy of Sciences – sequence: 3 givenname: Ming surname: Pan fullname: Pan, Ming organization: Chinese Academy of Sciences – sequence: 4 givenname: Muhammet orcidid: 0000-0002-9751-1952 surname: Uyanik fullname: Uyanik, Muhammet organization: Graduate School of Engineering – sequence: 5 givenname: Kazuaki orcidid: 0000-0003-4191-3845 surname: Ishihara fullname: Ishihara, Kazuaki organization: Graduate School of Engineering – sequence: 6 givenname: Xiao-Song orcidid: 0000-0003-4541-8702 surname: Xue fullname: Xue, Xiao-Song email: xuexs@sioc.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36940192$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFG2fkIxKk2I6T2McqLbSiiEPLOfLas6xXib3YDij9RfxMHDb0gEBwssf-3oz05p2gI-cdIPSckjNKGH2zUzqeMU1LJqtHaEUrRoqKsvoIrQghrGhEXR6jkxh3ueRM0CfouKwlJ1SyFfreqqT6KabidlzHFFQCfAW91arH7VYFpRME_EElvbXuM76AXA7WQcRpC_jSKZesj9CDTvarTRO27ufPddzaWV7cTftceeNVgFl2mHcPBp_HaRggBavxe5tUcQEq-EHlPoBv9zb4Pg_3zt7nJ--eoscb1Ud4tpyn6NPby7v2qrj5-O66Pb8pFGdlKigvSbmWXFKijTLE8KaEigsjBdQUGiqNrAyjlBu94VLLhtWVMI2sQEnQdXmKXh767oP_MkJM3WCjhr5XDvwYu5Lw7GJDK_FPlDVCCEJqzjP6YkHH9QCm2wc7qDB1vxaRAXEAvsHab6K24DQ8YHlzsqZNU7N8I7TNds2etH50KUtf_b80068PtA4-xgCbB5KSbg5UNweqWwKVcfYbrpfhOSu2_5toMWZ-3PkxuLyxP6M_AKk_3Pw |
CitedBy_id | crossref_primary_10_1039_D4OB01575D crossref_primary_10_3762_bjoc_20_127 crossref_primary_10_1021_acscatal_4c01756 crossref_primary_10_1002_adsc_202300375 crossref_primary_10_1039_D4RA01050G crossref_primary_10_1021_acs_joc_4c02998 crossref_primary_10_6023_cjoc202304008 crossref_primary_10_1021_acs_joc_4c01168 crossref_primary_10_1039_D3SC05677E crossref_primary_10_1021_acs_joc_3c00466 crossref_primary_10_1021_acscatal_4c01563 crossref_primary_10_1021_acscatal_4c06557 crossref_primary_10_1021_acs_orglett_4c04041 crossref_primary_10_1039_D3GC02429F crossref_primary_10_1002_cctc_202300820 crossref_primary_10_1021_acscatal_3c02018 |
Cites_doi | 10.1055/a-1577-7638 10.1021/acs.joc.9b03012 10.1002/chem.201803652 10.1021/ja0211205 10.1073/pnas.44.2.98 10.3987/rev-17-877 10.1039/c9ob00028c 10.1021/acs.jctc.9b00143 10.1021/acscatal.0c01491 10.1021/jacs.6b02391 10.1021/acs.joc.7b01616 10.1021/acs.joc.0c00347 10.1021/acscentsci.0c01651 10.1055/s-0035-1561313 10.1002/adsc.201800521 10.1021/acs.accounts.6b00099 10.1016/j.tetlet.2017.10.019 10.1016/j.tetlet.2016.10.016 10.1021/acs.accounts.7b00377 10.1126/science.1088172 10.1021/acs.joc.7b01941 10.1021/jacs.2c12307 10.1021/ja100936w 10.1021/acs.joc.7b01716 10.1002/anie.201809432 10.1016/j.tet.2005.05.058 10.1021/jacs.8b02143 10.1016/j.tetlet.2014.06.051 10.1021/acs.joc.2c01765 10.1021/acs.accounts.8b00137 10.1016/j.tet.2010.04.060 10.1002/asia.202101115 10.1016/j.tet.2005.05.059 10.1002/chem.201700667 10.1126/science.aaf8078 10.1002/tcr.202100119 10.1021/acs.orglett.7b03167 10.1002/chem.201601844 10.1021/jacs.9b12998 10.1055/s-0036-1588808 10.1021/acs.accounts.6b00096 10.1021/ja063944i 10.1021/acs.accounts.1c00326 10.1002/anie.201303559 10.1002/anie.201204822 10.1021/acs.joc.1c00921 10.1002/anie.201103077 10.1021/ja401074u 10.1021/acs.chemrev.5b00484 10.1002/anie.202013172 10.1002/9783527829569 10.1021/acs.chemrev.9b00073 10.1039/c9cp06869d 10.1021/acscatal.7b00975 10.1021/acs.accounts.6b00093 10.15227/orgsyn.098.0001 10.1021/om301215a 10.1021/jp504415p 10.1021/jacs.9b00936 10.1039/d1sc02880d 10.1021/ar700111a 10.1021/jacs.7b11303 10.1021/jacs.0c04486 10.1002/ejoc.202000660 10.1039/c5cs00356c 10.1039/c6cc00384b 10.1021/acscatal.6b03380 10.1002/9783527698479 10.1063/1.3382344 10.1021/acs.orglett.5b02501 10.1002/jcc.26469 10.1016/j.tetlet.2006.11.073 10.1021/ar300109n 10.1021/cs501828e 10.1021/jacs.0c09323 10.1007/128_2015_665 10.1002/anie.201507180 10.1039/c8ob01652f 10.1002/anie.200907352 10.1021/jp810292n 10.1007/978-981-13-0785-0_8 10.1002/wcms.1299 10.1038/nature07368 10.1002/anie.202205277 10.1002/anie.201208471 10.1002/chem.202002026 10.1021/ja0155276 10.1021/jacs.7b05160 10.1002/anie.200705816 10.1002/anie.201309967 10.1126/science.1083622 10.1021/acs.chemrev.5b00547 10.1038/s41557-022-00954-9 10.1021/acs.chemrev.0c00523 10.1021/jacs.1c01303 10.1021/acs.accounts.6b00050 10.1039/c8ob00463c 10.1021/acs.chemrev.5b00163 10.1021/jacs.7b11701 10.1021/jacs.1c11032 10.1021/acs.chemrev.9b00338 10.1021/cr100212h 10.1021/jacs.0c06942 10.1002/anie.201400405 10.1021/acs.accounts.1c00075 10.1021/acscatal.9b04322 10.1002/9783527635207 10.1039/c5ob02526e 10.1002/chem.201200497 10.1038/nature21701 10.1002/anie.201713012 10.1002/chir.20140 10.26434/chemrxiv.8864204.v5 10.1055/s-0037-1611636 10.1039/c9cc01320b 10.1016/j.ccr.2006.04.017 10.1063/1.466884 10.1039/c8cs00389k 10.2174/1385272824999200620223218 10.1002/chem.201501583 10.24820/ark.5550190.p011.639 10.1021/jacs.6b11348 10.1002/ejoc.202000107 10.1021/cr9902852 10.1002/anie.200800464 10.1002/chem.201504844 10.1021/jacs.9b08243 10.1039/c1cc10129c 10.2174/1385272822666181211122802 10.1021/acs.orglett.6b02816 10.1002/anie.201302358 10.3987/REV-17-877 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.2c13295 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed Web of Science MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 7312 |
ExternalDocumentID | 36940192 000961776200001 10_1021_jacs_2c13295 d294802450 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China; Ministry of Science and Technology, China grantid: 2021YFF0701700 – fundername: Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22122104; 22193012; 21933004; 22203076 – fundername: CAS Project for Young Scientists in Basic Research grantid: YSBR-052 – fundername: Grants-in-Aid for Scientific Research; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI) grantid: 21H01932 |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA AHGAQ CITATION CUPRZ 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-14303b94910cdad0d473e548d98e61e719d95d2114dcf49c972658d795ea9ec63 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 19 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000961776200001 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Wed Jul 30 11:13:26 EDT 2025 Mon Jul 21 11:03:09 EDT 2025 Wed Feb 19 02:24:51 EST 2025 Fri Sep 26 20:26:58 EDT 2025 Wed Aug 06 11:21:44 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Tue Jul 01 03:54:28 EDT 2025 Fri Apr 07 12:03:10 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | HYPERVALENT DFT OXIDATIVE DEAROMATIZATION MECHANISTIC INSIGHTS ORGANIC-REACTIONS IODINE CATALYSTS NONCOVALENT INTERACTIONS SPIROCYCLIZATION REARRANGEMENTS SELECTIVITY |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a423t-14303b94910cdad0d473e548d98e61e719d95d2114dcf49c972658d795ea9ec63 |
Notes | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9751-1952 0000-0003-4541-8702 0000-0003-4191-3845 |
PMID | 36940192 |
PQID | 2788800644 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_36940192 webofscience_primary_000961776200001CitationCount acs_journals_10_1021_jacs_2c13295 crossref_citationtrail_10_1021_jacs_2c13295 proquest_miscellaneous_3040427158 crossref_primary_10_1021_jacs_2c13295 proquest_miscellaneous_2788800644 webofscience_primary_000961776200001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-05 |
PublicationDateYYYYMMDD | 2023-04-05 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref37/cit37g ref37/cit37f ref37/cit37i ref37/cit37h ref37/cit37c ref1/cit1d ref37/cit37b ref37/cit37e ref37/cit37a Ishihara K. (ref5/cit5h) 2022 ref23/cit23 ref37/cit37s ref37/cit37r ref37/cit37t ref1/cit1a ref37/cit37o ref37/cit37n ref1/cit1c ref37/cit37q ref1/cit1b ref37/cit37p ref37/cit37k ref20/cit20 ref37/cit37j ref37/cit37m ref37/cit37l ref5/cit5b ref5/cit5c ref10/cit10 ref16/cit16c ref16/cit16b ref35/cit35 ref16/cit16a ref19/cit19 ref16/cit16d ref3/cit3b ref3/cit3c ref3/cit3a ref3/cit3d ref3/cit3e ref5/cit5f ref5/cit5g ref5/cit5d ref6/cit6 Quideau S. (ref5/cit5a) 2016 ref30/cit30m ref30/cit30l ref30/cit30o ref30/cit30n ref29/cit29 ref8/cit8a ref8/cit8b ref28/cit28 Zhou Q.-L. (ref2/cit2b) 2011 ref18/cit18b ref4/cit4a ref4/cit4b ref4/cit4c ref18/cit18a ref30/cit30a ref22/cit22 ref30/cit30c ref30/cit30b You S.-L. (ref4/cit4e) 2016 ref4/cit4d ref30/cit30i ref30/cit30h ref4/cit4f ref30/cit30k ref4/cit4g ref30/cit30j ref4/cit4h ref30/cit30e ref4/cit4i ref30/cit30d ref30/cit30g Ishihara K. (ref37/cit37d) 2022 ref30/cit30f ref9/cit9 ref33/cit33a ref2/cit2f ref12/cit12j ref2/cit2e ref12/cit12i ref2/cit2d ref12/cit12h ref13/cit13a ref12/cit12g ref13/cit13b ref12/cit12f ref13/cit13c ref12/cit12e ref13/cit13d ref12/cit12d ref13/cit13e ref12/cit12c ref13/cit13f ref12/cit12b ref13/cit13g ref12/cit12a ref13/cit13h ref13/cit13i ref2/cit2c ref13/cit13j ref13/cit13k ref31/cit31 ref2/cit2a ref13/cit13l ref13/cit13m ref33/cit33c ref33/cit33b ref33/cit33d ref17/cit17 ref11/cit11j ref11/cit11g ref11/cit11f ref21/cit21 ref11/cit11i ref11/cit11h ref11/cit11c ref11/cit11b ref11/cit11e ref11/cit11d ref11/cit11a ref32/cit32e ref32/cit32d ref32/cit32c ref32/cit32b ref32/cit32a ref36/cit36 ref25/cit25 ref14/cit14 Uyanik M. (ref5/cit5e) 2019; 182 ref26/cit26 ref24/cit24b ref15/cit15 ref24/cit24a ref7/cit7 Deng, QF (WOS:000518875700023) 2020; 85 Cavallo, G (WOS:000371106000018) 2016; 116 Shao, HL (WOS:000636686900037) 2021; 143 Houk, KN (WOS:000259265200031) 2008; 455 (000961776200001.86) 1000 Wang, DZ (WOS:000230327300009) 2005; 61 Wu, H (WOS:000333001500032) 2014; 53 Wheeler, SE (WOS:000340439800001) 2014; 118 Wang, Q (WOS:000595544800036) 2020; 142 Brown, M (WOS:000372526500020) 2016; 22 Ochiai, M (WOS:000180468900035) 2003; 125 GRIMME S (WOS:000961776200001.78) 2010; 132 Banik, SM (WOS:000374812100003) 2016; 138 Cheong, PHY (WOS:000294699500014) 2011; 111 Meyer, S (WOS:000670222500001) 2021; 12 Wang, DZ (WOS:000230327300008) 2005; 61 Robidas, R (WOS:000744545700005) 2021 Kraszewski, K (WOS:000557403100001) 2020; 26 Banik, SM (WOS:000378816200032) 2016; 353 An, JZ (WOS:000563974000001) 2020; 2020 Pandey, CB (WOS:000562073600065) 2020; 85 Dohi, T (WOS:000316774100052) 2013; 135 Parra, A (WOS:000505627700001) 2019; 119 Zheng, C (WOS:000634764100009) 2021; 7 Sperger, T (WOS:000361254500014) 2015; 115 Pouységu, L (WOS:000255530100013) 2008; 47 Zhao, Y (WOS:000253323800001) 2008; 41 Wertjes, WC (WOS:000448662800009) 2018; 47 Frisch (000961776200001.69) 2013 Uyanik, M (WOS:000276008000015) 2010; 49 Neel, AJ (WOS:000397619700042) 2017; 543 Metrano, AJ (WOS:000582672400006) 2020; 120 Ochiai, M (WOS:000240651400005) 2006; 250 Basdevant, B (WOS:000362384700068) 2015; 17 Wöste, TH (WOS:000371689200003) 2016; 48 Muniz, K (WOS:000404004000012) 2017; 49 Sun, TY (WOS:000374033700002) 2016; 52 Uyanik, M. (000961776200001.29) 2019; 182 Pracht, P (WOS:000526524500051) 2020; 22 Bulfield, D (WOS:000384698500001) 2016; 22 Harned, AM (WOS:000428671200016) 2018; 16 Sun, TY (WOS:000597422100001) 2021; 42 Jain, N (WOS:000399326500005) 2017; 23 Ahn, S (WOS:000471835200002) 2019; 119 Cao, Y (WOS:000387303200034) 2016; 18 Wheeler, SE (WOS:000376331400030) 2016; 49 Wang, YJ (WOS:000763125900029) 2022; 144 Fujita, M (WOS:000288386600087) 2011; 47 Jiang, HM (WOS:000468401700028) 2019; 55 Mizar, P (WOS:000337094200048) 2014; 53 Metrano, AJ (WOS:000392036900068) 2017; 139 KOSHLAND, DE (WOS:A1958WJ52000007) 1958; 44 Fujita, M (WOS:000415773700001) 2017; 58 Muñiz, K (WOS:000436027200020) 2018; 51 Sreenithya, A (WOS:000402851600059) 2017; 7 Mustard, TJL (WOS:000350843500044) 2015; 5 Zhou, Q.-L. (000961776200001.6) 2011 Haubenreisser, S (WOS:000368065300064) 2016; 55 Heinen, F (WOS:000428350100054) 2018; 57 Wang, FL (WOS:000805517500001) 2022; 14 Uyanik, M (WOS:000621826900001) 2021; 98 Zhang, DY (WOS:000357328200009) 2015; 21 Balcells, D (WOS:000376331400031) 2016; 49 Diéguez, M (WOS:000687058900011) 2021; 54 Ganji, B (WOS:000465615200005) 2019; 17 Uyanik, M (WOS:000280344200015) 2010; 66 Häfliger, J (WOS:000826619000056) 2022; 61 Jia, J (WOS:000695574400001) 2022; 54 Garcia-Viloca, M (WOS:000187908500037) 2004; 303 Mayer, RJ (WOS:000526392600035) 2020; 142 Wu, WT (WOS:000372255400005) 2016; 45 Funes-Ardoiz, I. (000961776200001.81) 2018 Bootsma, A. N. (000961776200001.70) 2019 Röben, C (WOS:000296071700041) 2011; 50 Fujita, M (WOS:000433999800001) 2018; 96 Marenich, AV (WOS:000265687500026) 2009; 113 Mennie, KM (WOS:000430155800011) 2018; 140 PETERSON, KA (WOS:A1994NL68500039) 1994; 100 Uyanik, M (WOS:000502169900095) 2019; 9 Engelage, E (WOS:000451908600005) 2018; 24 Peng, Q (WOS:000428356000022) 2018; 140 Dangat, Y (WOS:000579087600022) 2020; 142 Robidas, R (WOS:000663158300001) 2021; 21 Wang, DZ (WOS:000230320200025) 2005; 17 Crawford, JM (WOS:000459926800003) 2019; 51 Liu, XH (WOS:000413392000021) 2017; 50 Dohi, T (WOS:000255791200025) 2008; 47 Zheng, HL (WOS:000591895700005) 2020; 24 Harned, AM (WOS:000340696200001) 2014; 55 Gribble, MW (WOS:000543780500041) 2020; 142 Uyanik, M (WOS:000416204400038) 2017; 82 Yoon, TP (WOS:000181519500033) 2003; 299 Zhang, XH (WOS:000378470300024) 2016; 49 Quideau, S (WOS:000431732700003) 2016; 373 Johnson, ER (WOS:000277445400041) 2010; 132 Purich, DL (WOS:000311230000016) 2010 Xie, HJ (WOS:000318060400008) 2013; 32 Zhuo, CX (WOS:000312305400004) 2012; 51 Bootsma, AN (WOS:000476684700018) 2019; 141 Ishihara, K. (000961776200001.119) 2022 Kong, WQ (WOS:000315209900013) 2013; 52 Breugst, M (WOS:000563836500001) 2020; 2020 Grimme, S (WOS:000468242900009) 2019; 15 Farid, U (WOS:000320776900042) 2013; 52 Pape, AR (WOS:000088838500008) 2000; 100 Grimme, S (WOS:000306921600029) 2012; 18 Crawford, JM (WOS:000423496700004) 2018; 140 Pune, k a r (000961776200001.4) 2018 Juneau, A (WOS:000868173100001) 2022; 87 Zheng, HL (WOS:000490358900039) 2019; 141 Yoshimura, A (WOS:000371947300010) 2016; 116 Legault, C. Y. (000961776200001.85) 2009 Wu, LL (WOS:000563749900051) 2020; 10 Yoshida, Y (WOS:000386862000020) 2016; 57 Flores, A (WOS:000455542500001) 2019; 361 Labattut, A (WOS:000416204400030) 2017; 82 Sun, WS (WOS:000370878800002) 2016; 14 Vogel, L (WOS:000458828000003) 2019; 58 Uyanik, M (WOS:000391783200093) 2017; 7 Sreenithya, A (WOS:000399013700004) 2017; 7 Sun, DR (WOS:000950990000001) 2023; 145 Santoro, S (WOS:000376331400025) 2016; 49 Uyanik, M (WOS:000323393100033) 2013; 52 Heinen, F (WOS:000607731600001) 2021; 60 Banik, SM (WOS:000405642400016) 2017; 139 Wheeler, SE (WOS:000318060000017) 2013; 46 Qi, XT (WOS:000677482200001) 2021; 54 Zhdankin, VV (WOS:000168442700034) 2001; 123 de Magalhaes, HP (WOS:000416204400017) 2017; 82 Ariafard, A (WOS:000240795000079) 2006; 128 Jiang, HM (WOS:000418392400011) 2017; 19 Lee, GY (WOS:000664332300045) 2021; 86 Felpin, FX (WOS:000243819100017) 2007; 48 Tang, T (WOS:000483966100003) 2018; 16 |
References_xml | – ident: ref4/cit4h doi: 10.1055/a-1577-7638 – ident: ref11/cit11i doi: 10.1021/acs.joc.9b03012 – ident: ref14/cit14 – ident: ref18/cit18b doi: 10.1002/chem.201803652 – ident: ref30/cit30b doi: 10.1021/ja0211205 – ident: ref1/cit1a doi: 10.1073/pnas.44.2.98 – ident: ref5/cit5c doi: 10.3987/rev-17-877 – ident: ref12/cit12f doi: 10.1039/c9ob00028c – ident: ref24/cit24a doi: 10.1021/acs.jctc.9b00143 – ident: ref13/cit13c doi: 10.1021/acscatal.0c01491 – ident: ref37/cit37n doi: 10.1021/jacs.6b02391 – ident: ref30/cit30f doi: 10.1021/acs.joc.7b01616 – ident: ref36/cit36 doi: 10.1021/acs.joc.0c00347 – ident: ref4/cit4i doi: 10.1021/acscentsci.0c01651 – ident: ref22/cit22 – ident: ref37/cit37p doi: 10.1055/s-0035-1561313 – ident: ref11/cit11h doi: 10.1002/adsc.201800521 – ident: ref13/cit13h doi: 10.1021/acs.accounts.6b00099 – ident: ref37/cit37a doi: 10.1016/j.tetlet.2017.10.019 – ident: ref11/cit11d doi: 10.1016/j.tetlet.2016.10.016 – ident: ref2/cit2c doi: 10.1021/acs.accounts.7b00377 – ident: ref1/cit1b doi: 10.1126/science.1088172 – ident: ref11/cit11g doi: 10.1021/acs.joc.7b01941 – ident: ref30/cit30o doi: 10.1021/jacs.2c12307 – ident: ref23/cit23 doi: 10.1021/ja100936w – ident: ref30/cit30g doi: 10.1021/acs.joc.7b01716 – ident: ref30/cit30i doi: 10.1002/anie.201809432 – ident: ref33/cit33b doi: 10.1016/j.tet.2005.05.058 – ident: ref26/cit26 – ident: ref37/cit37r doi: 10.1021/jacs.8b02143 – ident: ref12/cit12b doi: 10.1016/j.tetlet.2014.06.051 – ident: ref12/cit12j doi: 10.1021/acs.joc.2c01765 – ident: ref37/cit37b doi: 10.1021/acs.accounts.8b00137 – ident: ref8/cit8b doi: 10.1016/j.tet.2010.04.060 – ident: ref5/cit5g doi: 10.1002/asia.202101115 – ident: ref33/cit33c doi: 10.1016/j.tet.2005.05.059 – ident: ref11/cit11e doi: 10.1002/chem.201700667 – ident: ref37/cit37m doi: 10.1126/science.aaf8078 – ident: ref30/cit30n doi: 10.1002/tcr.202100119 – ident: ref16/cit16b doi: 10.1021/acs.orglett.7b03167 – ident: ref30/cit30d doi: 10.1002/chem.201601844 – ident: ref30/cit30k doi: 10.1021/jacs.9b12998 – ident: ref11/cit11f doi: 10.1055/s-0036-1588808 – ident: ref32/cit32c doi: 10.1021/acs.accounts.6b00096 – ident: ref13/cit13a doi: 10.1021/ja063944i – ident: ref2/cit2f doi: 10.1021/acs.accounts.1c00326 – ident: ref11/cit11a doi: 10.1002/anie.201303559 – ident: ref4/cit4b doi: 10.1002/anie.201204822 – ident: ref35/cit35 doi: 10.1021/acs.joc.1c00921 – ident: ref37/cit37g doi: 10.1002/anie.201103077 – ident: ref7/cit7 doi: 10.1021/ja401074u – ident: ref30/cit30e doi: 10.1021/acs.chemrev.5b00484 – ident: ref30/cit30l doi: 10.1002/anie.202013172 – volume-title: Iodine Catalysis in Organic Synthesis year: 2022 ident: ref5/cit5h doi: 10.1002/9783527829569 – ident: ref13/cit13k doi: 10.1021/acs.chemrev.9b00073 – ident: ref24/cit24b doi: 10.1039/c9cp06869d – ident: ref10/cit10 doi: 10.1021/acscatal.7b00975 – ident: ref13/cit13j doi: 10.1021/acs.accounts.6b00093 – ident: ref11/cit11j doi: 10.15227/orgsyn.098.0001 – ident: ref13/cit13b doi: 10.1021/om301215a – ident: ref32/cit32b doi: 10.1021/jp504415p – ident: ref32/cit32e doi: 10.1021/jacs.9b00936 – ident: ref37/cit37c doi: 10.1039/d1sc02880d – ident: ref17/cit17 doi: 10.1021/ar700111a – ident: ref3/cit3b doi: 10.1021/jacs.7b11303 – ident: ref13/cit13d doi: 10.1021/jacs.0c04486 – ident: ref30/cit30j doi: 10.1002/ejoc.202000660 – ident: ref4/cit4d doi: 10.1039/c5cs00356c – ident: ref16/cit16a doi: 10.1039/c6cc00384b – ident: ref11/cit11c doi: 10.1021/acscatal.6b03380 – ident: ref25/cit25 – volume-title: Asymmetric Dearomatization Reactions year: 2016 ident: ref4/cit4e doi: 10.1002/9783527698479 – ident: ref19/cit19 doi: 10.1063/1.3382344 – ident: ref37/cit37l doi: 10.1021/acs.orglett.5b02501 – ident: ref16/cit16d doi: 10.1002/jcc.26469 – ident: ref28/cit28 doi: 10.1016/j.tetlet.2006.11.073 – ident: ref32/cit32a doi: 10.1021/ar300109n – ident: ref3/cit3a doi: 10.1021/cs501828e – ident: ref37/cit37s doi: 10.1021/jacs.0c09323 – start-page: 25 volume-title: Hypervalent Iodine Chemistry year: 2016 ident: ref5/cit5a doi: 10.1007/128_2015_665 – ident: ref9/cit9 doi: 10.1002/anie.201507180 – ident: ref12/cit12e doi: 10.1039/c8ob01652f – ident: ref8/cit8a doi: 10.1002/anie.200907352 – ident: ref18/cit18a doi: 10.1021/jp810292n – ident: ref1/cit1d doi: 10.1007/978-981-13-0785-0_8 – ident: ref12/cit12c doi: 10.1002/wcms.1299 – ident: ref13/cit13e doi: 10.1038/nature07368 – ident: ref37/cit37t doi: 10.1002/anie.202205277 – ident: ref37/cit37i doi: 10.1002/anie.201208471 – ident: ref12/cit12h doi: 10.1002/chem.202002026 – ident: ref30/cit30a doi: 10.1021/ja0155276 – ident: ref37/cit37q doi: 10.1021/jacs.7b05160 – ident: ref12/cit12a doi: 10.1002/anie.200705816 – ident: ref37/cit37k doi: 10.1002/anie.201309967 – ident: ref2/cit2a doi: 10.1126/science.1083622 – ident: ref5/cit5b doi: 10.1021/acs.chemrev.5b00547 – ident: ref13/cit13m doi: 10.1038/s41557-022-00954-9 – ident: ref2/cit2e doi: 10.1021/acs.chemrev.0c00523 – ident: ref3/cit3e doi: 10.1021/jacs.1c01303 – ident: ref13/cit13i doi: 10.1021/acs.accounts.6b00050 – ident: ref12/cit12d doi: 10.1039/c8ob00463c – ident: ref13/cit13g doi: 10.1021/acs.chemrev.5b00163 – volume: 182 start-page: 2 year: 2019 ident: ref5/cit5e publication-title: TCIMAIL – ident: ref3/cit3c doi: 10.1021/jacs.7b11701 – ident: ref33/cit33d doi: 10.1021/jacs.1c11032 – ident: ref5/cit5d doi: 10.1021/acs.chemrev.9b00338 – ident: ref13/cit13f doi: 10.1021/cr100212h – ident: ref3/cit3d doi: 10.1021/jacs.0c06942 – ident: ref37/cit37j doi: 10.1002/anie.201400405 – ident: ref13/cit13l doi: 10.1021/acs.accounts.1c00075 – ident: ref29/cit29 doi: 10.1021/acscatal.9b04322 – volume-title: Privileged Chiral Ligands and Catalysts year: 2011 ident: ref2/cit2b doi: 10.1002/9783527635207 – ident: ref4/cit4c doi: 10.1039/c5ob02526e – ident: ref21/cit21 doi: 10.1002/chem.201200497 – ident: ref32/cit32d doi: 10.1038/nature21701 – ident: ref30/cit30h doi: 10.1002/anie.201713012 – ident: ref33/cit33a doi: 10.1002/chir.20140 – ident: ref15/cit15 doi: 10.26434/chemrxiv.8864204.v5 – ident: ref1/cit1c – ident: ref2/cit2d doi: 10.1055/s-0037-1611636 – ident: ref16/cit16c doi: 10.1039/c9cc01320b – ident: ref30/cit30c doi: 10.1016/j.ccr.2006.04.017 – ident: ref20/cit20 doi: 10.1063/1.466884 – ident: ref4/cit4f doi: 10.1039/c8cs00389k – ident: ref12/cit12i doi: 10.2174/1385272824999200620223218 – ident: ref11/cit11b doi: 10.1002/chem.201501583 – volume-title: Iodine Catalysis in Organic Synthesis year: 2022 ident: ref37/cit37d doi: 10.1002/9783527829569 – ident: ref30/cit30m doi: 10.24820/ark.5550190.p011.639 – ident: ref31/cit31 doi: 10.1021/jacs.6b11348 – ident: ref4/cit4g doi: 10.1002/ejoc.202000107 – ident: ref4/cit4a doi: 10.1021/cr9902852 – ident: ref6/cit6 doi: 10.1002/anie.200800464 – ident: ref37/cit37e doi: 10.1002/chem.201504844 – ident: ref12/cit12g doi: 10.1021/jacs.9b08243 – ident: ref37/cit37f doi: 10.1039/c1cc10129c – ident: ref5/cit5f doi: 10.2174/1385272822666181211122802 – ident: ref37/cit37o doi: 10.1021/acs.orglett.6b02816 – ident: ref37/cit37h doi: 10.1002/anie.201302358 – volume: 132 start-page: 6498 year: 2010 ident: WOS:000277445400041 article-title: Revealing Noncovalent Interactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja100936w – start-page: 128 year: 2021 ident: WOS:000744545700005 article-title: Computational investigation of cyclic substituted iodine(III) halogen bond donors publication-title: ARKIVOC doi: 10.24820/ark.5550190.p011.639 – volume: 44 start-page: 98 year: 1958 ident: WOS:A1958WJ52000007 article-title: APPLICATION OF A THEORY OF ENZYME SPECIFICITY TO PROTEIN SYNTHESIS publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA – volume: 82 start-page: 11799 year: 2017 ident: WOS:000416204400017 article-title: Importance of Nonclassical σ-Hole Interactions for the Reactivity λ3-Iodane Complexes publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.7b01716 – volume: 140 start-page: 4797 year: 2018 ident: WOS:000430155800011 article-title: Catalytic Diastereo- and Enantioselective Fluoroamination of Alkenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b02143 – volume: 21 start-page: 10314 year: 2015 ident: WOS:000357328200009 article-title: Chiral Iodine-Catalyzed Dearomatizative Spirocyclization for the Enantioselective Construction of an All-Carbon Stereogenic Center publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201501583 – volume: 18 start-page: 9955 year: 2012 ident: WOS:000306921600029 article-title: Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201200497 – volume: 52 start-page: 5371 year: 2016 ident: WOS:000374033700002 article-title: Why does Togni's reagent I exist in the high-energy hypervalent iodine form? Re-evaluation of benziodoxole based hypervalent iodine reagents publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c6cc00384b – volume: 41 start-page: 157 year: 2008 ident: WOS:000253323800001 article-title: Density functionals with broad applicability in chemistry publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar700111a – volume: 361 start-page: 2 year: 2019 ident: WOS:000455542500001 article-title: Enantioselective Iodine(I/III) Catalysis in Organic Synthesis publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201800521 – volume: 138 start-page: 5000 year: 2016 ident: WOS:000374812100003 article-title: Catalytic, Diastereoselective 1,2-Difluorination of Alkenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b02391 – volume: 50 start-page: 9478 year: 2011 ident: WOS:000296071700041 article-title: Enantioselective Metal-Free Diamination of Styrenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201103077 – volume: 250 start-page: 2771 year: 2006 ident: WOS:000240651400005 article-title: Intermolecular hypervalent I(III)...O interactions:: A new driving force for complexation of crown ethers publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2006.04.017 – volume: 373 start-page: 25 year: 2016 ident: WOS:000431732700003 article-title: Phenol Dearomatization with Hypervalent Iodine Reagents publication-title: HYPERVALENT IODINE CHEMISTRY doi: 10.1007/128_2015_665 – year: 2018 ident: 000961776200001.81 publication-title: GoodVibes, version 2.0.3 – volume: 98 start-page: 1 year: 2021 ident: WOS:000621826900001 article-title: Synthesis of Chiral Organoiodine Catalyst for Enantioselective Oxidative Dearomatization Reactions: N,N′-(2S,2′S)-(2-Iodo-1,3-phenylene)bis(oxy)bis(propane-2,1-diyl)bis(2,4,6-trimethylbenzamide) publication-title: ORGANIC SYNTHESES doi: 10.15227/orgsyn.098.0001 – volume: 58 start-page: 4409 year: 2017 ident: WOS:000415773700001 article-title: Mechanistic aspects of alkene oxidation using chiral hypervalent iodine reagents publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2017.10.019 – volume: 22 start-page: 14434 year: 2016 ident: WOS:000384698500001 article-title: Halogen Bonding in Organic Synthesis and Organocatalysis publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201601844 – volume: 32 start-page: 2336 year: 2013 ident: WOS:000318060400008 article-title: DFT Studies on the Palladium-Catalyzed Dearomatization Reaction between Chloromethylnaphthalene and the Cyclic Amine Morpholine publication-title: ORGANOMETALLICS doi: 10.1021/om301215a – volume: 12 start-page: 10686 year: 2021 ident: WOS:000670222500001 article-title: Expanding organofluorine chemical space: the design of chiral fluorinated isosteres enabled by I(i)/I(iii) catalysis publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc02880d – start-page: 1 year: 2010 ident: WOS:000311230000016 article-title: Enzyme Kinetics: Catalysis & Control publication-title: ENZYME KINETICS: CATALYSIS & CONTROL – volume: 87 start-page: 14274 year: 2022 ident: WOS:000868173100001 article-title: Mechanistic Insight into Phenol Dearomatization by Hypervalent Iodine: Direct Detection of a Phenoxenium Cation publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.2c01765 – volume: 113 start-page: 6378 year: 2009 ident: WOS:000265687500026 article-title: Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/jp810292n – volume: 14 start-page: 2164 year: 2016 ident: WOS:000370878800002 article-title: Asymmetric dearomatization of phenols publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c5ob02526e – volume: 16 start-page: 2324 year: 2018 ident: WOS:000428671200016 article-title: Concerning the mechanism of iodine(III)-mediated oxidative dearomatization of phenols publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c8ob00463c – volume: 145 start-page: 5739 year: 2023 ident: WOS:000950990000001 article-title: Br?nsted Acids Promote Olefin Oxidations by Bioinspired Nonheme CoIII(PhIO)(OH) Complexes: A Role for Low-Barrier Hydrogen Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c12307 – volume: 21 start-page: 1912 year: 2021 ident: WOS:000663158300001 article-title: Iodine(III)-Based Halogen Bond Donors: Properties and Applications publication-title: CHEMICAL RECORD doi: 10.1002/tcr.202100119 – volume: 100 start-page: 2917 year: 2000 ident: WOS:000088838500008 article-title: Transition-metal-mediated dearomatization reactions publication-title: CHEMICAL REVIEWS doi: 10.1021/cr9902852 – volume: 119 start-page: 12033 year: 2019 ident: WOS:000505627700001 article-title: Chiral Hypervalent Iodines: Active Players in Asymmetric Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00338 – year: 2013 ident: 000961776200001.69 publication-title: Gaussian 09, Revision D.01 – volume: 299 start-page: 1691 year: 2003 ident: WOS:000181519500033 article-title: Privileged chiral catalysts publication-title: SCIENCE – volume: 10 start-page: 9585 year: 2020 ident: WOS:000563749900051 article-title: DFT Studies on Copper-Catalyzed Dearomatization of Pyridine publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c01491 – volume: 55 start-page: 413 year: 2016 ident: WOS:000368065300064 article-title: Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201507180 – volume: 142 start-page: 17079 year: 2020 ident: WOS:000579087600022 article-title: Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c06942 – volume: 54 start-page: 3252 year: 2021 ident: WOS:000687058900011 article-title: Self-Adaptable Tropos Catalysts publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00326 – volume: 141 start-page: 16046 year: 2019 ident: WOS:000490358900039 article-title: Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b08243 – volume: 61 start-page: 7134 year: 2005 ident: WOS:000230327300009 article-title: Catalyst-substrate helical character matching determines enantiomeric excess publication-title: TETRAHEDRON doi: 10.1016/j.tet.2005.05.059 – volume: 123 start-page: 4095 year: 2001 ident: WOS:000168442700034 article-title: Secondary bonding-directed self-assembly of amino acid derived benziodazoles: Synthesis and structure of novel hypervalent iodine macrocycles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 42 start-page: 470 year: 2021 ident: WOS:000597422100001 article-title: Revisiting the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY doi: 10.1002/jcc.26469 – volume: 49 start-page: 2901 year: 2017 ident: WOS:000404004000012 article-title: Enantioselective 4-Hydroxylation of Phenols under Chiral Organoiodine(I/III) Catalysis publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0036-1588808 – volume: 111 start-page: 5042 year: 2011 ident: WOS:000294699500014 article-title: Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities publication-title: CHEMICAL REVIEWS doi: 10.1021/cr100212h – volume: 19 start-page: 6502 year: 2017 ident: WOS:000418392400011 article-title: A Twist of the Twist Mechanism, 2-Iodoxybenzoic Acid (IBX)-Mediated Oxidation of Alcohol Revisited: Theory and Experiment publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b03167 – volume: 16 start-page: 8249 year: 2018 ident: WOS:000483966100003 article-title: Experimental evidence for the formation of cationic intermediates during iodine(III)-mediated oxidative dearomatization of phenols publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c8ob01652f – volume: 7 start-page: 432 year: 2021 ident: WOS:000634764100009 article-title: Advances in Catalytic Asymmetric Dearomatization publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.0c01651 – volume: 55 start-page: 4681 year: 2014 ident: WOS:000340696200001 article-title: Asymmetric oxidative dearomatizations promoted by hypervalent iodine(III) reagents: an opportunity for rational catalyst design? publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2014.06.051 – year: 2022 ident: 000961776200001.119 publication-title: Iodine Catalysis in Organic Synthesis – volume: 543 start-page: 637 year: 2017 ident: WOS:000397619700042 article-title: Exploiting non-covalent π interactions for catalyst design publication-title: NATURE doi: 10.1038/nature21701 – volume: 5 start-page: 1758 year: 2015 ident: WOS:000350843500044 article-title: Catalytic Efficiency Is a Function of How Rhodium(I) (5+2) Catalysts Accommodate a Conserved Substrate Transition State Geometry: Induced Fit Model for Explaining Transition Metal Catalysis publication-title: ACS CATALYSIS doi: 10.1021/cs501828e – volume: 52 start-page: 7018 year: 2013 ident: WOS:000320776900042 article-title: Stereoselective Rearrangements with Chiral Hypervalent Iodine Reagents publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201302358 – volume: 142 start-page: 11252 year: 2020 ident: WOS:000543780500041 article-title: Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c04486 – volume: 53 start-page: 5993 year: 2014 ident: WOS:000337094200048 article-title: Flexible Stereoselective Functionalizations of Ketones through Umpolung with Hypervalent Iodine Reagents publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201400405 – volume: 49 start-page: 1061 year: 2016 ident: WOS:000376331400030 article-title: Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00096 – volume: 125 start-page: 769 year: 2003 ident: WOS:000180468900035 article-title: Secondary hypervalent I(III)•••O interactions:: Synthesis and structure of hypervalent complexes of diphenyl-λ3-iodanes with 18-crown-6 publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0211205 – volume: 52 start-page: 9215 year: 2013 ident: WOS:000323393100033 article-title: Hydrogen Bonding and Alcohol Effects in Asymmetric Hypervalent Iodine Catalysis: Enantioselective Oxidative Dearomatization of Phenols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201303559 – volume: 57 start-page: 5103 year: 2016 ident: WOS:000386862000020 article-title: Facile synthesis of amino acid-derived novel chiral hypervalent iodine(V) reagents and their applications publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2016.10.016 – volume: 182 start-page: 2 year: 2019 ident: 000961776200001.29 article-title: Designer C2- symmetric Chiral Diamide-type Organoiodine Catalysts publication-title: TCIMAIL – volume: 2020 start-page: 4087 year: 2020 ident: WOS:000563974000001 article-title: Recent Advances in the Catalytic Dearomatization of Naphthols publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202000107 – volume: 353 start-page: 51 year: 2016 ident: WOS:000378816200032 article-title: Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters publication-title: SCIENCE doi: 10.1126/science.aaf8078 – volume: 17 start-page: 4918 year: 2015 ident: WOS:000362384700068 article-title: Enantioselective Iodine(III)-Mediated Synthesis of α-Tosyloxy Ketones: Breaking the Selectivity Barrier publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b02501 – volume: 47 start-page: 3983 year: 2011 ident: WOS:000288386600087 article-title: Enantioselective Prevost and Woodward reactions using chiral hypervalent iodine(III): switchover of stereochemical course of an optically active 1,3-dioxolan-2-yl cation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c1cc10129c – volume: 455 start-page: 309 year: 2008 ident: WOS:000259265200031 article-title: Computational prediction of small-molecule catalysts publication-title: NATURE doi: 10.1038/nature07368 – volume: 118 start-page: 6133 year: 2014 ident: WOS:000340439800001 article-title: Toward a More Complete Understanding of Noncovalent Interactions Involving Aromatic Rings publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp504415p – volume: 49 start-page: 2175 year: 2010 ident: WOS:000276008000015 article-title: Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(III) Species publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200907352 – volume: 17 start-page: 3521 year: 2019 ident: WOS:000465615200005 article-title: DFT mechanistic investigation into phenol dearomatization mediated by an iodine(iii) reagent publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c9ob00028c – volume: 132 year: 2010 ident: WOS:000961776200001.78 publication-title: J CHEM PHYS – volume: 26 start-page: 11584 year: 2020 ident: WOS:000557403100001 article-title: Mechanism of Iodine(III)-Promoted Oxidative Dearomatizing Hydroxylation of Phenols: Evidence for a Radical-Chain Pathway publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202002026 – volume: 116 start-page: 3328 year: 2016 ident: WOS:000371947300010 article-title: Advances in Synthetic Applications of Hypervalent Iodine Compounds publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00547 – volume: 45 start-page: 1570 year: 2016 ident: WOS:000372255400005 article-title: Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00356c – volume: 15 start-page: 2847 year: 2019 ident: WOS:000468242900009 article-title: Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations publication-title: JOURNAL OF CHEMICAL THEORY AND COMPUTATION doi: 10.1021/acs.jctc.9b00143 – volume: 51 start-page: 1507 year: 2018 ident: WOS:000436027200020 article-title: Promoting Intermolecular C-N Bond Formation under the Auspices of Iodine(III) publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00137 – volume: 61 start-page: ARTN e202205277 year: 2022 ident: WOS:000826619000056 article-title: Stereocontrolled Synthesis of Fluorinated Isochromans via Iodine(I)/Iodine(III) Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202205277 – volume: 54 start-page: 92 year: 2022 ident: WOS:000695574400001 article-title: Transition-Metal-Catalyzed Nucleophilic Dearomatization of Electron-Deficient Heteroarenes publication-title: SYNTHESIS-STUTTGART doi: 10.1055/a-1577-7638 – year: 2019 ident: 000961776200001.70 article-title: Popular Integration Grids Can Result in Large Errors in DFT-Computed Free Energies publication-title: ChemRxiv – volume: 66 start-page: 5841 year: 2010 ident: WOS:000280344200015 article-title: Chiral hypervalent iodine-catalyzed enantioselective oxidative Kita spirolactonization of 1-naphthol derivatives and one-pot diastereo-selective oxidation to epoxyspirolactones publication-title: TETRAHEDRON doi: 10.1016/j.tet.2010.04.060 – volume: 47 start-page: 3552 year: 2008 ident: WOS:000255530100013 article-title: Highly diastereoselective synthesis of orthoquinone monoketals through λ3-iodane-mediated oxidative dearomatization of phenols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200705816 – year: 1000 ident: 000961776200001.86 publication-title: The PyMOL Molecular Graphics System – volume: 46 start-page: 1029 year: 2013 ident: WOS:000318060000017 article-title: Understanding Substituent Effects in Noncovalent Interactions Involving Aromatic Rings publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar300109n – volume: 140 start-page: 3929 year: 2018 ident: WOS:000428356000022 article-title: Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbon-Carbon Bond Formation with Palladium Complexes: A Computational Mechanistic Study publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b11701 – volume: 51 start-page: 12662 year: 2012 ident: WOS:000312305400004 article-title: Catalytic Asymmetric Dearomatization Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201204822 – volume: 48 start-page: 409 year: 2007 ident: WOS:000243819100017 article-title: Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(III) reagents publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2006.11.073 – start-page: 75 year: 2018 ident: 000961776200001.4 publication-title: Catalysis, Kinetics and Mechanisms – volume: 50 start-page: 2621 year: 2017 ident: WOS:000413392000021 article-title: Asymmetric Cycloaddition and Cyclization Reactions Catalyzed by Chiral N,N′-Dioxide-Metal Complexes publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.7b00377 – volume: 7 start-page: 4189 year: 2017 ident: WOS:000402851600059 article-title: Hypercoordinate Iodine Catalysts in Enantioselective Transformation: The Role of Catalyst Folding in Stereoselectivity publication-title: ACS CATALYSIS doi: 10.1021/acscatal.7b00975 – volume: 141 start-page: 11027 year: 2019 ident: WOS:000476684700018 article-title: Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b00936 – volume: 140 start-page: 868 year: 2018 ident: WOS:000423496700004 article-title: Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b11303 – volume: 82 start-page: 11946 year: 2017 ident: WOS:000416204400038 article-title: Chiral Hypervalent Organoiodine-Catalyzed Enantioselective Oxidative Spirolactonization of Naphthol Derivatives publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.7b01941 – volume: 142 start-page: 20048 year: 2020 ident: WOS:000595544800036 article-title: Enantioselective Construction of Tertiary Fluoride Stereocenters by Organocatalytic Fluorocyclization publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c09323 – volume: 18 start-page: 5580 year: 2016 ident: WOS:000387303200034 article-title: Chiral Aryliodine-Mediated Enantioselective Organocatalytic Spirocyclization: Synthesis of Spirofurooxindoles via Cascade Oxidative C-O and C-C Bond Formation publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b02816 – volume: 100 start-page: 7410 year: 1994 ident: WOS:A1994NL68500039 article-title: BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE-FUNCTIONS .4. THE CLASSICAL BARRIER HEIGHT OF THE H+H-2-]H-2+H REACTION publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 119 start-page: 6509 year: 2019 ident: WOS:000471835200002 article-title: Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00073 – volume: 9 start-page: 11619 year: 2019 ident: WOS:000502169900095 article-title: High-Performance Ammonium Hypoiodite/Oxone Catalysis for Enantioselective Oxidative Dearomatization of Arenols publication-title: ACS CATALYSIS doi: 10.1021/acscatal.9b04322 – volume: 115 start-page: 9532 year: 2015 ident: WOS:000361254500014 article-title: Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00163 – volume: 47 start-page: 7996 year: 2018 ident: WOS:000448662800009 article-title: Recent advances in chemical dearomatization of nonactivated arenes publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00389k – volume: 49 start-page: 1302 year: 2016 ident: WOS:000378470300024 article-title: New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00093 – volume: 135 start-page: 4558 year: 2013 ident: WOS:000316774100052 article-title: Asymmetric Dearomatizing Spirolactonization of Naphthols Catalyzed by Spirobiindane-Based Chiral Hypervalent Iodine Species publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja401074u – year: 2009 ident: 000961776200001.85 publication-title: CYLview, 1.0b – volume: 143 start-page: 4801 year: 2021 ident: WOS:000636686900037 article-title: Ligand Conformational Flexibility Enables Enantioselective Tertiary C-B Bond Formation in the Phosphonate-Directed Catalytic Asymmetric Alkene Hydroboration publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c01303 – volume: 7 start-page: ARTN e1299 year: 2017 ident: WOS:000399013700004 article-title: Hypercoordinate iodine(III) promoted reactions and catalysis: an update on current mechanistic understanding publication-title: WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE doi: 10.1002/wcms.1299 – volume: 55 start-page: 5667 year: 2019 ident: WOS:000468401700028 article-title: Designing new Togni reagents by computation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c9cc01320b – volume: 17 start-page: S177 year: 2005 ident: WOS:000230320200025 article-title: Conservation of helicity and helical character matching in chiral interactions publication-title: CHIRALITY doi: 10.1002/chir.20140 – volume: 120 start-page: 11479 year: 2020 ident: WOS:000582672400006 article-title: Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.0c00523 – volume: 23 start-page: 4542 year: 2017 ident: WOS:000399326500005 article-title: Asymmetric Oxidative Cycloetherification of Naphtholic Alcohols publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201700667 – volume: 53 start-page: 3466 year: 2014 ident: WOS:000333001500032 article-title: Asymmetric Organocatalytic Direct C(sp2)-H/C(sp3)-H Oxidative Cross-Coupling by Chiral Iodine Reagents publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201309967 – volume: 144 start-page: 2679 year: 2022 ident: WOS:000763125900029 article-title: Cooperative Weak Dispersive Interactions Actuate Catalysis in a Shape-Selective Abiological Racemase publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c11032 – volume: 22 start-page: 7169 year: 2020 ident: WOS:000526524500051 article-title: Automated exploration of the low-energy chemical space with fast quantum chemical methods publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c9cp06869d – volume: 139 start-page: 492 year: 2017 ident: WOS:000392036900068 article-title: Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b11348 – volume: 58 start-page: 1880 year: 2019 ident: WOS:000458828000003 article-title: Chalcogen Bonding: An Overview publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201809432 – volume: 82 start-page: 11891 year: 2017 ident: WOS:000416204400030 article-title: Experimental and Theoretical Quantification of the Lewis Acidity of lodine(III) Species publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.7b01616 – volume: 85 start-page: 10175 year: 2020 ident: WOS:000562073600065 article-title: Stereoselective Oxidative Rearrangement of Disubstituted Unactivated Alkenes Using Hypervalent Iodine(III) Reagent publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.0c00347 – volume: 48 start-page: 816 year: 2016 ident: WOS:000371689200003 article-title: Enantioselective Vicinal Diacetoxylation of Alkenes under Chiral Iodine(III) Catalysis publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0035-1561313 – volume: 86 start-page: 8425 year: 2021 ident: WOS:000664332300045 article-title: Arene-Perfluoroarene Interactions in Solution publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.1c00921 – volume: 139 start-page: 9152 year: 2017 ident: WOS:000405642400016 article-title: Catalytic 1,3-Difunctionalization via Oxidative C-C Bond Activation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b05160 – volume: 142 start-page: 5221 year: 2020 ident: WOS:000526392600035 article-title: Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12998 – volume: 85 start-page: 3125 year: 2020 ident: WOS:000518875700023 article-title: Synthesis of Polycyclic Cyclohexadienone through Alkoxy-Oxylactonization and Dearomatization of 3′-Hydroxy-[1,1′-biphenyl]-2-carboxylic Acids Promoted by Hypervalent Iodine publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.9b03012 – volume: 54 start-page: 2905 year: 2021 ident: WOS:000677482200001 article-title: Recent Advances in Theoretical Studies on Transition-Metal-Catalyzed Carbene Transformations publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00075 – volume: 61 start-page: 7125 year: 2005 ident: WOS:000230327300008 article-title: Conservation of helical asymmetry in chiral interactions publication-title: TETRAHEDRON doi: 10.1016/j.tet.2005.05.058 – year: 2011 ident: 000961776200001.6 publication-title: Privileged Chiral Ligands and Catalysts – volume: 96 start-page: 563 year: 2018 ident: WOS:000433999800001 article-title: ENANTIOSELECTIVE HETEROCYCLE FORMATION USING CHIRAL HYPERVALENT IODINE(III) publication-title: HETEROCYCLES doi: 10.3987/REV-17-877 – volume: 60 start-page: 5069 year: 2021 ident: WOS:000607731600001 article-title: A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202013172 – volume: 24 start-page: 2106 year: 2020 ident: WOS:000591895700005 article-title: Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols publication-title: CURRENT ORGANIC CHEMISTRY doi: 10.2174/1385272824999200620223218 – volume: 52 start-page: 2469 year: 2013 ident: WOS:000315209900013 article-title: Regio- and Enantioselective Aminofluorination of Alkenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201208471 – volume: 47 start-page: 3787 year: 2008 ident: WOS:000255791200025 article-title: A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200800464 – volume: 24 start-page: 15983 year: 2018 ident: WOS:000451908600005 article-title: Refined SMD Parameters for Bromine and Iodine Accurately Model Halogen-Bonding Interactions in Solution publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201803652 – volume: 57 start-page: 3830 year: 2018 ident: WOS:000428350100054 article-title: Iodine(III) Derivatives as Halogen Bonding Organocatalysts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201713012 – volume: 49 start-page: 1070 year: 2016 ident: WOS:000376331400031 article-title: Deciphering Selectivity in Organic Reactions: A Multifaceted Problem publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00099 – volume: 303 start-page: 186 year: 2004 ident: WOS:000187908500037 article-title: How enzymes work: Analysis by modern rate theory and computer simulations publication-title: SCIENCE – volume: 128 start-page: 13010 year: 2006 ident: WOS:000240795000079 article-title: DFT studies on the mechanism of allylative dearomatization catalyzed by palladium publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja063944i – volume: 49 start-page: 1006 year: 2016 ident: WOS:000376331400025 article-title: Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00050 – volume: 22 start-page: 4030 year: 2016 ident: WOS:000372526500020 article-title: Enantioselective Oxidative Rearrangements with Chiral Hypervalent Iodine Reagents publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201504844 – volume: 116 start-page: 2478 year: 2016 ident: WOS:000371106000018 article-title: The Halogen Bond publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00484 – volume: 2020 start-page: 5473 year: 2020 ident: WOS:000563836500001 article-title: σ-Hole Interactions in Catalysis publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202000660 – volume: 51 start-page: 1021 year: 2019 ident: WOS:000459926800003 article-title: Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element? publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0037-1611636 – volume: 7 start-page: 872 year: 2017 ident: WOS:000391783200093 article-title: Enantioselective Synthesis of Masked Benzoquinones Using Designer Chiral Hypervalent Organoiodine(III) Catalysis publication-title: ACS CATALYSIS doi: 10.1021/acscatal.6b03380 – volume: 14 start-page: 949 year: 2022 ident: WOS:000805517500001 article-title: Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-022-00954-9 |
SSID | ssj0004281 |
Score | 2.511769 |
Snippet | Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally... Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7301 |
SubjectTerms | Chemistry Chemistry, Multidisciplinary enantioselectivity halogens hydrogen bonding naphthols organocatalysts oxidation Physical Sciences reaction mechanisms Science & Technology stereochemistry |
Title | Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization |
URI | http://dx.doi.org/10.1021/jacs.2c13295 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000961776200001 https://www.ncbi.nlm.nih.gov/pubmed/36940192 https://www.proquest.com/docview/2788800644 https://www.proquest.com/docview/3040427158 |
Volume | 145 |
WOS | 000961776200001 |
WOSCitedRecordID | wos000961776200001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 0002-7863 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODC-xFecqVyQl6tY8eOj6u0pQWVS6nU2yqxHRHBZqsme2h_ET-TGcfZQsuK3qJ4LMuP8Xzz8AwhOyBVjZ5yx6QsPZOptqwUuWO10qbOvZXcoWng6Ks6OJGfT7PTqwDZ6x78FPMD2W6SWiyInt0l91KVc1SyZsXx1fvHNOcjzNW5EjHA_XpvFEC2-1sA3UCV_xRAQdjsPyKfxic7Q4zJj8mqryb28mYGx__M4zF5GPEmnQ0H5Am549un5H4xlnl7Rn4VaMC56HqGd0jIVUtBFuHe0WLM5kyP4MZGWxXdjeEzvqMAHekextE0yy5U0wl1KGjThpbD7nuD3RlquvQQtF98dgbdhvEuvaOz7mKxwIpeln5p-pLtAtctFyETOT0-a85B67YATeNL0efkZH_vW3HAYvkGVgJG6xkgsamojARAYl3ppk5q4UFBcib3invNjTOZAwVUOltLY41OAQ45bTJfGm-VeEG22mXrXxFaZ6LizsssLZV0XOW1VPhZV074WtYJ2YbVnUf26-bBs56CZoN_45on5OO473Mb859jGY6fG6g_rKnPhrwfG-i2xyM0h41Db0vZ-uUKCNC4gIhPbqYRcIUCf_AsT8jL4fytRxPKSMTfCdn580Cu24P2yTUIs-ChSQi_DVkRZ44ZD_rXt1i2N-RBCrguBCtlb8lWf77y7wCH9dX7wIS_AYAbLtM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619EAvfT9CX0aip8ponTgPH1EA7RZ2L4DELcrajhq1m0Uke4BfxM_sjNdZWtqV9hYl48Txa76xZ74B2EOtqtKBMFzK0nIZppqXUWZ4laSqyqyWwtDWwHiSDC_k98v40gerUywMVqLFN7XuEP-eXYBogvBmqCkvevwYnjgSFEJC-dl9GGSYiR7tplkSeT_3h6VJD-n2bz30D7j8rx5yOuf4OUxWtXWuJj_3F910X98-IHLc-HdewDOPPtnBcri8hEe2eQXbeZ_07TXc5bSdc9N2nFYUx1zLUDNRT7K853ZmY1y_aeeKHXpnGtsyBJLsiLxq6nnrcuu4rBSsbtyTUfujpuKc7F42QluYgtCw2PJ7t9awg_ZmNqP8Xpqd1F3JD3EOzmeOl5ydXdXXaINrBKo-bvQNXBwfnedD7pM58BIRW8cRlw2iqZIIT7QpzcDINLJoLhmV2UTYVCijYoPmqDS6kkqrNERwZFIV21JZnURvYauZN_Y9sCqOpsJYGYdlIo1IskomdFlNTWQrWQWwi61b-MnYFu6cPUQ7h-76Ng_gW9_9hfZs6JSU49ca6a8r6aslC8gaud1-JBXYcXT2UjZ2vkAB2mog_CfXy0S4oOJsEXEWwLvlMFx9LUqUJDQewN6f43L13NmiIkXV5s5rAhCbiOX-z4n_oNvZoNm-wPbwfHxanI4mJx_gaYiIz7kxxR9hq7te2E-I0LrpZzcvfwOxqzc- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NIQEvfG-ET08aT8hTnTgffpzSVStjE2JM2luU2o6IWNNqSR-2v4g_kzvXKTCoNN6q-Nwkzp3vd_b5dwC76FVVOhCGS1laLsNU8zLKDK-SVFWZ1VIYWho4PkkOz-TH8_h8A0R_FgYfosV_at0mPln13FSeYYCogrAh1FQbPb4Dd2NifyM0lJ_-OgoZZqJHvGmWRD7X_WZv8kW6_dMX_QUw_-mLnN8ZPYIvqyd26Sbf9xbdZE9f3yBz_K9XegwPPQpl-0u1eQIbtnkK9_O--Nsz-JHTss5V23GaWRyDLUMPRV-U5T3HMzvGeZxWsNjQJ9XYliGgZAeUXVPPWldjx1WnYHXjWsbtt5q6c4p_2RhjYjqMht2W97u2hu23V9Mp1fnS7KjuSj5EW5xNHT85O53XlxiLawSs_vzoczgbHXzND7kv6sBLRG4dR3w2iCZKIkzRpjQDI9PIYthkVGYTYVOhjIoNhqXS6EoqrdIQQZJJVWxLZXUSbcFmM2vsC2BVHE2EsTIOy0QakWSVTOhnNTGRrWQVwA6ObuGNsi3cfnuI8Q5d9WMewIdeBQrtWdGpOMfFGun3K-n5kg1kjdxOr00FfjjagykbO1ugAC05EA6U62UinFjRakScBbC9VMXV3aJESULlAez-rpurdheTihRdnNu3CUDcRiz3b048CN3LWwzbO7j3eTgqPo1Pjl7BgxCBn8tmil_DZne5sG8QqHWTt840fwJzPDm4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalyst-Substrate+Helical+Character+Matching+Determines+the+Enantioselectivity+in+the+Ishihara-Type+Iodoarenes+Catalyzed+Asymmetric+Kita-Dearomative+Spirolactonization&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zheng%2C+Hanliang&rft.au=Cai%2C+Liu&rft.au=Pan%2C+Ming&rft.au=Uyanik%2C+Muhammet&rft.date=2023-04-05&rft.eissn=1520-5126&rft.volume=145&rft.issue=13&rft.spage=7301&rft_id=info:doi/10.1021%2Fjacs.2c13295&rft_id=info%3Apmid%2F36940192&rft.externalDocID=36940192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |