Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization

Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C 2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols i...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 13; pp. 7301 - 7312
Main Authors Zheng, Hanliang, Cai, Liu, Pan, Ming, Uyanik, Muhammet, Ishihara, Kazuaki, Xue, Xiao-Song
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 05.04.2023
Amer Chemical Soc
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.2c13295

Cover

Abstract Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C 2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called “proton-transfer-coupled-dearomatization (PTCD)”, which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I­(I) catalyst to catalytic active I­(III) species induces a defined C 2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate’s helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I­(III)···O halogen bond, N–H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
AbstractList Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C ₂-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called “proton-transfer-coupled-dearomatization (PTCD)”, which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I­(I) catalyst to catalytic active I­(III) species induces a defined C ₂-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate’s helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I­(III)···O halogen bond, N–H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible -symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined -symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoar-enes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is pre-dicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)center dot center dot center dot O halogen bond, N-H center dot center dot center dot O hydrogen bond, and pi center dot center dot center dot pi stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally flexible C 2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called “proton-transfer-coupled-dearomatization (PTCD)”, which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I­(I) catalyst to catalytic active I­(III) species induces a defined C 2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate’s helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I­(III)···O halogen bond, N–H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Author Ishihara, Kazuaki
Pan, Ming
Zheng, Hanliang
Cai, Liu
Xue, Xiao-Song
Uyanik, Muhammet
AuthorAffiliation Department of Chemistry
Chinese Academy of Sciences
Zhejiang Normal University
Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study
Graduate School of Engineering
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Graduate School of Engineering
– name: Department of Chemistry
– name: Chinese Academy of Sciences
– name: School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study
– name: University of Chinese Academy of Sciences
– name: Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences
– name: Zhejiang Normal University
Author_xml – sequence: 1
  givenname: Hanliang
  surname: Zheng
  fullname: Zheng, Hanliang
  organization: Zhejiang Normal University
– sequence: 2
  givenname: Liu
  surname: Cai
  fullname: Cai, Liu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ming
  surname: Pan
  fullname: Pan, Ming
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Muhammet
  orcidid: 0000-0002-9751-1952
  surname: Uyanik
  fullname: Uyanik, Muhammet
  organization: Graduate School of Engineering
– sequence: 5
  givenname: Kazuaki
  orcidid: 0000-0003-4191-3845
  surname: Ishihara
  fullname: Ishihara, Kazuaki
  organization: Graduate School of Engineering
– sequence: 6
  givenname: Xiao-Song
  orcidid: 0000-0003-4541-8702
  surname: Xue
  fullname: Xue, Xiao-Song
  email: xuexs@sioc.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36940192$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFG2fkIxKk2I6T2McqLbSiiEPLOfLas6xXib3YDij9RfxMHDb0gEBwssf-3oz05p2gI-cdIPSckjNKGH2zUzqeMU1LJqtHaEUrRoqKsvoIrQghrGhEXR6jkxh3ueRM0CfouKwlJ1SyFfreqqT6KabidlzHFFQCfAW91arH7VYFpRME_EElvbXuM76AXA7WQcRpC_jSKZesj9CDTvarTRO27ufPddzaWV7cTftceeNVgFl2mHcPBp_HaRggBavxe5tUcQEq-EHlPoBv9zb4Pg_3zt7nJ--eoscb1Ud4tpyn6NPby7v2qrj5-O66Pb8pFGdlKigvSbmWXFKijTLE8KaEigsjBdQUGiqNrAyjlBu94VLLhtWVMI2sQEnQdXmKXh767oP_MkJM3WCjhr5XDvwYu5Lw7GJDK_FPlDVCCEJqzjP6YkHH9QCm2wc7qDB1vxaRAXEAvsHab6K24DQ8YHlzsqZNU7N8I7TNds2etH50KUtf_b80068PtA4-xgCbB5KSbg5UNweqWwKVcfYbrpfhOSu2_5toMWZ-3PkxuLyxP6M_AKk_3Pw
CitedBy_id crossref_primary_10_1039_D4OB01575D
crossref_primary_10_3762_bjoc_20_127
crossref_primary_10_1021_acscatal_4c01756
crossref_primary_10_1002_adsc_202300375
crossref_primary_10_1039_D4RA01050G
crossref_primary_10_1021_acs_joc_4c02998
crossref_primary_10_6023_cjoc202304008
crossref_primary_10_1021_acs_joc_4c01168
crossref_primary_10_1039_D3SC05677E
crossref_primary_10_1021_acs_joc_3c00466
crossref_primary_10_1021_acscatal_4c01563
crossref_primary_10_1021_acscatal_4c06557
crossref_primary_10_1021_acs_orglett_4c04041
crossref_primary_10_1039_D3GC02429F
crossref_primary_10_1002_cctc_202300820
crossref_primary_10_1021_acscatal_3c02018
Cites_doi 10.1055/a-1577-7638
10.1021/acs.joc.9b03012
10.1002/chem.201803652
10.1021/ja0211205
10.1073/pnas.44.2.98
10.3987/rev-17-877
10.1039/c9ob00028c
10.1021/acs.jctc.9b00143
10.1021/acscatal.0c01491
10.1021/jacs.6b02391
10.1021/acs.joc.7b01616
10.1021/acs.joc.0c00347
10.1021/acscentsci.0c01651
10.1055/s-0035-1561313
10.1002/adsc.201800521
10.1021/acs.accounts.6b00099
10.1016/j.tetlet.2017.10.019
10.1016/j.tetlet.2016.10.016
10.1021/acs.accounts.7b00377
10.1126/science.1088172
10.1021/acs.joc.7b01941
10.1021/jacs.2c12307
10.1021/ja100936w
10.1021/acs.joc.7b01716
10.1002/anie.201809432
10.1016/j.tet.2005.05.058
10.1021/jacs.8b02143
10.1016/j.tetlet.2014.06.051
10.1021/acs.joc.2c01765
10.1021/acs.accounts.8b00137
10.1016/j.tet.2010.04.060
10.1002/asia.202101115
10.1016/j.tet.2005.05.059
10.1002/chem.201700667
10.1126/science.aaf8078
10.1002/tcr.202100119
10.1021/acs.orglett.7b03167
10.1002/chem.201601844
10.1021/jacs.9b12998
10.1055/s-0036-1588808
10.1021/acs.accounts.6b00096
10.1021/ja063944i
10.1021/acs.accounts.1c00326
10.1002/anie.201303559
10.1002/anie.201204822
10.1021/acs.joc.1c00921
10.1002/anie.201103077
10.1021/ja401074u
10.1021/acs.chemrev.5b00484
10.1002/anie.202013172
10.1002/9783527829569
10.1021/acs.chemrev.9b00073
10.1039/c9cp06869d
10.1021/acscatal.7b00975
10.1021/acs.accounts.6b00093
10.15227/orgsyn.098.0001
10.1021/om301215a
10.1021/jp504415p
10.1021/jacs.9b00936
10.1039/d1sc02880d
10.1021/ar700111a
10.1021/jacs.7b11303
10.1021/jacs.0c04486
10.1002/ejoc.202000660
10.1039/c5cs00356c
10.1039/c6cc00384b
10.1021/acscatal.6b03380
10.1002/9783527698479
10.1063/1.3382344
10.1021/acs.orglett.5b02501
10.1002/jcc.26469
10.1016/j.tetlet.2006.11.073
10.1021/ar300109n
10.1021/cs501828e
10.1021/jacs.0c09323
10.1007/128_2015_665
10.1002/anie.201507180
10.1039/c8ob01652f
10.1002/anie.200907352
10.1021/jp810292n
10.1007/978-981-13-0785-0_8
10.1002/wcms.1299
10.1038/nature07368
10.1002/anie.202205277
10.1002/anie.201208471
10.1002/chem.202002026
10.1021/ja0155276
10.1021/jacs.7b05160
10.1002/anie.200705816
10.1002/anie.201309967
10.1126/science.1083622
10.1021/acs.chemrev.5b00547
10.1038/s41557-022-00954-9
10.1021/acs.chemrev.0c00523
10.1021/jacs.1c01303
10.1021/acs.accounts.6b00050
10.1039/c8ob00463c
10.1021/acs.chemrev.5b00163
10.1021/jacs.7b11701
10.1021/jacs.1c11032
10.1021/acs.chemrev.9b00338
10.1021/cr100212h
10.1021/jacs.0c06942
10.1002/anie.201400405
10.1021/acs.accounts.1c00075
10.1021/acscatal.9b04322
10.1002/9783527635207
10.1039/c5ob02526e
10.1002/chem.201200497
10.1038/nature21701
10.1002/anie.201713012
10.1002/chir.20140
10.26434/chemrxiv.8864204.v5
10.1055/s-0037-1611636
10.1039/c9cc01320b
10.1016/j.ccr.2006.04.017
10.1063/1.466884
10.1039/c8cs00389k
10.2174/1385272824999200620223218
10.1002/chem.201501583
10.24820/ark.5550190.p011.639
10.1021/jacs.6b11348
10.1002/ejoc.202000107
10.1021/cr9902852
10.1002/anie.200800464
10.1002/chem.201504844
10.1021/jacs.9b08243
10.1039/c1cc10129c
10.2174/1385272822666181211122802
10.1021/acs.orglett.6b02816
10.1002/anie.201302358
10.3987/REV-17-877
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
BLEPL
BNZSX
DTL
EGQ
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.2c13295
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
Web of Science
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 7312
ExternalDocumentID 36940192
000961776200001
10_1021_jacs_2c13295
d294802450
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of China; Ministry of Science and Technology, China
  grantid: 2021YFF0701700
– fundername: Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22122104; 22193012; 21933004; 22203076
– fundername: CAS Project for Young Scientists in Basic Research
  grantid: YSBR-052
– fundername: Grants-in-Aid for Scientific Research; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI)
  grantid: 21H01932
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
AHGAQ
CITATION
CUPRZ
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-14303b94910cdad0d473e548d98e61e719d95d2114dcf49c972658d795ea9ec63
IEDL.DBID ACS
ISICitedReferencesCount 19
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000961776200001
ISSN 0002-7863
1520-5126
IngestDate Wed Jul 30 11:13:26 EDT 2025
Mon Jul 21 11:03:09 EDT 2025
Wed Feb 19 02:24:51 EST 2025
Fri Sep 26 20:26:58 EDT 2025
Wed Aug 06 11:21:44 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Tue Jul 01 03:54:28 EDT 2025
Fri Apr 07 12:03:10 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords HYPERVALENT
DFT
OXIDATIVE DEAROMATIZATION
MECHANISTIC INSIGHTS
ORGANIC-REACTIONS
IODINE CATALYSTS
NONCOVALENT INTERACTIONS
SPIROCYCLIZATION
REARRANGEMENTS
SELECTIVITY
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a423t-14303b94910cdad0d473e548d98e61e719d95d2114dcf49c972658d795ea9ec63
Notes KAKEN
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9751-1952
0000-0003-4541-8702
0000-0003-4191-3845
PMID 36940192
PQID 2788800644
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_36940192
webofscience_primary_000961776200001CitationCount
acs_journals_10_1021_jacs_2c13295
crossref_citationtrail_10_1021_jacs_2c13295
proquest_miscellaneous_3040427158
crossref_primary_10_1021_jacs_2c13295
proquest_miscellaneous_2788800644
webofscience_primary_000961776200001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-05
PublicationDateYYYYMMDD 2023-04-05
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-05
  day: 05
PublicationDecade 2020
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref37/cit37g
ref37/cit37f
ref37/cit37i
ref37/cit37h
ref37/cit37c
ref1/cit1d
ref37/cit37b
ref37/cit37e
ref37/cit37a
Ishihara K. (ref5/cit5h) 2022
ref23/cit23
ref37/cit37s
ref37/cit37r
ref37/cit37t
ref1/cit1a
ref37/cit37o
ref37/cit37n
ref1/cit1c
ref37/cit37q
ref1/cit1b
ref37/cit37p
ref37/cit37k
ref20/cit20
ref37/cit37j
ref37/cit37m
ref37/cit37l
ref5/cit5b
ref5/cit5c
ref10/cit10
ref16/cit16c
ref16/cit16b
ref35/cit35
ref16/cit16a
ref19/cit19
ref16/cit16d
ref3/cit3b
ref3/cit3c
ref3/cit3a
ref3/cit3d
ref3/cit3e
ref5/cit5f
ref5/cit5g
ref5/cit5d
ref6/cit6
Quideau S. (ref5/cit5a) 2016
ref30/cit30m
ref30/cit30l
ref30/cit30o
ref30/cit30n
ref29/cit29
ref8/cit8a
ref8/cit8b
ref28/cit28
Zhou Q.-L. (ref2/cit2b) 2011
ref18/cit18b
ref4/cit4a
ref4/cit4b
ref4/cit4c
ref18/cit18a
ref30/cit30a
ref22/cit22
ref30/cit30c
ref30/cit30b
You S.-L. (ref4/cit4e) 2016
ref4/cit4d
ref30/cit30i
ref30/cit30h
ref4/cit4f
ref30/cit30k
ref4/cit4g
ref30/cit30j
ref4/cit4h
ref30/cit30e
ref4/cit4i
ref30/cit30d
ref30/cit30g
Ishihara K. (ref37/cit37d) 2022
ref30/cit30f
ref9/cit9
ref33/cit33a
ref2/cit2f
ref12/cit12j
ref2/cit2e
ref12/cit12i
ref2/cit2d
ref12/cit12h
ref13/cit13a
ref12/cit12g
ref13/cit13b
ref12/cit12f
ref13/cit13c
ref12/cit12e
ref13/cit13d
ref12/cit12d
ref13/cit13e
ref12/cit12c
ref13/cit13f
ref12/cit12b
ref13/cit13g
ref12/cit12a
ref13/cit13h
ref13/cit13i
ref2/cit2c
ref13/cit13j
ref13/cit13k
ref31/cit31
ref2/cit2a
ref13/cit13l
ref13/cit13m
ref33/cit33c
ref33/cit33b
ref33/cit33d
ref17/cit17
ref11/cit11j
ref11/cit11g
ref11/cit11f
ref21/cit21
ref11/cit11i
ref11/cit11h
ref11/cit11c
ref11/cit11b
ref11/cit11e
ref11/cit11d
ref11/cit11a
ref32/cit32e
ref32/cit32d
ref32/cit32c
ref32/cit32b
ref32/cit32a
ref36/cit36
ref25/cit25
ref14/cit14
Uyanik M. (ref5/cit5e) 2019; 182
ref26/cit26
ref24/cit24b
ref15/cit15
ref24/cit24a
ref7/cit7
Deng, QF (WOS:000518875700023) 2020; 85
Cavallo, G (WOS:000371106000018) 2016; 116
Shao, HL (WOS:000636686900037) 2021; 143
Houk, KN (WOS:000259265200031) 2008; 455
(000961776200001.86) 1000
Wang, DZ (WOS:000230327300009) 2005; 61
Wu, H (WOS:000333001500032) 2014; 53
Wheeler, SE (WOS:000340439800001) 2014; 118
Wang, Q (WOS:000595544800036) 2020; 142
Brown, M (WOS:000372526500020) 2016; 22
Ochiai, M (WOS:000180468900035) 2003; 125
GRIMME S (WOS:000961776200001.78) 2010; 132
Banik, SM (WOS:000374812100003) 2016; 138
Cheong, PHY (WOS:000294699500014) 2011; 111
Meyer, S (WOS:000670222500001) 2021; 12
Wang, DZ (WOS:000230327300008) 2005; 61
Robidas, R (WOS:000744545700005) 2021
Kraszewski, K (WOS:000557403100001) 2020; 26
Banik, SM (WOS:000378816200032) 2016; 353
An, JZ (WOS:000563974000001) 2020; 2020
Pandey, CB (WOS:000562073600065) 2020; 85
Dohi, T (WOS:000316774100052) 2013; 135
Parra, A (WOS:000505627700001) 2019; 119
Zheng, C (WOS:000634764100009) 2021; 7
Sperger, T (WOS:000361254500014) 2015; 115
Pouységu, L (WOS:000255530100013) 2008; 47
Zhao, Y (WOS:000253323800001) 2008; 41
Wertjes, WC (WOS:000448662800009) 2018; 47
Frisch (000961776200001.69) 2013
Uyanik, M (WOS:000276008000015) 2010; 49
Neel, AJ (WOS:000397619700042) 2017; 543
Metrano, AJ (WOS:000582672400006) 2020; 120
Ochiai, M (WOS:000240651400005) 2006; 250
Basdevant, B (WOS:000362384700068) 2015; 17
Wöste, TH (WOS:000371689200003) 2016; 48
Muniz, K (WOS:000404004000012) 2017; 49
Sun, TY (WOS:000374033700002) 2016; 52
Uyanik, M. (000961776200001.29) 2019; 182
Pracht, P (WOS:000526524500051) 2020; 22
Bulfield, D (WOS:000384698500001) 2016; 22
Harned, AM (WOS:000428671200016) 2018; 16
Sun, TY (WOS:000597422100001) 2021; 42
Jain, N (WOS:000399326500005) 2017; 23
Ahn, S (WOS:000471835200002) 2019; 119
Cao, Y (WOS:000387303200034) 2016; 18
Wheeler, SE (WOS:000376331400030) 2016; 49
Wang, YJ (WOS:000763125900029) 2022; 144
Fujita, M (WOS:000288386600087) 2011; 47
Jiang, HM (WOS:000468401700028) 2019; 55
Mizar, P (WOS:000337094200048) 2014; 53
Metrano, AJ (WOS:000392036900068) 2017; 139
KOSHLAND, DE (WOS:A1958WJ52000007) 1958; 44
Fujita, M (WOS:000415773700001) 2017; 58
Muñiz, K (WOS:000436027200020) 2018; 51
Sreenithya, A (WOS:000402851600059) 2017; 7
Mustard, TJL (WOS:000350843500044) 2015; 5
Zhou, Q.-L. (000961776200001.6) 2011
Haubenreisser, S (WOS:000368065300064) 2016; 55
Heinen, F (WOS:000428350100054) 2018; 57
Wang, FL (WOS:000805517500001) 2022; 14
Uyanik, M (WOS:000621826900001) 2021; 98
Zhang, DY (WOS:000357328200009) 2015; 21
Balcells, D (WOS:000376331400031) 2016; 49
Diéguez, M (WOS:000687058900011) 2021; 54
Ganji, B (WOS:000465615200005) 2019; 17
Uyanik, M (WOS:000280344200015) 2010; 66
Häfliger, J (WOS:000826619000056) 2022; 61
Jia, J (WOS:000695574400001) 2022; 54
Garcia-Viloca, M (WOS:000187908500037) 2004; 303
Mayer, RJ (WOS:000526392600035) 2020; 142
Wu, WT (WOS:000372255400005) 2016; 45
Funes-Ardoiz, I. (000961776200001.81) 2018
Bootsma, A. N. (000961776200001.70) 2019
Röben, C (WOS:000296071700041) 2011; 50
Fujita, M (WOS:000433999800001) 2018; 96
Marenich, AV (WOS:000265687500026) 2009; 113
Mennie, KM (WOS:000430155800011) 2018; 140
PETERSON, KA (WOS:A1994NL68500039) 1994; 100
Uyanik, M (WOS:000502169900095) 2019; 9
Engelage, E (WOS:000451908600005) 2018; 24
Peng, Q (WOS:000428356000022) 2018; 140
Dangat, Y (WOS:000579087600022) 2020; 142
Robidas, R (WOS:000663158300001) 2021; 21
Wang, DZ (WOS:000230320200025) 2005; 17
Crawford, JM (WOS:000459926800003) 2019; 51
Liu, XH (WOS:000413392000021) 2017; 50
Dohi, T (WOS:000255791200025) 2008; 47
Zheng, HL (WOS:000591895700005) 2020; 24
Harned, AM (WOS:000340696200001) 2014; 55
Gribble, MW (WOS:000543780500041) 2020; 142
Uyanik, M (WOS:000416204400038) 2017; 82
Yoon, TP (WOS:000181519500033) 2003; 299
Zhang, XH (WOS:000378470300024) 2016; 49
Quideau, S (WOS:000431732700003) 2016; 373
Johnson, ER (WOS:000277445400041) 2010; 132
Purich, DL (WOS:000311230000016) 2010
Xie, HJ (WOS:000318060400008) 2013; 32
Zhuo, CX (WOS:000312305400004) 2012; 51
Bootsma, AN (WOS:000476684700018) 2019; 141
Ishihara, K. (000961776200001.119) 2022
Kong, WQ (WOS:000315209900013) 2013; 52
Breugst, M (WOS:000563836500001) 2020; 2020
Grimme, S (WOS:000468242900009) 2019; 15
Farid, U (WOS:000320776900042) 2013; 52
Pape, AR (WOS:000088838500008) 2000; 100
Grimme, S (WOS:000306921600029) 2012; 18
Crawford, JM (WOS:000423496700004) 2018; 140
Pune, k a r (000961776200001.4) 2018
Juneau, A (WOS:000868173100001) 2022; 87
Zheng, HL (WOS:000490358900039) 2019; 141
Yoshimura, A (WOS:000371947300010) 2016; 116
Legault, C. Y. (000961776200001.85) 2009
Wu, LL (WOS:000563749900051) 2020; 10
Yoshida, Y (WOS:000386862000020) 2016; 57
Flores, A (WOS:000455542500001) 2019; 361
Labattut, A (WOS:000416204400030) 2017; 82
Sun, WS (WOS:000370878800002) 2016; 14
Vogel, L (WOS:000458828000003) 2019; 58
Uyanik, M (WOS:000391783200093) 2017; 7
Sreenithya, A (WOS:000399013700004) 2017; 7
Sun, DR (WOS:000950990000001) 2023; 145
Santoro, S (WOS:000376331400025) 2016; 49
Uyanik, M (WOS:000323393100033) 2013; 52
Heinen, F (WOS:000607731600001) 2021; 60
Banik, SM (WOS:000405642400016) 2017; 139
Wheeler, SE (WOS:000318060000017) 2013; 46
Qi, XT (WOS:000677482200001) 2021; 54
Zhdankin, VV (WOS:000168442700034) 2001; 123
de Magalhaes, HP (WOS:000416204400017) 2017; 82
Ariafard, A (WOS:000240795000079) 2006; 128
Jiang, HM (WOS:000418392400011) 2017; 19
Lee, GY (WOS:000664332300045) 2021; 86
Felpin, FX (WOS:000243819100017) 2007; 48
Tang, T (WOS:000483966100003) 2018; 16
References_xml – ident: ref4/cit4h
  doi: 10.1055/a-1577-7638
– ident: ref11/cit11i
  doi: 10.1021/acs.joc.9b03012
– ident: ref14/cit14
– ident: ref18/cit18b
  doi: 10.1002/chem.201803652
– ident: ref30/cit30b
  doi: 10.1021/ja0211205
– ident: ref1/cit1a
  doi: 10.1073/pnas.44.2.98
– ident: ref5/cit5c
  doi: 10.3987/rev-17-877
– ident: ref12/cit12f
  doi: 10.1039/c9ob00028c
– ident: ref24/cit24a
  doi: 10.1021/acs.jctc.9b00143
– ident: ref13/cit13c
  doi: 10.1021/acscatal.0c01491
– ident: ref37/cit37n
  doi: 10.1021/jacs.6b02391
– ident: ref30/cit30f
  doi: 10.1021/acs.joc.7b01616
– ident: ref36/cit36
  doi: 10.1021/acs.joc.0c00347
– ident: ref4/cit4i
  doi: 10.1021/acscentsci.0c01651
– ident: ref22/cit22
– ident: ref37/cit37p
  doi: 10.1055/s-0035-1561313
– ident: ref11/cit11h
  doi: 10.1002/adsc.201800521
– ident: ref13/cit13h
  doi: 10.1021/acs.accounts.6b00099
– ident: ref37/cit37a
  doi: 10.1016/j.tetlet.2017.10.019
– ident: ref11/cit11d
  doi: 10.1016/j.tetlet.2016.10.016
– ident: ref2/cit2c
  doi: 10.1021/acs.accounts.7b00377
– ident: ref1/cit1b
  doi: 10.1126/science.1088172
– ident: ref11/cit11g
  doi: 10.1021/acs.joc.7b01941
– ident: ref30/cit30o
  doi: 10.1021/jacs.2c12307
– ident: ref23/cit23
  doi: 10.1021/ja100936w
– ident: ref30/cit30g
  doi: 10.1021/acs.joc.7b01716
– ident: ref30/cit30i
  doi: 10.1002/anie.201809432
– ident: ref33/cit33b
  doi: 10.1016/j.tet.2005.05.058
– ident: ref26/cit26
– ident: ref37/cit37r
  doi: 10.1021/jacs.8b02143
– ident: ref12/cit12b
  doi: 10.1016/j.tetlet.2014.06.051
– ident: ref12/cit12j
  doi: 10.1021/acs.joc.2c01765
– ident: ref37/cit37b
  doi: 10.1021/acs.accounts.8b00137
– ident: ref8/cit8b
  doi: 10.1016/j.tet.2010.04.060
– ident: ref5/cit5g
  doi: 10.1002/asia.202101115
– ident: ref33/cit33c
  doi: 10.1016/j.tet.2005.05.059
– ident: ref11/cit11e
  doi: 10.1002/chem.201700667
– ident: ref37/cit37m
  doi: 10.1126/science.aaf8078
– ident: ref30/cit30n
  doi: 10.1002/tcr.202100119
– ident: ref16/cit16b
  doi: 10.1021/acs.orglett.7b03167
– ident: ref30/cit30d
  doi: 10.1002/chem.201601844
– ident: ref30/cit30k
  doi: 10.1021/jacs.9b12998
– ident: ref11/cit11f
  doi: 10.1055/s-0036-1588808
– ident: ref32/cit32c
  doi: 10.1021/acs.accounts.6b00096
– ident: ref13/cit13a
  doi: 10.1021/ja063944i
– ident: ref2/cit2f
  doi: 10.1021/acs.accounts.1c00326
– ident: ref11/cit11a
  doi: 10.1002/anie.201303559
– ident: ref4/cit4b
  doi: 10.1002/anie.201204822
– ident: ref35/cit35
  doi: 10.1021/acs.joc.1c00921
– ident: ref37/cit37g
  doi: 10.1002/anie.201103077
– ident: ref7/cit7
  doi: 10.1021/ja401074u
– ident: ref30/cit30e
  doi: 10.1021/acs.chemrev.5b00484
– ident: ref30/cit30l
  doi: 10.1002/anie.202013172
– volume-title: Iodine Catalysis in Organic Synthesis
  year: 2022
  ident: ref5/cit5h
  doi: 10.1002/9783527829569
– ident: ref13/cit13k
  doi: 10.1021/acs.chemrev.9b00073
– ident: ref24/cit24b
  doi: 10.1039/c9cp06869d
– ident: ref10/cit10
  doi: 10.1021/acscatal.7b00975
– ident: ref13/cit13j
  doi: 10.1021/acs.accounts.6b00093
– ident: ref11/cit11j
  doi: 10.15227/orgsyn.098.0001
– ident: ref13/cit13b
  doi: 10.1021/om301215a
– ident: ref32/cit32b
  doi: 10.1021/jp504415p
– ident: ref32/cit32e
  doi: 10.1021/jacs.9b00936
– ident: ref37/cit37c
  doi: 10.1039/d1sc02880d
– ident: ref17/cit17
  doi: 10.1021/ar700111a
– ident: ref3/cit3b
  doi: 10.1021/jacs.7b11303
– ident: ref13/cit13d
  doi: 10.1021/jacs.0c04486
– ident: ref30/cit30j
  doi: 10.1002/ejoc.202000660
– ident: ref4/cit4d
  doi: 10.1039/c5cs00356c
– ident: ref16/cit16a
  doi: 10.1039/c6cc00384b
– ident: ref11/cit11c
  doi: 10.1021/acscatal.6b03380
– ident: ref25/cit25
– volume-title: Asymmetric Dearomatization Reactions
  year: 2016
  ident: ref4/cit4e
  doi: 10.1002/9783527698479
– ident: ref19/cit19
  doi: 10.1063/1.3382344
– ident: ref37/cit37l
  doi: 10.1021/acs.orglett.5b02501
– ident: ref16/cit16d
  doi: 10.1002/jcc.26469
– ident: ref28/cit28
  doi: 10.1016/j.tetlet.2006.11.073
– ident: ref32/cit32a
  doi: 10.1021/ar300109n
– ident: ref3/cit3a
  doi: 10.1021/cs501828e
– ident: ref37/cit37s
  doi: 10.1021/jacs.0c09323
– start-page: 25
  volume-title: Hypervalent Iodine Chemistry
  year: 2016
  ident: ref5/cit5a
  doi: 10.1007/128_2015_665
– ident: ref9/cit9
  doi: 10.1002/anie.201507180
– ident: ref12/cit12e
  doi: 10.1039/c8ob01652f
– ident: ref8/cit8a
  doi: 10.1002/anie.200907352
– ident: ref18/cit18a
  doi: 10.1021/jp810292n
– ident: ref1/cit1d
  doi: 10.1007/978-981-13-0785-0_8
– ident: ref12/cit12c
  doi: 10.1002/wcms.1299
– ident: ref13/cit13e
  doi: 10.1038/nature07368
– ident: ref37/cit37t
  doi: 10.1002/anie.202205277
– ident: ref37/cit37i
  doi: 10.1002/anie.201208471
– ident: ref12/cit12h
  doi: 10.1002/chem.202002026
– ident: ref30/cit30a
  doi: 10.1021/ja0155276
– ident: ref37/cit37q
  doi: 10.1021/jacs.7b05160
– ident: ref12/cit12a
  doi: 10.1002/anie.200705816
– ident: ref37/cit37k
  doi: 10.1002/anie.201309967
– ident: ref2/cit2a
  doi: 10.1126/science.1083622
– ident: ref5/cit5b
  doi: 10.1021/acs.chemrev.5b00547
– ident: ref13/cit13m
  doi: 10.1038/s41557-022-00954-9
– ident: ref2/cit2e
  doi: 10.1021/acs.chemrev.0c00523
– ident: ref3/cit3e
  doi: 10.1021/jacs.1c01303
– ident: ref13/cit13i
  doi: 10.1021/acs.accounts.6b00050
– ident: ref12/cit12d
  doi: 10.1039/c8ob00463c
– ident: ref13/cit13g
  doi: 10.1021/acs.chemrev.5b00163
– volume: 182
  start-page: 2
  year: 2019
  ident: ref5/cit5e
  publication-title: TCIMAIL
– ident: ref3/cit3c
  doi: 10.1021/jacs.7b11701
– ident: ref33/cit33d
  doi: 10.1021/jacs.1c11032
– ident: ref5/cit5d
  doi: 10.1021/acs.chemrev.9b00338
– ident: ref13/cit13f
  doi: 10.1021/cr100212h
– ident: ref3/cit3d
  doi: 10.1021/jacs.0c06942
– ident: ref37/cit37j
  doi: 10.1002/anie.201400405
– ident: ref13/cit13l
  doi: 10.1021/acs.accounts.1c00075
– ident: ref29/cit29
  doi: 10.1021/acscatal.9b04322
– volume-title: Privileged Chiral Ligands and Catalysts
  year: 2011
  ident: ref2/cit2b
  doi: 10.1002/9783527635207
– ident: ref4/cit4c
  doi: 10.1039/c5ob02526e
– ident: ref21/cit21
  doi: 10.1002/chem.201200497
– ident: ref32/cit32d
  doi: 10.1038/nature21701
– ident: ref30/cit30h
  doi: 10.1002/anie.201713012
– ident: ref33/cit33a
  doi: 10.1002/chir.20140
– ident: ref15/cit15
  doi: 10.26434/chemrxiv.8864204.v5
– ident: ref1/cit1c
– ident: ref2/cit2d
  doi: 10.1055/s-0037-1611636
– ident: ref16/cit16c
  doi: 10.1039/c9cc01320b
– ident: ref30/cit30c
  doi: 10.1016/j.ccr.2006.04.017
– ident: ref20/cit20
  doi: 10.1063/1.466884
– ident: ref4/cit4f
  doi: 10.1039/c8cs00389k
– ident: ref12/cit12i
  doi: 10.2174/1385272824999200620223218
– ident: ref11/cit11b
  doi: 10.1002/chem.201501583
– volume-title: Iodine Catalysis in Organic Synthesis
  year: 2022
  ident: ref37/cit37d
  doi: 10.1002/9783527829569
– ident: ref30/cit30m
  doi: 10.24820/ark.5550190.p011.639
– ident: ref31/cit31
  doi: 10.1021/jacs.6b11348
– ident: ref4/cit4g
  doi: 10.1002/ejoc.202000107
– ident: ref4/cit4a
  doi: 10.1021/cr9902852
– ident: ref6/cit6
  doi: 10.1002/anie.200800464
– ident: ref37/cit37e
  doi: 10.1002/chem.201504844
– ident: ref12/cit12g
  doi: 10.1021/jacs.9b08243
– ident: ref37/cit37f
  doi: 10.1039/c1cc10129c
– ident: ref5/cit5f
  doi: 10.2174/1385272822666181211122802
– ident: ref37/cit37o
  doi: 10.1021/acs.orglett.6b02816
– ident: ref37/cit37h
  doi: 10.1002/anie.201302358
– volume: 132
  start-page: 6498
  year: 2010
  ident: WOS:000277445400041
  article-title: Revealing Noncovalent Interactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja100936w
– start-page: 128
  year: 2021
  ident: WOS:000744545700005
  article-title: Computational investigation of cyclic substituted iodine(III) halogen bond donors
  publication-title: ARKIVOC
  doi: 10.24820/ark.5550190.p011.639
– volume: 44
  start-page: 98
  year: 1958
  ident: WOS:A1958WJ52000007
  article-title: APPLICATION OF A THEORY OF ENZYME SPECIFICITY TO PROTEIN SYNTHESIS
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
– volume: 82
  start-page: 11799
  year: 2017
  ident: WOS:000416204400017
  article-title: Importance of Nonclassical σ-Hole Interactions for the Reactivity λ3-Iodane Complexes
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.7b01716
– volume: 140
  start-page: 4797
  year: 2018
  ident: WOS:000430155800011
  article-title: Catalytic Diastereo- and Enantioselective Fluoroamination of Alkenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b02143
– volume: 21
  start-page: 10314
  year: 2015
  ident: WOS:000357328200009
  article-title: Chiral Iodine-Catalyzed Dearomatizative Spirocyclization for the Enantioselective Construction of an All-Carbon Stereogenic Center
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201501583
– volume: 18
  start-page: 9955
  year: 2012
  ident: WOS:000306921600029
  article-title: Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201200497
– volume: 52
  start-page: 5371
  year: 2016
  ident: WOS:000374033700002
  article-title: Why does Togni's reagent I exist in the high-energy hypervalent iodine form? Re-evaluation of benziodoxole based hypervalent iodine reagents
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c6cc00384b
– volume: 41
  start-page: 157
  year: 2008
  ident: WOS:000253323800001
  article-title: Density functionals with broad applicability in chemistry
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar700111a
– volume: 361
  start-page: 2
  year: 2019
  ident: WOS:000455542500001
  article-title: Enantioselective Iodine(I/III) Catalysis in Organic Synthesis
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201800521
– volume: 138
  start-page: 5000
  year: 2016
  ident: WOS:000374812100003
  article-title: Catalytic, Diastereoselective 1,2-Difluorination of Alkenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b02391
– volume: 50
  start-page: 9478
  year: 2011
  ident: WOS:000296071700041
  article-title: Enantioselective Metal-Free Diamination of Styrenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201103077
– volume: 250
  start-page: 2771
  year: 2006
  ident: WOS:000240651400005
  article-title: Intermolecular hypervalent I(III)...O interactions:: A new driving force for complexation of crown ethers
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2006.04.017
– volume: 373
  start-page: 25
  year: 2016
  ident: WOS:000431732700003
  article-title: Phenol Dearomatization with Hypervalent Iodine Reagents
  publication-title: HYPERVALENT IODINE CHEMISTRY
  doi: 10.1007/128_2015_665
– year: 2018
  ident: 000961776200001.81
  publication-title: GoodVibes, version 2.0.3
– volume: 98
  start-page: 1
  year: 2021
  ident: WOS:000621826900001
  article-title: Synthesis of Chiral Organoiodine Catalyst for Enantioselective Oxidative Dearomatization Reactions: N,N′-(2S,2′S)-(2-Iodo-1,3-phenylene)bis(oxy)bis(propane-2,1-diyl)bis(2,4,6-trimethylbenzamide)
  publication-title: ORGANIC SYNTHESES
  doi: 10.15227/orgsyn.098.0001
– volume: 58
  start-page: 4409
  year: 2017
  ident: WOS:000415773700001
  article-title: Mechanistic aspects of alkene oxidation using chiral hypervalent iodine reagents
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2017.10.019
– volume: 22
  start-page: 14434
  year: 2016
  ident: WOS:000384698500001
  article-title: Halogen Bonding in Organic Synthesis and Organocatalysis
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201601844
– volume: 32
  start-page: 2336
  year: 2013
  ident: WOS:000318060400008
  article-title: DFT Studies on the Palladium-Catalyzed Dearomatization Reaction between Chloromethylnaphthalene and the Cyclic Amine Morpholine
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om301215a
– volume: 12
  start-page: 10686
  year: 2021
  ident: WOS:000670222500001
  article-title: Expanding organofluorine chemical space: the design of chiral fluorinated isosteres enabled by I(i)/I(iii) catalysis
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc02880d
– start-page: 1
  year: 2010
  ident: WOS:000311230000016
  article-title: Enzyme Kinetics: Catalysis & Control
  publication-title: ENZYME KINETICS: CATALYSIS & CONTROL
– volume: 87
  start-page: 14274
  year: 2022
  ident: WOS:000868173100001
  article-title: Mechanistic Insight into Phenol Dearomatization by Hypervalent Iodine: Direct Detection of a Phenoxenium Cation
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.2c01765
– volume: 113
  start-page: 6378
  year: 2009
  ident: WOS:000265687500026
  article-title: Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY B
  doi: 10.1021/jp810292n
– volume: 14
  start-page: 2164
  year: 2016
  ident: WOS:000370878800002
  article-title: Asymmetric dearomatization of phenols
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c5ob02526e
– volume: 16
  start-page: 2324
  year: 2018
  ident: WOS:000428671200016
  article-title: Concerning the mechanism of iodine(III)-mediated oxidative dearomatization of phenols
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c8ob00463c
– volume: 145
  start-page: 5739
  year: 2023
  ident: WOS:000950990000001
  article-title: Br?nsted Acids Promote Olefin Oxidations by Bioinspired Nonheme CoIII(PhIO)(OH) Complexes: A Role for Low-Barrier Hydrogen Bonds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c12307
– volume: 21
  start-page: 1912
  year: 2021
  ident: WOS:000663158300001
  article-title: Iodine(III)-Based Halogen Bond Donors: Properties and Applications
  publication-title: CHEMICAL RECORD
  doi: 10.1002/tcr.202100119
– volume: 100
  start-page: 2917
  year: 2000
  ident: WOS:000088838500008
  article-title: Transition-metal-mediated dearomatization reactions
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr9902852
– volume: 119
  start-page: 12033
  year: 2019
  ident: WOS:000505627700001
  article-title: Chiral Hypervalent Iodines: Active Players in Asymmetric Synthesis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00338
– year: 2013
  ident: 000961776200001.69
  publication-title: Gaussian 09, Revision D.01
– volume: 299
  start-page: 1691
  year: 2003
  ident: WOS:000181519500033
  article-title: Privileged chiral catalysts
  publication-title: SCIENCE
– volume: 10
  start-page: 9585
  year: 2020
  ident: WOS:000563749900051
  article-title: DFT Studies on Copper-Catalyzed Dearomatization of Pyridine
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.0c01491
– volume: 55
  start-page: 413
  year: 2016
  ident: WOS:000368065300064
  article-title: Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201507180
– volume: 142
  start-page: 17079
  year: 2020
  ident: WOS:000579087600022
  article-title: Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c06942
– volume: 54
  start-page: 3252
  year: 2021
  ident: WOS:000687058900011
  article-title: Self-Adaptable Tropos Catalysts
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.1c00326
– volume: 141
  start-page: 16046
  year: 2019
  ident: WOS:000490358900039
  article-title: Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b08243
– volume: 61
  start-page: 7134
  year: 2005
  ident: WOS:000230327300009
  article-title: Catalyst-substrate helical character matching determines enantiomeric excess
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2005.05.059
– volume: 123
  start-page: 4095
  year: 2001
  ident: WOS:000168442700034
  article-title: Secondary bonding-directed self-assembly of amino acid derived benziodazoles: Synthesis and structure of novel hypervalent iodine macrocycles
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 42
  start-page: 470
  year: 2021
  ident: WOS:000597422100001
  article-title: Revisiting the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents
  publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY
  doi: 10.1002/jcc.26469
– volume: 49
  start-page: 2901
  year: 2017
  ident: WOS:000404004000012
  article-title: Enantioselective 4-Hydroxylation of Phenols under Chiral Organoiodine(I/III) Catalysis
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0036-1588808
– volume: 111
  start-page: 5042
  year: 2011
  ident: WOS:000294699500014
  article-title: Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr100212h
– volume: 19
  start-page: 6502
  year: 2017
  ident: WOS:000418392400011
  article-title: A Twist of the Twist Mechanism, 2-Iodoxybenzoic Acid (IBX)-Mediated Oxidation of Alcohol Revisited: Theory and Experiment
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b03167
– volume: 16
  start-page: 8249
  year: 2018
  ident: WOS:000483966100003
  article-title: Experimental evidence for the formation of cationic intermediates during iodine(III)-mediated oxidative dearomatization of phenols
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c8ob01652f
– volume: 7
  start-page: 432
  year: 2021
  ident: WOS:000634764100009
  article-title: Advances in Catalytic Asymmetric Dearomatization
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.0c01651
– volume: 55
  start-page: 4681
  year: 2014
  ident: WOS:000340696200001
  article-title: Asymmetric oxidative dearomatizations promoted by hypervalent iodine(III) reagents: an opportunity for rational catalyst design?
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2014.06.051
– year: 2022
  ident: 000961776200001.119
  publication-title: Iodine Catalysis in Organic Synthesis
– volume: 543
  start-page: 637
  year: 2017
  ident: WOS:000397619700042
  article-title: Exploiting non-covalent π interactions for catalyst design
  publication-title: NATURE
  doi: 10.1038/nature21701
– volume: 5
  start-page: 1758
  year: 2015
  ident: WOS:000350843500044
  article-title: Catalytic Efficiency Is a Function of How Rhodium(I) (5+2) Catalysts Accommodate a Conserved Substrate Transition State Geometry: Induced Fit Model for Explaining Transition Metal Catalysis
  publication-title: ACS CATALYSIS
  doi: 10.1021/cs501828e
– volume: 52
  start-page: 7018
  year: 2013
  ident: WOS:000320776900042
  article-title: Stereoselective Rearrangements with Chiral Hypervalent Iodine Reagents
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201302358
– volume: 142
  start-page: 11252
  year: 2020
  ident: WOS:000543780500041
  article-title: Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c04486
– volume: 53
  start-page: 5993
  year: 2014
  ident: WOS:000337094200048
  article-title: Flexible Stereoselective Functionalizations of Ketones through Umpolung with Hypervalent Iodine Reagents
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201400405
– volume: 49
  start-page: 1061
  year: 2016
  ident: WOS:000376331400030
  article-title: Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.6b00096
– volume: 125
  start-page: 769
  year: 2003
  ident: WOS:000180468900035
  article-title: Secondary hypervalent I(III)•••O interactions:: Synthesis and structure of hypervalent complexes of diphenyl-λ3-iodanes with 18-crown-6
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0211205
– volume: 52
  start-page: 9215
  year: 2013
  ident: WOS:000323393100033
  article-title: Hydrogen Bonding and Alcohol Effects in Asymmetric Hypervalent Iodine Catalysis: Enantioselective Oxidative Dearomatization of Phenols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201303559
– volume: 57
  start-page: 5103
  year: 2016
  ident: WOS:000386862000020
  article-title: Facile synthesis of amino acid-derived novel chiral hypervalent iodine(V) reagents and their applications
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2016.10.016
– volume: 182
  start-page: 2
  year: 2019
  ident: 000961776200001.29
  article-title: Designer C2- symmetric Chiral Diamide-type Organoiodine Catalysts
  publication-title: TCIMAIL
– volume: 2020
  start-page: 4087
  year: 2020
  ident: WOS:000563974000001
  article-title: Recent Advances in the Catalytic Dearomatization of Naphthols
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202000107
– volume: 353
  start-page: 51
  year: 2016
  ident: WOS:000378816200032
  article-title: Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters
  publication-title: SCIENCE
  doi: 10.1126/science.aaf8078
– volume: 17
  start-page: 4918
  year: 2015
  ident: WOS:000362384700068
  article-title: Enantioselective Iodine(III)-Mediated Synthesis of α-Tosyloxy Ketones: Breaking the Selectivity Barrier
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b02501
– volume: 47
  start-page: 3983
  year: 2011
  ident: WOS:000288386600087
  article-title: Enantioselective Prevost and Woodward reactions using chiral hypervalent iodine(III): switchover of stereochemical course of an optically active 1,3-dioxolan-2-yl cation
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c1cc10129c
– volume: 455
  start-page: 309
  year: 2008
  ident: WOS:000259265200031
  article-title: Computational prediction of small-molecule catalysts
  publication-title: NATURE
  doi: 10.1038/nature07368
– volume: 118
  start-page: 6133
  year: 2014
  ident: WOS:000340439800001
  article-title: Toward a More Complete Understanding of Noncovalent Interactions Involving Aromatic Rings
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/jp504415p
– volume: 49
  start-page: 2175
  year: 2010
  ident: WOS:000276008000015
  article-title: Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(III) Species
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200907352
– volume: 17
  start-page: 3521
  year: 2019
  ident: WOS:000465615200005
  article-title: DFT mechanistic investigation into phenol dearomatization mediated by an iodine(iii) reagent
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c9ob00028c
– volume: 132
  year: 2010
  ident: WOS:000961776200001.78
  publication-title: J CHEM PHYS
– volume: 26
  start-page: 11584
  year: 2020
  ident: WOS:000557403100001
  article-title: Mechanism of Iodine(III)-Promoted Oxidative Dearomatizing Hydroxylation of Phenols: Evidence for a Radical-Chain Pathway
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.202002026
– volume: 116
  start-page: 3328
  year: 2016
  ident: WOS:000371947300010
  article-title: Advances in Synthetic Applications of Hypervalent Iodine Compounds
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00547
– volume: 45
  start-page: 1570
  year: 2016
  ident: WOS:000372255400005
  article-title: Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00356c
– volume: 15
  start-page: 2847
  year: 2019
  ident: WOS:000468242900009
  article-title: Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations
  publication-title: JOURNAL OF CHEMICAL THEORY AND COMPUTATION
  doi: 10.1021/acs.jctc.9b00143
– volume: 51
  start-page: 1507
  year: 2018
  ident: WOS:000436027200020
  article-title: Promoting Intermolecular C-N Bond Formation under the Auspices of Iodine(III)
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00137
– volume: 61
  start-page: ARTN e202205277
  year: 2022
  ident: WOS:000826619000056
  article-title: Stereocontrolled Synthesis of Fluorinated Isochromans via Iodine(I)/Iodine(III) Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202205277
– volume: 54
  start-page: 92
  year: 2022
  ident: WOS:000695574400001
  article-title: Transition-Metal-Catalyzed Nucleophilic Dearomatization of Electron-Deficient Heteroarenes
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/a-1577-7638
– year: 2019
  ident: 000961776200001.70
  article-title: Popular Integration Grids Can Result in Large Errors in DFT-Computed Free Energies
  publication-title: ChemRxiv
– volume: 66
  start-page: 5841
  year: 2010
  ident: WOS:000280344200015
  article-title: Chiral hypervalent iodine-catalyzed enantioselective oxidative Kita spirolactonization of 1-naphthol derivatives and one-pot diastereo-selective oxidation to epoxyspirolactones
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2010.04.060
– volume: 47
  start-page: 3552
  year: 2008
  ident: WOS:000255530100013
  article-title: Highly diastereoselective synthesis of orthoquinone monoketals through λ3-iodane-mediated oxidative dearomatization of phenols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200705816
– year: 1000
  ident: 000961776200001.86
  publication-title: The PyMOL Molecular Graphics System
– volume: 46
  start-page: 1029
  year: 2013
  ident: WOS:000318060000017
  article-title: Understanding Substituent Effects in Noncovalent Interactions Involving Aromatic Rings
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar300109n
– volume: 140
  start-page: 3929
  year: 2018
  ident: WOS:000428356000022
  article-title: Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbon-Carbon Bond Formation with Palladium Complexes: A Computational Mechanistic Study
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b11701
– volume: 51
  start-page: 12662
  year: 2012
  ident: WOS:000312305400004
  article-title: Catalytic Asymmetric Dearomatization Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201204822
– volume: 48
  start-page: 409
  year: 2007
  ident: WOS:000243819100017
  article-title: Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(III) reagents
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2006.11.073
– start-page: 75
  year: 2018
  ident: 000961776200001.4
  publication-title: Catalysis, Kinetics and Mechanisms
– volume: 50
  start-page: 2621
  year: 2017
  ident: WOS:000413392000021
  article-title: Asymmetric Cycloaddition and Cyclization Reactions Catalyzed by Chiral N,N′-Dioxide-Metal Complexes
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.7b00377
– volume: 7
  start-page: 4189
  year: 2017
  ident: WOS:000402851600059
  article-title: Hypercoordinate Iodine Catalysts in Enantioselective Transformation: The Role of Catalyst Folding in Stereoselectivity
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.7b00975
– volume: 141
  start-page: 11027
  year: 2019
  ident: WOS:000476684700018
  article-title: Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b00936
– volume: 140
  start-page: 868
  year: 2018
  ident: WOS:000423496700004
  article-title: Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b11303
– volume: 82
  start-page: 11946
  year: 2017
  ident: WOS:000416204400038
  article-title: Chiral Hypervalent Organoiodine-Catalyzed Enantioselective Oxidative Spirolactonization of Naphthol Derivatives
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.7b01941
– volume: 142
  start-page: 20048
  year: 2020
  ident: WOS:000595544800036
  article-title: Enantioselective Construction of Tertiary Fluoride Stereocenters by Organocatalytic Fluorocyclization
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c09323
– volume: 18
  start-page: 5580
  year: 2016
  ident: WOS:000387303200034
  article-title: Chiral Aryliodine-Mediated Enantioselective Organocatalytic Spirocyclization: Synthesis of Spirofurooxindoles via Cascade Oxidative C-O and C-C Bond Formation
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.6b02816
– volume: 100
  start-page: 7410
  year: 1994
  ident: WOS:A1994NL68500039
  article-title: BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE-FUNCTIONS .4. THE CLASSICAL BARRIER HEIGHT OF THE H+H-2-]H-2+H REACTION
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 119
  start-page: 6509
  year: 2019
  ident: WOS:000471835200002
  article-title: Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00073
– volume: 9
  start-page: 11619
  year: 2019
  ident: WOS:000502169900095
  article-title: High-Performance Ammonium Hypoiodite/Oxone Catalysis for Enantioselective Oxidative Dearomatization of Arenols
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.9b04322
– volume: 115
  start-page: 9532
  year: 2015
  ident: WOS:000361254500014
  article-title: Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00163
– volume: 47
  start-page: 7996
  year: 2018
  ident: WOS:000448662800009
  article-title: Recent advances in chemical dearomatization of nonactivated arenes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c8cs00389k
– volume: 49
  start-page: 1302
  year: 2016
  ident: WOS:000378470300024
  article-title: New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.6b00093
– volume: 135
  start-page: 4558
  year: 2013
  ident: WOS:000316774100052
  article-title: Asymmetric Dearomatizing Spirolactonization of Naphthols Catalyzed by Spirobiindane-Based Chiral Hypervalent Iodine Species
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja401074u
– year: 2009
  ident: 000961776200001.85
  publication-title: CYLview, 1.0b
– volume: 143
  start-page: 4801
  year: 2021
  ident: WOS:000636686900037
  article-title: Ligand Conformational Flexibility Enables Enantioselective Tertiary C-B Bond Formation in the Phosphonate-Directed Catalytic Asymmetric Alkene Hydroboration
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c01303
– volume: 7
  start-page: ARTN e1299
  year: 2017
  ident: WOS:000399013700004
  article-title: Hypercoordinate iodine(III) promoted reactions and catalysis: an update on current mechanistic understanding
  publication-title: WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE
  doi: 10.1002/wcms.1299
– volume: 55
  start-page: 5667
  year: 2019
  ident: WOS:000468401700028
  article-title: Designing new Togni reagents by computation
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c9cc01320b
– volume: 17
  start-page: S177
  year: 2005
  ident: WOS:000230320200025
  article-title: Conservation of helicity and helical character matching in chiral interactions
  publication-title: CHIRALITY
  doi: 10.1002/chir.20140
– volume: 120
  start-page: 11479
  year: 2020
  ident: WOS:000582672400006
  article-title: Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.0c00523
– volume: 23
  start-page: 4542
  year: 2017
  ident: WOS:000399326500005
  article-title: Asymmetric Oxidative Cycloetherification of Naphtholic Alcohols
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201700667
– volume: 53
  start-page: 3466
  year: 2014
  ident: WOS:000333001500032
  article-title: Asymmetric Organocatalytic Direct C(sp2)-H/C(sp3)-H Oxidative Cross-Coupling by Chiral Iodine Reagents
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201309967
– volume: 144
  start-page: 2679
  year: 2022
  ident: WOS:000763125900029
  article-title: Cooperative Weak Dispersive Interactions Actuate Catalysis in a Shape-Selective Abiological Racemase
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c11032
– volume: 22
  start-page: 7169
  year: 2020
  ident: WOS:000526524500051
  article-title: Automated exploration of the low-energy chemical space with fast quantum chemical methods
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/c9cp06869d
– volume: 139
  start-page: 492
  year: 2017
  ident: WOS:000392036900068
  article-title: Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b11348
– volume: 58
  start-page: 1880
  year: 2019
  ident: WOS:000458828000003
  article-title: Chalcogen Bonding: An Overview
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201809432
– volume: 82
  start-page: 11891
  year: 2017
  ident: WOS:000416204400030
  article-title: Experimental and Theoretical Quantification of the Lewis Acidity of lodine(III) Species
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.7b01616
– volume: 85
  start-page: 10175
  year: 2020
  ident: WOS:000562073600065
  article-title: Stereoselective Oxidative Rearrangement of Disubstituted Unactivated Alkenes Using Hypervalent Iodine(III) Reagent
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.0c00347
– volume: 48
  start-page: 816
  year: 2016
  ident: WOS:000371689200003
  article-title: Enantioselective Vicinal Diacetoxylation of Alkenes under Chiral Iodine(III) Catalysis
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0035-1561313
– volume: 86
  start-page: 8425
  year: 2021
  ident: WOS:000664332300045
  article-title: Arene-Perfluoroarene Interactions in Solution
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.1c00921
– volume: 139
  start-page: 9152
  year: 2017
  ident: WOS:000405642400016
  article-title: Catalytic 1,3-Difunctionalization via Oxidative C-C Bond Activation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b05160
– volume: 142
  start-page: 5221
  year: 2020
  ident: WOS:000526392600035
  article-title: Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12998
– volume: 85
  start-page: 3125
  year: 2020
  ident: WOS:000518875700023
  article-title: Synthesis of Polycyclic Cyclohexadienone through Alkoxy-Oxylactonization and Dearomatization of 3′-Hydroxy-[1,1′-biphenyl]-2-carboxylic Acids Promoted by Hypervalent Iodine
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.9b03012
– volume: 54
  start-page: 2905
  year: 2021
  ident: WOS:000677482200001
  article-title: Recent Advances in Theoretical Studies on Transition-Metal-Catalyzed Carbene Transformations
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.1c00075
– volume: 61
  start-page: 7125
  year: 2005
  ident: WOS:000230327300008
  article-title: Conservation of helical asymmetry in chiral interactions
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2005.05.058
– year: 2011
  ident: 000961776200001.6
  publication-title: Privileged Chiral Ligands and Catalysts
– volume: 96
  start-page: 563
  year: 2018
  ident: WOS:000433999800001
  article-title: ENANTIOSELECTIVE HETEROCYCLE FORMATION USING CHIRAL HYPERVALENT IODINE(III)
  publication-title: HETEROCYCLES
  doi: 10.3987/REV-17-877
– volume: 60
  start-page: 5069
  year: 2021
  ident: WOS:000607731600001
  article-title: A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202013172
– volume: 24
  start-page: 2106
  year: 2020
  ident: WOS:000591895700005
  article-title: Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols
  publication-title: CURRENT ORGANIC CHEMISTRY
  doi: 10.2174/1385272824999200620223218
– volume: 52
  start-page: 2469
  year: 2013
  ident: WOS:000315209900013
  article-title: Regio- and Enantioselective Aminofluorination of Alkenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201208471
– volume: 47
  start-page: 3787
  year: 2008
  ident: WOS:000255791200025
  article-title: A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200800464
– volume: 24
  start-page: 15983
  year: 2018
  ident: WOS:000451908600005
  article-title: Refined SMD Parameters for Bromine and Iodine Accurately Model Halogen-Bonding Interactions in Solution
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201803652
– volume: 57
  start-page: 3830
  year: 2018
  ident: WOS:000428350100054
  article-title: Iodine(III) Derivatives as Halogen Bonding Organocatalysts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201713012
– volume: 49
  start-page: 1070
  year: 2016
  ident: WOS:000376331400031
  article-title: Deciphering Selectivity in Organic Reactions: A Multifaceted Problem
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.6b00099
– volume: 303
  start-page: 186
  year: 2004
  ident: WOS:000187908500037
  article-title: How enzymes work: Analysis by modern rate theory and computer simulations
  publication-title: SCIENCE
– volume: 128
  start-page: 13010
  year: 2006
  ident: WOS:000240795000079
  article-title: DFT studies on the mechanism of allylative dearomatization catalyzed by palladium
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja063944i
– volume: 49
  start-page: 1006
  year: 2016
  ident: WOS:000376331400025
  article-title: Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.6b00050
– volume: 22
  start-page: 4030
  year: 2016
  ident: WOS:000372526500020
  article-title: Enantioselective Oxidative Rearrangements with Chiral Hypervalent Iodine Reagents
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201504844
– volume: 116
  start-page: 2478
  year: 2016
  ident: WOS:000371106000018
  article-title: The Halogen Bond
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00484
– volume: 2020
  start-page: 5473
  year: 2020
  ident: WOS:000563836500001
  article-title: σ-Hole Interactions in Catalysis
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202000660
– volume: 51
  start-page: 1021
  year: 2019
  ident: WOS:000459926800003
  article-title: Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0037-1611636
– volume: 7
  start-page: 872
  year: 2017
  ident: WOS:000391783200093
  article-title: Enantioselective Synthesis of Masked Benzoquinones Using Designer Chiral Hypervalent Organoiodine(III) Catalysis
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.6b03380
– volume: 14
  start-page: 949
  year: 2022
  ident: WOS:000805517500001
  article-title: Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-022-00954-9
SSID ssj0004281
Score 2.511769
Snippet Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara’s elegant design of conformationally...
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7301
SubjectTerms Chemistry
Chemistry, Multidisciplinary
enantioselectivity
halogens
hydrogen bonding
naphthols
organocatalysts
oxidation
Physical Sciences
reaction mechanisms
Science & Technology
stereochemistry
Title Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization
URI http://dx.doi.org/10.1021/jacs.2c13295
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000961776200001
https://www.ncbi.nlm.nih.gov/pubmed/36940192
https://www.proquest.com/docview/2788800644
https://www.proquest.com/docview/3040427158
Volume 145
WOS 000961776200001
WOSCitedRecordID wos000961776200001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004281
  issn: 0002-7863
  databaseCode: ACS
  dateStart: 18790101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODC-xFecqVyQl6tY8eOj6u0pQWVS6nU2yqxHRHBZqsme2h_ET-TGcfZQsuK3qJ4LMuP8Xzz8AwhOyBVjZ5yx6QsPZOptqwUuWO10qbOvZXcoWng6Ks6OJGfT7PTqwDZ6x78FPMD2W6SWiyInt0l91KVc1SyZsXx1fvHNOcjzNW5EjHA_XpvFEC2-1sA3UCV_xRAQdjsPyKfxic7Q4zJj8mqryb28mYGx__M4zF5GPEmnQ0H5Am549un5H4xlnl7Rn4VaMC56HqGd0jIVUtBFuHe0WLM5kyP4MZGWxXdjeEzvqMAHekextE0yy5U0wl1KGjThpbD7nuD3RlquvQQtF98dgbdhvEuvaOz7mKxwIpeln5p-pLtAtctFyETOT0-a85B67YATeNL0efkZH_vW3HAYvkGVgJG6xkgsamojARAYl3ppk5q4UFBcib3invNjTOZAwVUOltLY41OAQ45bTJfGm-VeEG22mXrXxFaZ6LizsssLZV0XOW1VPhZV074WtYJ2YbVnUf26-bBs56CZoN_45on5OO473Mb859jGY6fG6g_rKnPhrwfG-i2xyM0h41Db0vZ-uUKCNC4gIhPbqYRcIUCf_AsT8jL4fytRxPKSMTfCdn580Cu24P2yTUIs-ChSQi_DVkRZ44ZD_rXt1i2N-RBCrguBCtlb8lWf77y7wCH9dX7wIS_AYAbLtM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619EAvfT9CX0aip8ponTgPH1EA7RZ2L4DELcrajhq1m0Uke4BfxM_sjNdZWtqV9hYl48Txa76xZ74B2EOtqtKBMFzK0nIZppqXUWZ4laSqyqyWwtDWwHiSDC_k98v40gerUywMVqLFN7XuEP-eXYBogvBmqCkvevwYnjgSFEJC-dl9GGSYiR7tplkSeT_3h6VJD-n2bz30D7j8rx5yOuf4OUxWtXWuJj_3F910X98-IHLc-HdewDOPPtnBcri8hEe2eQXbeZ_07TXc5bSdc9N2nFYUx1zLUDNRT7K853ZmY1y_aeeKHXpnGtsyBJLsiLxq6nnrcuu4rBSsbtyTUfujpuKc7F42QluYgtCw2PJ7t9awg_ZmNqP8Xpqd1F3JD3EOzmeOl5ydXdXXaINrBKo-bvQNXBwfnedD7pM58BIRW8cRlw2iqZIIT7QpzcDINLJoLhmV2UTYVCijYoPmqDS6kkqrNERwZFIV21JZnURvYauZN_Y9sCqOpsJYGYdlIo1IskomdFlNTWQrWQWwi61b-MnYFu6cPUQ7h-76Ng_gW9_9hfZs6JSU49ca6a8r6aslC8gaud1-JBXYcXT2UjZ2vkAB2mog_CfXy0S4oOJsEXEWwLvlMFx9LUqUJDQewN6f43L13NmiIkXV5s5rAhCbiOX-z4n_oNvZoNm-wPbwfHxanI4mJx_gaYiIz7kxxR9hq7te2E-I0LrpZzcvfwOxqzc-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NIQEvfG-ET08aT8hTnTgffpzSVStjE2JM2luU2o6IWNNqSR-2v4g_kzvXKTCoNN6q-Nwkzp3vd_b5dwC76FVVOhCGS1laLsNU8zLKDK-SVFWZ1VIYWho4PkkOz-TH8_h8A0R_FgYfosV_at0mPln13FSeYYCogrAh1FQbPb4Dd2NifyM0lJ_-OgoZZqJHvGmWRD7X_WZv8kW6_dMX_QUw_-mLnN8ZPYIvqyd26Sbf9xbdZE9f3yBz_K9XegwPPQpl-0u1eQIbtnkK9_O--Nsz-JHTss5V23GaWRyDLUMPRV-U5T3HMzvGeZxWsNjQJ9XYliGgZAeUXVPPWldjx1WnYHXjWsbtt5q6c4p_2RhjYjqMht2W97u2hu23V9Mp1fnS7KjuSj5EW5xNHT85O53XlxiLawSs_vzoczgbHXzND7kv6sBLRG4dR3w2iCZKIkzRpjQDI9PIYthkVGYTYVOhjIoNhqXS6EoqrdIQQZJJVWxLZXUSbcFmM2vsC2BVHE2EsTIOy0QakWSVTOhnNTGRrWQVwA6ObuGNsi3cfnuI8Q5d9WMewIdeBQrtWdGpOMfFGun3K-n5kg1kjdxOr00FfjjagykbO1ugAC05EA6U62UinFjRakScBbC9VMXV3aJESULlAez-rpurdheTihRdnNu3CUDcRiz3b048CN3LWwzbO7j3eTgqPo1Pjl7BgxCBn8tmil_DZne5sG8QqHWTt840fwJzPDm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalyst-Substrate+Helical+Character+Matching+Determines+the+Enantioselectivity+in+the+Ishihara-Type+Iodoarenes+Catalyzed+Asymmetric+Kita-Dearomative+Spirolactonization&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zheng%2C+Hanliang&rft.au=Cai%2C+Liu&rft.au=Pan%2C+Ming&rft.au=Uyanik%2C+Muhammet&rft.date=2023-04-05&rft.eissn=1520-5126&rft.volume=145&rft.issue=13&rft.spage=7301&rft_id=info:doi/10.1021%2Fjacs.2c13295&rft_id=info%3Apmid%2F36940192&rft.externalDocID=36940192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon