Unimolecular Reaction Pathways of a γ‑Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and on...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 3; pp. 1035 - 1048
Main Authors Grambow, Colin A, Jamal, Adeel, Li, Yi-Pei, Green, William H, Zádor, Judit, Suleimanov, Yury V
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.01.2018
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1943-2984
1520-5126
DOI10.1021/jacs.7b11009

Cover

Abstract Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).
AbstractList Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).
Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).
Ketohydroperoxides are important in liquid phase autoxidation and in gas phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition state search algorithms - the Berny algorithm coupled with the freezing string method (FSM), single- and double-ended growing string methods (SSM and GSM), the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All methods found the lowest energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).
Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).
Author Green, William H
Suleimanov, Yury V
Grambow, Colin A
Zádor, Judit
Li, Yi-Pei
Jamal, Adeel
AuthorAffiliation Department of Chemical Engineering
Combustion Research Facility
Cyprus Institute
Sandia National Laboratories
Computation-based Science and Technology Research Center
AuthorAffiliation_xml – name: Sandia National Laboratories
– name: Department of Chemical Engineering
– name: Computation-based Science and Technology Research Center
– name: Combustion Research Facility
– name: Cyprus Institute
Author_xml – sequence: 1
  givenname: Colin A
  orcidid: 0000-0002-2204-9046
  surname: Grambow
  fullname: Grambow, Colin A
  organization: Department of Chemical Engineering
– sequence: 2
  givenname: Adeel
  orcidid: 0000-0002-4045-2760
  surname: Jamal
  fullname: Jamal, Adeel
  organization: Department of Chemical Engineering
– sequence: 3
  givenname: Yi-Pei
  surname: Li
  fullname: Li, Yi-Pei
  organization: Department of Chemical Engineering
– sequence: 4
  givenname: William H
  orcidid: 0000-0003-2603-9694
  surname: Green
  fullname: Green, William H
  email: whgreen@mit.edu
  organization: Department of Chemical Engineering
– sequence: 5
  givenname: Judit
  orcidid: 0000-0002-9123-8238
  surname: Zádor
  fullname: Zádor, Judit
  organization: Sandia National Laboratories
– sequence: 6
  givenname: Yury V
  surname: Suleimanov
  fullname: Suleimanov, Yury V
  email: y.suleymanov@cyi.ac.cy
  organization: Cyprus Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29271202$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1473944$$D View this record in Osti.gov
BookMark eNqFkc1u1DAUhS1URKeFHWsUsWJBiq-dxPFyNPyKIhCi68hxrjUeJXawnZaRWPAKPAvvwUPwJGQ6QxcI1JVl-ztX95xzQo6cd0jIQ6BnQBk82ygdz0QLQKm8QxZQMpqXwKojsqCUslzUFT8mJzFu5mvBarhHjplkAhhlC_L1wtnB96inXoXsIyqdrHfZB5XWV2obM28ylf388evb97eY_HrbBT9i8F9sh5kJfshWfmitwy5bjmNvtbqWz6rllPyg0vxxM_S5jdpfYthm7zCtfRfvk7tG9REfHM5TcvHyxafV6_z8_as3q-V5rgrGUi5bZmpZGqFrViGryg4osqLlxoDErjaCFSiQgwbFudRc8k6VBS1V15ZGcn5K8v3cyY1qe6X6vhmDHVTYNkCbXYrNLsXmkOLMP97zPibbRG0T6rX2zqFODRSCy6KYoSd7aAz-84QxNcPsD_teOfRTbBhAVQteiPJWFKSQsqqh3qGPDujUDtjd7PmnsRl4ugd08DEGNLdZYX_hs5vrklJQtv-f6LDv7nHjp-Dmdv6N_gaQZ8gU
CitedBy_id crossref_primary_10_1021_acs_jpca_2c06558
crossref_primary_10_1039_D2SC05135D
crossref_primary_10_1021_acs_jpca_0c06211
crossref_primary_10_1039_D2FD00125J
crossref_primary_10_21468_SciPostChem_1_1_003
crossref_primary_10_1039_D3DD00026E
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1021_acs_jpclett_0c03347
crossref_primary_10_1038_s44160_022_00128_y
crossref_primary_10_1021_acs_jctc_9b00126
crossref_primary_10_1002_jcc_25202
crossref_primary_10_1016_j_pecs_2020_100886
crossref_primary_10_1021_acs_jpca_4c04121
crossref_primary_10_1039_C8CP03168A
crossref_primary_10_1039_D0SC03530K
crossref_primary_10_1002_ange_202210693
crossref_primary_10_1021_acs_jctc_4c01401
crossref_primary_10_1016_j_pecs_2019_02_003
crossref_primary_10_1002_kin_21744
crossref_primary_10_1021_acs_jcim_4c02319
crossref_primary_10_1016_j_combustflame_2021_111581
crossref_primary_10_1016_j_pecs_2021_100925
crossref_primary_10_1016_j_pecs_2022_101019
crossref_primary_10_1002_jcc_26734
crossref_primary_10_1021_acs_jpclett_9b03678
crossref_primary_10_1021_acscatal_3c00576
crossref_primary_10_1016_j_proci_2020_06_019
crossref_primary_10_1021_jacs_2c11857
crossref_primary_10_1016_j_fuel_2024_132345
crossref_primary_10_1039_D2FD00136E
crossref_primary_10_1038_s41597_020_0460_4
crossref_primary_10_1039_D2SC02107B
crossref_primary_10_1021_jacsau_4c00685
crossref_primary_10_1039_D3SC03319H
crossref_primary_10_1002_cphc_202200783
crossref_primary_10_1039_D4FD00015C
crossref_primary_10_1039_D2CP01079H
crossref_primary_10_1021_acs_jpca_1c05817
crossref_primary_10_1016_j_coche_2019_11_007
crossref_primary_10_1021_acs_jctc_4c01692
crossref_primary_10_1016_j_combustflame_2020_08_037
crossref_primary_10_1021_acs_jcim_1c01197
crossref_primary_10_1002_wcms_1538
crossref_primary_10_1016_j_proci_2022_06_002
crossref_primary_10_1021_acs_jpca_2c02614
crossref_primary_10_1002_aic_17059
crossref_primary_10_1039_D1RA03395F
crossref_primary_10_1146_annurev_physchem_102822_101025
crossref_primary_10_1021_acs_jctc_2c00193
crossref_primary_10_1021_jacsau_2c00157
crossref_primary_10_1039_D3RE00684K
crossref_primary_10_1021_acs_jcim_4c02106
crossref_primary_10_1063_1_5132628
crossref_primary_10_1038_s43588_021_00101_3
crossref_primary_10_1088_2632_2153_acee42
crossref_primary_10_1021_acs_jctc_9b00869
crossref_primary_10_1021_jacs_9b11535
crossref_primary_10_1039_D3OB00398A
crossref_primary_10_1002_jms_4522
crossref_primary_10_1063_5_0096027
crossref_primary_10_1021_acs_jctc_8b01182
crossref_primary_10_1016_j_combustflame_2021_01_037
crossref_primary_10_1039_C9RE00418A
crossref_primary_10_1021_acs_jctc_2c00081
crossref_primary_10_1007_s12633_023_02784_x
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1021_jacs_2c09830
crossref_primary_10_1021_acsearthspacechem_2c00198
crossref_primary_10_1146_annurev_physchem_071119_040123
crossref_primary_10_1021_acs_jctc_2c00404
crossref_primary_10_1039_D0CP04670A
crossref_primary_10_1002_anie_202210693
crossref_primary_10_1016_j_cpc_2019_106947
crossref_primary_10_1021_acs_jpca_8b10007
crossref_primary_10_1021_acs_jpca_1c01512
crossref_primary_10_1039_D2CP04499D
crossref_primary_10_1002_jcc_26385
crossref_primary_10_1021_acs_jpca_3c05253
crossref_primary_10_1038_s41597_023_02043_z
crossref_primary_10_1016_j_combustflame_2020_10_021
crossref_primary_10_1039_D0RE00340A
crossref_primary_10_1021_jacs_1c05807
crossref_primary_10_1002_syst_201900024
Cites_doi 10.1039/C7CP05132H
10.1021/jacs.5b12528
10.1002/anie.201410738
10.1021/acs.jctc.5b00407
10.1021/ct400319w
10.1002/jcc.540030212
10.1186/1758-2946-3-33
10.1063/1.4804162
10.1146/annurev-chembioeng-062011-081108
10.1021/ja804165q
10.1021/jp209146b
10.1021/acs.jpca.6b12195
10.1029/1999JD900788
10.1063/1.1323224
10.5194/acp-17-7807-2017
10.1021/jp408166m
10.1002/chem.19960021009
10.1021/jp045049w
10.1016/j.cpc.2016.02.013
10.1039/c2cp40294g
10.1038/nature17432
10.1021/es500319q
10.1016/j.coche.2016.09.006
10.1021/jz301701x
10.1063/1.1329672
10.1126/science.1220712
10.1021/ja4034439
10.1016/j.compchemeng.2012.11.009
10.1021/jp035423c
10.1021/ja00075a045
10.1016/j.proci.2016.07.100
10.1007/978-3-7091-2812-1_13
10.1002/jcc.23833
10.1126/science.1112532
10.1021/acs.accounts.6b00606
10.1016/0009-2614(92)85543-J
10.1021/ja00397a026
10.1021/acs.jctc.5b00866
10.1021/acscentsci.6b00219
10.1021/jp4118985
10.1016/j.pecs.2010.06.006
10.1039/C7CP05541B
10.1073/pnas.202427399
10.1021/acs.accounts.6b00023
10.1002/tcr.201600043
10.1039/c3cp52598h
10.1021/es8010282
10.1016/j.cpc.2012.03.007
10.1021/acs.accounts.7b00010
10.1039/c2cs35140d
10.1016/j.combustflame.2008.12.007
10.1021/ja00047a039
10.1126/science.1234689
10.1021/ja00016a012
10.1039/c2cs35070j
10.1063/1.3664901
10.1039/C5CP03862F
10.1039/b102562g
10.1021/acs.accounts.6b00555
10.1002/jcc.23481
10.1007/s00214-007-0310-x
10.1063/1.465100
10.1021/jz302004w
10.1038/nchem.2099
10.1021/jp972986d
10.1021/cr500488p
10.1021/jz5008406
10.1021/ja00519a018
10.1021/jp057107z
10.1126/science.1213229
10.1021/jp004631r
10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
10.1021/jp054934r
10.1039/C6OB02183B
10.1039/C5CP04706D
10.1016/j.cpc.2013.03.011
10.1039/c1sc00225b
10.1038/nchem.1052
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
– name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1021/jacs.7b11009
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1048
ExternalDocumentID oai:dspace.mit.edu:1721.1/119819
1473944
29271202
10_1021_jacs_7b11009
a003635347
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYWT
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ABFRP
OIOZB
OTOTI
TAF
.GJ
.HR
186
1WB
3EH
3O-
41~
6TJ
AAUPJ
AAYJJ
ABHMW
ABWLT
ACBNA
ACKIV
ACRPL
ADNMO
ADTOC
ADXHL
AEYZD
AFFNX
AGQPQ
AI.
AIDAL
ANPPW
ANTXH
D0S
IHE
MVM
NHB
OHT
P-O
RNS
UBC
UBX
UNPAY
UQL
VH1
X7L
YR5
YXA
YXE
YYP
ZCG
ZE2
ZGI
ZY4
ID FETCH-LOGICAL-a422t-9b2f895f7c826e265d10e24b3ff19ed8f724e7e31c1a339c393da5405adb5f933
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
1943-2984
IngestDate Sun Oct 26 04:10:54 EDT 2025
Mon Jul 03 03:59:49 EDT 2023
Thu Oct 02 10:50:16 EDT 2025
Fri Sep 05 13:56:25 EDT 2025
Mon Jul 21 05:41:45 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Wed Oct 01 04:01:43 EDT 2025
Thu Aug 27 13:42:33 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a422t-9b2f895f7c826e265d10e24b3ff19ed8f724e7e31c1a339c393da5405adb5f933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SAND-2018-9927J
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC04-94AL85000; AC02-05CH11231
ORCID 0000-0002-4045-2760
0000-0003-2603-9694
0000-0002-2204-9046
0000-0002-9123-8238
0000000222049046
0000000326039694
0000000291238238
0000000240452760
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/1721.1/119819
PMID 29271202
PQID 1979968185
PQPubID 23479
PageCount 14
ParticipantIDs unpaywall_primary_10_1021_jacs_7b11009
osti_scitechconnect_1473944
proquest_miscellaneous_2116873475
proquest_miscellaneous_1979968185
pubmed_primary_29271202
crossref_primary_10_1021_jacs_7b11009
crossref_citationtrail_10_1021_jacs_7b11009
acs_journals_10_1021_jacs_7b11009
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-24
PublicationDateYYYYMMDD 2018-01-24
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
Benson S. W. (ref44/cit44) 1976
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref70/cit70
ref7/cit7
References_xml – ident: ref51/cit51
  doi: 10.1039/C7CP05132H
– ident: ref14/cit14
  doi: 10.1021/jacs.5b12528
– ident: ref5/cit5
  doi: 10.1002/anie.201410738
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.5b00407
– ident: ref24/cit24
  doi: 10.1021/ct400319w
– ident: ref31/cit31
  doi: 10.1002/jcc.540030212
– ident: ref47/cit47
– ident: ref45/cit45
  doi: 10.1186/1758-2946-3-33
– ident: ref27/cit27
  doi: 10.1063/1.4804162
– ident: ref4/cit4
  doi: 10.1146/annurev-chembioeng-062011-081108
– ident: ref56/cit56
  doi: 10.1021/ja804165q
– ident: ref18/cit18
  doi: 10.1021/jp209146b
– ident: ref23/cit23
  doi: 10.1021/acs.jpca.6b12195
– ident: ref64/cit64
  doi: 10.1029/1999JD900788
– ident: ref29/cit29
  doi: 10.1063/1.1323224
– ident: ref79/cit79
  doi: 10.5194/acp-17-7807-2017
– ident: ref50/cit50
  doi: 10.1021/jp408166m
– ident: ref65/cit65
  doi: 10.1002/chem.19960021009
– ident: ref70/cit70
  doi: 10.1021/jp045049w
– ident: ref43/cit43
  doi: 10.1016/j.cpc.2016.02.013
– ident: ref54/cit54
  doi: 10.1039/c2cp40294g
– ident: ref13/cit13
  doi: 10.1038/nature17432
– ident: ref78/cit78
  doi: 10.1021/es500319q
– ident: ref9/cit9
  doi: 10.1016/j.coche.2016.09.006
– ident: ref74/cit74
  doi: 10.1021/jz301701x
– ident: ref28/cit28
  doi: 10.1063/1.1329672
– ident: ref63/cit63
  doi: 10.1126/science.1220712
– ident: ref10/cit10
  doi: 10.1021/ja4034439
– ident: ref15/cit15
  doi: 10.1016/j.compchemeng.2012.11.009
– ident: ref57/cit57
  doi: 10.1021/jp035423c
– ident: ref69/cit69
  doi: 10.1021/ja00075a045
– ident: ref3/cit3
  doi: 10.1016/j.proci.2016.07.100
– ident: ref33/cit33
  doi: 10.1007/978-3-7091-2812-1_13
– ident: ref22/cit22
  doi: 10.1002/jcc.23833
– ident: ref61/cit61
  doi: 10.1126/science.1112532
– ident: ref6/cit6
  doi: 10.1021/acs.accounts.6b00606
– ident: ref81/cit81
  doi: 10.1016/0009-2614(92)85543-J
– ident: ref41/cit41
  doi: 10.1021/ja00397a026
– ident: ref25/cit25
  doi: 10.1021/acs.jctc.5b00866
– ident: ref38/cit38
  doi: 10.1021/acscentsci.6b00219
– ident: ref59/cit59
  doi: 10.1021/jp4118985
– ident: ref42/cit42
  doi: 10.1016/j.pecs.2010.06.006
– ident: ref75/cit75
  doi: 10.1039/C7CP05541B
– ident: ref19/cit19
  doi: 10.1073/pnas.202427399
– ident: ref39/cit39
  doi: 10.1021/acs.accounts.6b00023
– ident: ref46/cit46
– ident: ref34/cit34
– ident: ref21/cit21
  doi: 10.1002/tcr.201600043
– ident: ref60/cit60
  doi: 10.1039/c3cp52598h
– ident: ref80/cit80
  doi: 10.1021/es8010282
– ident: ref35/cit35
  doi: 10.1016/j.cpc.2012.03.007
– ident: ref1/cit1
  doi: 10.1021/acs.accounts.7b00010
– ident: ref77/cit77
  doi: 10.1039/c2cs35140d
– volume-title: Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters
  year: 1976
  ident: ref44/cit44
– ident: ref72/cit72
  doi: 10.1016/j.combustflame.2008.12.007
– ident: ref12/cit12
  doi: 10.1021/ja00047a039
– ident: ref53/cit53
  doi: 10.1126/science.1234689
– ident: ref66/cit66
  doi: 10.1021/ja00016a012
– ident: ref76/cit76
  doi: 10.1039/c2cs35070j
– ident: ref26/cit26
  doi: 10.1063/1.3664901
– ident: ref68/cit68
  doi: 10.1039/C5CP03862F
– ident: ref71/cit71
  doi: 10.1039/b102562g
– ident: ref7/cit7
  doi: 10.1021/acs.accounts.6b00555
– ident: ref48/cit48
  doi: 10.1002/jcc.23481
– ident: ref49/cit49
  doi: 10.1007/s00214-007-0310-x
– ident: ref82/cit82
  doi: 10.1063/1.465100
– ident: ref11/cit11
  doi: 10.1021/jz302004w
– ident: ref20/cit20
  doi: 10.1038/nchem.2099
– ident: ref67/cit67
  doi: 10.1021/jp972986d
– ident: ref8/cit8
  doi: 10.1021/cr500488p
– ident: ref58/cit58
  doi: 10.1021/jz5008406
– ident: ref40/cit40
  doi: 10.1021/ja00519a018
– ident: ref16/cit16
  doi: 10.1021/jp057107z
– ident: ref52/cit52
  doi: 10.1126/science.1213229
– ident: ref55/cit55
  doi: 10.1021/jp004631r
– ident: ref32/cit32
  doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
– ident: ref73/cit73
  doi: 10.1021/jp054934r
– ident: ref2/cit2
  doi: 10.1039/C6OB02183B
– ident: ref30/cit30
  doi: 10.1039/C5CP04706D
– ident: ref36/cit36
  doi: 10.1016/j.cpc.2013.03.011
– ident: ref37/cit37
  doi: 10.1039/c1sc00225b
– ident: ref62/cit62
  doi: 10.1038/nchem.1052
SSID ssj0004281
Score 2.5428815
Snippet Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low...
Ketohydroperoxides are important in liquid phase autoxidation and in gas phase partial oxidation and pre-ignition chemistry, but because of their low...
SourceID unpaywall
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1035
SubjectTerms algorithms
analytical chemistry
automation
autoxidation
combustion
density functional theory
freezing
gases
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq7aFw4A1dCshIwAV5m9hOHB9XLVUFalUhViqnyHZsUdgmFUlUbf8W_4PfxMwmWZ5bcU3G0UQzk_km8yLkRVRIa32QzHowN2l4YJmIHVNBG-1SK1KHDc5Hx-nhTL49TU43yLDw7o_xAhifTOLdGCJjHO25mSYAuEdkc3Z8Mv04AFuVLfelgSOKGLivZT-RlrihLJN9qTs4st3PxtUTZXFEmkZX5OrfXNGoApP6F8y8Sbba8sIsLs18_ovrObhN9ocGnq7i5MukbezEXf09z_G6t7pDbvXQk047XblLNnx5j2ztDRvf7pMrAKDnw7pc-t53PQ_0BEDipVnUtArU0O_f2DvfVJ8WBf7GB5bOCk-xSYXCpwXCbF_Q6c-kOJ6Ztk0FuBhurB65f1Y7rB1d0KPlBuv6AZkdvPmwd8j63QzMSM4bpi0PmU6CchCfeJ4mRRx5Lq0IIda-yILi0isPYo-NENoJLQqD6NAUNglaiIdkVFal3ybUwMFIm9RqFaQHCJHg2DDHhY_gaSaMyXMQVt7bVp0v0-Ycwha82gt0TF4PosxdP9wcd2zM11C_XFFfdEM91tDtoFbkAEZwoq7D0iPXQLSksJ0Y-BqUJQdBYaLFlL5qgUPMlaYIhdbTQOCdZkpIBTSPOk1b8cI1VzGP-Ji8WqnetYw-_l_CHXIDEB-WLzIun5BR87X1TwFVNfZZb1U_ADmrHHw
  priority: 102
  providerName: Unpaywall
Title Unimolecular Reaction Pathways of a γ‑Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods
URI http://dx.doi.org/10.1021/jacs.7b11009
https://www.ncbi.nlm.nih.gov/pubmed/29271202
https://www.proquest.com/docview/1979968185
https://www.proquest.com/docview/2116873475
https://www.osti.gov/servlets/purl/1473944
http://hdl.handle.net/1721.1/119819
UnpaywallVersion submittedVersion
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004281
  issn: 1943-2984
  databaseCode: ACS
  dateStart: 18790101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgeyg98P-zFCojAReUVWI7cXyMFkoFalUBK5VTZDu2qNgmFUlULeLAK_AsvAcPwZMws5vsQmGBazK2JvZM_I3nj5CHYSGMcV4ExoG6Cc18kPLIBtIrrWxieGIxwXn_INmbiBdH8dEqQPa8B59hfSBbj6TB0mbqItlgiZQYupeNX6_yH1ka9TBXpgnvAtzPj8YDyNa_HECDChTpT-Byi2y25amenenp9KcDZ_cKed6n7SziTN6P2saM7Mffqzj-41uukssd5qTZQkiukQuuvE42x32rtxvkEyDPk75PLn3lFskO9BDQ4Zme1bTyVNNvX79__vLSNdW7WYE3-MDXceEo5qdQ-KuAhe0Kmq384Tgqa5sKIDG8WE769Li2GDY6o_vz5tX1TTLZffZmvBd0bRkCLRhrAmWYT1XspQXTxLEkLqLQMWG495FyReolE0462PFIc64sV7zQCAx1YWKvOL9FBmVVujuEahgYKp0YJb1wgB5irBhmGXchzKb9kDyAFcs7tarzucecgcWCT7t1HJIn_X7mtqtrju01pmuoHy2pTxf1PNbQbaNo5IBDsJiuxagj24ChJDGTGPjqJSaHrUIfiy5d1QKH6CZNEAWtpwGbO0klFxJobi_EbckLU0xGLGRD8ngpf39l9O5_LNE2uQQ4D4MWAybukUHzoXX3AUs1ZmeuSDtkY3JwmL39AbtbHNo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELagHMoe-P8py4-RgAvKqrGdOD5WhVVhtxWCXWlvke3YYkU3WZFEqyIOvALPwnvwEDwJM22SwoqivTpja2LPxN9k_gh5NsyEMc6LwDhQN6GZDxIe2kB6pZWNDY8tJjhPZ_HkULw9io6aZHXMhQEmSlipXDrx19UFsEwQDEqDFc7UZXIlikWIttZo_GGdBsmSsEW7Mol5E-d-fjbeQ7b86x7qFaBP_8KYW6Rf56d6cabn8z_und3rZNZxvAw3-bRTV2bHfjlXzPHCr3SDXGsQKB2tROYmueTyW6Q_bhu_3SZfAYeetF1z6Xu3Sn2g7wArnulFSQtPNf3549e373uuKj4uMvyfD-wdZ45itgqFbwzY2y6jo7V3HGeN6qoAgAwPukVfHZcWg0gXdLpsZV3eIYe7rw_Gk6Bp0hBowVgVKMN8oiIvLRgqjsVRFg4dE4Z7HyqXJV4y4aSD8w8158pyxTONMFFnJvKK87uklxe5u0-oholDpWOjpBcOsESE9cMs424Iq2k_IE9hx9JGycp06T9nYL_gaLOPA_KyPdbUNlXOsdnGfAP18476dFXdYwPdNkpICqgES-tajEGyFZhNEvOKga9WcFI4KvS46NwVNXCITtMYMdFmGrDA40RyIYHm3krqOl6YYjJkQzYgLzox_C-jDy6wRU9If3Iw3U_338z2tslVQIAYzhgw8ZD0qs-1ewQoqzKPl7r1G79rI4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbKIlE48P-zlB8jAZcqVWI7cXxcbVkVSquqUKm3yHZsUbEkK5KoWsSBV-BZeA8egidhZjdJoWIRXOOxNbFn4m8yf4Q8DXNhjPMiMA7UTWjmg5RHNpBeaWUTwxOLCc57-8nOkXh1HB-vkajLhQEmKlipWjjxUatnuW8rDGCpIBiQBqucqQvkYpyAliMaGr85S4VkadQhXpkmvI11Pz8b7yJb_XYXDUrQqT_hzCtkvSlmen6qp9Nf7p7JNXLYc70IOXm_1dRmy346V9Dxv17rOrnaIlE6WorODbLmiptkfdw1gLtFPgMe_dB1z6WHbpkCQQ8AM57qeUVLTzX9_u3Hl6-7ri7fzXP8rw8snuSOYtYKhW8N2N0up6MzLznOGjV1CUAZBvpFt08qi8Gkc7q3aGld3SZHkxdvxztB26wh0IKxOlCG-VTFXlowWBxL4jwKHROGex8pl6deMuGkAzmINOfKcsVzjXBR5yb2ivM7ZFCUhbtHqIaJodKJUdILB5gixjpilnEXwmraD8kT2LGsVbYqW_jRGdgx-LTdxyHZ7I42s221c2y6MV1B_aynni2rfKyg20ApyQCdYIldi7FItgbzSWJ-MfDVCU8GR4WeF124sgEO0XmaIDZaTQOWeJJKLiTQ3F1KXs8LU0xGLGRD8rwXxb8yev8ftugxuXSwPclev9zf3SCXAQhiVGPAxAMyqD827iGArdo8WqjXTw1GJg8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq7aFw4A1dCshIwAV5m9hOHB9XLVUFalUhViqnyHZsUdgmFUlUbf8W_4PfxMwmWZ5bcU3G0UQzk_km8yLkRVRIa32QzHowN2l4YJmIHVNBG-1SK1KHDc5Hx-nhTL49TU43yLDw7o_xAhifTOLdGCJjHO25mSYAuEdkc3Z8Mv04AFuVLfelgSOKGLivZT-RlrihLJN9qTs4st3PxtUTZXFEmkZX5OrfXNGoApP6F8y8Sbba8sIsLs18_ovrObhN9ocGnq7i5MukbezEXf09z_G6t7pDbvXQk047XblLNnx5j2ztDRvf7pMrAKDnw7pc-t53PQ_0BEDipVnUtArU0O_f2DvfVJ8WBf7GB5bOCk-xSYXCpwXCbF_Q6c-kOJ6Ztk0FuBhurB65f1Y7rB1d0KPlBuv6AZkdvPmwd8j63QzMSM4bpi0PmU6CchCfeJ4mRRx5Lq0IIda-yILi0isPYo-NENoJLQqD6NAUNglaiIdkVFal3ybUwMFIm9RqFaQHCJHg2DDHhY_gaSaMyXMQVt7bVp0v0-Ycwha82gt0TF4PosxdP9wcd2zM11C_XFFfdEM91tDtoFbkAEZwoq7D0iPXQLSksJ0Y-BqUJQdBYaLFlL5qgUPMlaYIhdbTQOCdZkpIBTSPOk1b8cI1VzGP-Ji8WqnetYw-_l_CHXIDEB-WLzIun5BR87X1TwFVNfZZb1U_ADmrHHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unimolecular+Reaction+Pathways+of+a+%CE%B3-Ketohydroperoxide+from+Combined+Application+of+Automated+Reaction+Discovery+Methods&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Grambow%2C+Colin+A.&rft.au=Jamal%2C+Adeel&rft.au=Li%2C+Yi-Pei&rft.au=Green%2C+William+H.&rft.date=2018-01-24&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=3&rft.spage=1035&rft.epage=1048&rft_id=info:doi/10.1021%2Fjacs.7b11009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_7b11009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon