Unimolecular Reaction Pathways of a γ‑Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods
Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and on...
        Saved in:
      
    
          | Published in | Journal of the American Chemical Society Vol. 140; no. 3; pp. 1035 - 1048 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        24.01.2018
     American Chemical Society (ACS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0002-7863 1520-5126 1943-2984 1520-5126  | 
| DOI | 10.1021/jacs.7b11009 | 
Cover
| Abstract | Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s). | 
    
|---|---|
| AbstractList | Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s). Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s). Ketohydroperoxides are important in liquid phase autoxidation and in gas phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition state search algorithms - the Berny algorithm coupled with the freezing string method (FSM), single- and double-ended growing string methods (SSM and GSM), the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All methods found the lowest energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s). Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).  | 
    
| Author | Green, William H Suleimanov, Yury V Grambow, Colin A Zádor, Judit Li, Yi-Pei Jamal, Adeel  | 
    
| AuthorAffiliation | Department of Chemical Engineering Combustion Research Facility Cyprus Institute Sandia National Laboratories Computation-based Science and Technology Research Center  | 
    
| AuthorAffiliation_xml | – name: Sandia National Laboratories – name: Department of Chemical Engineering – name: Computation-based Science and Technology Research Center – name: Combustion Research Facility – name: Cyprus Institute  | 
    
| Author_xml | – sequence: 1 givenname: Colin A orcidid: 0000-0002-2204-9046 surname: Grambow fullname: Grambow, Colin A organization: Department of Chemical Engineering – sequence: 2 givenname: Adeel orcidid: 0000-0002-4045-2760 surname: Jamal fullname: Jamal, Adeel organization: Department of Chemical Engineering – sequence: 3 givenname: Yi-Pei surname: Li fullname: Li, Yi-Pei organization: Department of Chemical Engineering – sequence: 4 givenname: William H orcidid: 0000-0003-2603-9694 surname: Green fullname: Green, William H email: whgreen@mit.edu organization: Department of Chemical Engineering – sequence: 5 givenname: Judit orcidid: 0000-0002-9123-8238 surname: Zádor fullname: Zádor, Judit organization: Sandia National Laboratories – sequence: 6 givenname: Yury V surname: Suleimanov fullname: Suleimanov, Yury V email: y.suleymanov@cyi.ac.cy organization: Cyprus Institute  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29271202$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1473944$$D View this record in Osti.gov  | 
    
| BookMark | eNqFkc1u1DAUhS1URKeFHWsUsWJBiq-dxPFyNPyKIhCi68hxrjUeJXawnZaRWPAKPAvvwUPwJGQ6QxcI1JVl-ztX95xzQo6cd0jIQ6BnQBk82ygdz0QLQKm8QxZQMpqXwKojsqCUslzUFT8mJzFu5mvBarhHjplkAhhlC_L1wtnB96inXoXsIyqdrHfZB5XWV2obM28ylf388evb97eY_HrbBT9i8F9sh5kJfshWfmitwy5bjmNvtbqWz6rllPyg0vxxM_S5jdpfYthm7zCtfRfvk7tG9REfHM5TcvHyxafV6_z8_as3q-V5rgrGUi5bZmpZGqFrViGryg4osqLlxoDErjaCFSiQgwbFudRc8k6VBS1V15ZGcn5K8v3cyY1qe6X6vhmDHVTYNkCbXYrNLsXmkOLMP97zPibbRG0T6rX2zqFODRSCy6KYoSd7aAz-84QxNcPsD_teOfRTbBhAVQteiPJWFKSQsqqh3qGPDujUDtjd7PmnsRl4ugd08DEGNLdZYX_hs5vrklJQtv-f6LDv7nHjp-Dmdv6N_gaQZ8gU | 
    
| CitedBy_id | crossref_primary_10_1021_acs_jpca_2c06558 crossref_primary_10_1039_D2SC05135D crossref_primary_10_1021_acs_jpca_0c06211 crossref_primary_10_1039_D2FD00125J crossref_primary_10_21468_SciPostChem_1_1_003 crossref_primary_10_1039_D3DD00026E crossref_primary_10_1002_ange_201909987 crossref_primary_10_1021_acs_jpclett_0c03347 crossref_primary_10_1038_s44160_022_00128_y crossref_primary_10_1021_acs_jctc_9b00126 crossref_primary_10_1002_jcc_25202 crossref_primary_10_1016_j_pecs_2020_100886 crossref_primary_10_1021_acs_jpca_4c04121 crossref_primary_10_1039_C8CP03168A crossref_primary_10_1039_D0SC03530K crossref_primary_10_1002_ange_202210693 crossref_primary_10_1021_acs_jctc_4c01401 crossref_primary_10_1016_j_pecs_2019_02_003 crossref_primary_10_1002_kin_21744 crossref_primary_10_1021_acs_jcim_4c02319 crossref_primary_10_1016_j_combustflame_2021_111581 crossref_primary_10_1016_j_pecs_2021_100925 crossref_primary_10_1016_j_pecs_2022_101019 crossref_primary_10_1002_jcc_26734 crossref_primary_10_1021_acs_jpclett_9b03678 crossref_primary_10_1021_acscatal_3c00576 crossref_primary_10_1016_j_proci_2020_06_019 crossref_primary_10_1021_jacs_2c11857 crossref_primary_10_1016_j_fuel_2024_132345 crossref_primary_10_1039_D2FD00136E crossref_primary_10_1038_s41597_020_0460_4 crossref_primary_10_1039_D2SC02107B crossref_primary_10_1021_jacsau_4c00685 crossref_primary_10_1039_D3SC03319H crossref_primary_10_1002_cphc_202200783 crossref_primary_10_1039_D4FD00015C crossref_primary_10_1039_D2CP01079H crossref_primary_10_1021_acs_jpca_1c05817 crossref_primary_10_1016_j_coche_2019_11_007 crossref_primary_10_1021_acs_jctc_4c01692 crossref_primary_10_1016_j_combustflame_2020_08_037 crossref_primary_10_1021_acs_jcim_1c01197 crossref_primary_10_1002_wcms_1538 crossref_primary_10_1016_j_proci_2022_06_002 crossref_primary_10_1021_acs_jpca_2c02614 crossref_primary_10_1002_aic_17059 crossref_primary_10_1039_D1RA03395F crossref_primary_10_1146_annurev_physchem_102822_101025 crossref_primary_10_1021_acs_jctc_2c00193 crossref_primary_10_1021_jacsau_2c00157 crossref_primary_10_1039_D3RE00684K crossref_primary_10_1021_acs_jcim_4c02106 crossref_primary_10_1063_1_5132628 crossref_primary_10_1038_s43588_021_00101_3 crossref_primary_10_1088_2632_2153_acee42 crossref_primary_10_1021_acs_jctc_9b00869 crossref_primary_10_1021_jacs_9b11535 crossref_primary_10_1039_D3OB00398A crossref_primary_10_1002_jms_4522 crossref_primary_10_1063_5_0096027 crossref_primary_10_1021_acs_jctc_8b01182 crossref_primary_10_1016_j_combustflame_2021_01_037 crossref_primary_10_1039_C9RE00418A crossref_primary_10_1021_acs_jctc_2c00081 crossref_primary_10_1007_s12633_023_02784_x crossref_primary_10_1002_anie_201909987 crossref_primary_10_1021_jacs_2c09830 crossref_primary_10_1021_acsearthspacechem_2c00198 crossref_primary_10_1146_annurev_physchem_071119_040123 crossref_primary_10_1021_acs_jctc_2c00404 crossref_primary_10_1039_D0CP04670A crossref_primary_10_1002_anie_202210693 crossref_primary_10_1016_j_cpc_2019_106947 crossref_primary_10_1021_acs_jpca_8b10007 crossref_primary_10_1021_acs_jpca_1c01512 crossref_primary_10_1039_D2CP04499D crossref_primary_10_1002_jcc_26385 crossref_primary_10_1021_acs_jpca_3c05253 crossref_primary_10_1038_s41597_023_02043_z crossref_primary_10_1016_j_combustflame_2020_10_021 crossref_primary_10_1039_D0RE00340A crossref_primary_10_1021_jacs_1c05807 crossref_primary_10_1002_syst_201900024  | 
    
| Cites_doi | 10.1039/C7CP05132H 10.1021/jacs.5b12528 10.1002/anie.201410738 10.1021/acs.jctc.5b00407 10.1021/ct400319w 10.1002/jcc.540030212 10.1186/1758-2946-3-33 10.1063/1.4804162 10.1146/annurev-chembioeng-062011-081108 10.1021/ja804165q 10.1021/jp209146b 10.1021/acs.jpca.6b12195 10.1029/1999JD900788 10.1063/1.1323224 10.5194/acp-17-7807-2017 10.1021/jp408166m 10.1002/chem.19960021009 10.1021/jp045049w 10.1016/j.cpc.2016.02.013 10.1039/c2cp40294g 10.1038/nature17432 10.1021/es500319q 10.1016/j.coche.2016.09.006 10.1021/jz301701x 10.1063/1.1329672 10.1126/science.1220712 10.1021/ja4034439 10.1016/j.compchemeng.2012.11.009 10.1021/jp035423c 10.1021/ja00075a045 10.1016/j.proci.2016.07.100 10.1007/978-3-7091-2812-1_13 10.1002/jcc.23833 10.1126/science.1112532 10.1021/acs.accounts.6b00606 10.1016/0009-2614(92)85543-J 10.1021/ja00397a026 10.1021/acs.jctc.5b00866 10.1021/acscentsci.6b00219 10.1021/jp4118985 10.1016/j.pecs.2010.06.006 10.1039/C7CP05541B 10.1073/pnas.202427399 10.1021/acs.accounts.6b00023 10.1002/tcr.201600043 10.1039/c3cp52598h 10.1021/es8010282 10.1016/j.cpc.2012.03.007 10.1021/acs.accounts.7b00010 10.1039/c2cs35140d 10.1016/j.combustflame.2008.12.007 10.1021/ja00047a039 10.1126/science.1234689 10.1021/ja00016a012 10.1039/c2cs35070j 10.1063/1.3664901 10.1039/C5CP03862F 10.1039/b102562g 10.1021/acs.accounts.6b00555 10.1002/jcc.23481 10.1007/s00214-007-0310-x 10.1063/1.465100 10.1021/jz302004w 10.1038/nchem.2099 10.1021/jp972986d 10.1021/cr500488p 10.1021/jz5008406 10.1021/ja00519a018 10.1021/jp057107z 10.1126/science.1213229 10.1021/jp004631r 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0 10.1021/jp054934r 10.1039/C6OB02183B 10.1039/C5CP04706D 10.1016/j.cpc.2013.03.011 10.1039/c1sc00225b 10.1038/nchem.1052  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2017 American Chemical Society | 
    
| Copyright_xml | – notice: Copyright © 2017 American Chemical Society | 
    
| CorporateAuthor | Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) Sandia National Lab. (SNL-CA), Livermore, CA (United States)  | 
    
| CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)  | 
    
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OIOZB OTOTI ADTOC UNPAY  | 
    
| DOI | 10.1021/jacs.7b11009 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1520-5126 | 
    
| EndPage | 1048 | 
    
| ExternalDocumentID | oai:dspace.mit.edu:1721.1/119819 1473944 29271202 10_1021_jacs_7b11009 a003635347  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYWT AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 ABFRP OIOZB OTOTI TAF .GJ .HR 186 1WB 3EH 3O- 41~ 6TJ AAUPJ AAYJJ ABHMW ABWLT ACBNA ACKIV ACRPL ADNMO ADTOC ADXHL AEYZD AFFNX AGQPQ AI. AIDAL ANPPW ANTXH D0S IHE MVM NHB OHT P-O RNS UBC UBX UNPAY UQL VH1 X7L YR5 YXA YXE YYP ZCG ZE2 ZGI ZY4  | 
    
| ID | FETCH-LOGICAL-a422t-9b2f895f7c826e265d10e24b3ff19ed8f724e7e31c1a339c393da5405adb5f933 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 0002-7863 1520-5126 1943-2984  | 
    
| IngestDate | Sun Oct 26 04:10:54 EDT 2025 Mon Jul 03 03:59:49 EDT 2023 Thu Oct 02 10:50:16 EDT 2025 Fri Sep 05 13:56:25 EDT 2025 Mon Jul 21 05:41:45 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Wed Oct 01 04:01:43 EDT 2025 Thu Aug 27 13:42:33 EDT 2020  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a422t-9b2f895f7c826e265d10e24b3ff19ed8f724e7e31c1a339c393da5405adb5f933 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SAND-2018-9927J USDOE Office of Science (SC), Basic Energy Sciences (BES) AC04-94AL85000; AC02-05CH11231  | 
    
| ORCID | 0000-0002-4045-2760 0000-0003-2603-9694 0000-0002-2204-9046 0000-0002-9123-8238 0000000222049046 0000000326039694 0000000291238238 0000000240452760  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/1721.1/119819 | 
    
| PMID | 29271202 | 
    
| PQID | 1979968185 | 
    
| PQPubID | 23479 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1021_jacs_7b11009 osti_scitechconnect_1473944 proquest_miscellaneous_2116873475 proquest_miscellaneous_1979968185 pubmed_primary_29271202 crossref_primary_10_1021_jacs_7b11009 crossref_citationtrail_10_1021_jacs_7b11009 acs_journals_10_1021_jacs_7b11009  | 
    
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-01-24 | 
    
| PublicationDateYYYYMMDD | 2018-01-24 | 
    
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-24 day: 24  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Journal of the American Chemical Society | 
    
| PublicationTitleAlternate | J. Am. Chem. Soc | 
    
| PublicationYear | 2018 | 
    
| Publisher | American Chemical Society American Chemical Society (ACS)  | 
    
| Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS)  | 
    
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 Benson S. W. (ref44/cit44) 1976 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref70/cit70 ref7/cit7  | 
    
| References_xml | – ident: ref51/cit51 doi: 10.1039/C7CP05132H – ident: ref14/cit14 doi: 10.1021/jacs.5b12528 – ident: ref5/cit5 doi: 10.1002/anie.201410738 – ident: ref17/cit17 doi: 10.1021/acs.jctc.5b00407 – ident: ref24/cit24 doi: 10.1021/ct400319w – ident: ref31/cit31 doi: 10.1002/jcc.540030212 – ident: ref47/cit47 – ident: ref45/cit45 doi: 10.1186/1758-2946-3-33 – ident: ref27/cit27 doi: 10.1063/1.4804162 – ident: ref4/cit4 doi: 10.1146/annurev-chembioeng-062011-081108 – ident: ref56/cit56 doi: 10.1021/ja804165q – ident: ref18/cit18 doi: 10.1021/jp209146b – ident: ref23/cit23 doi: 10.1021/acs.jpca.6b12195 – ident: ref64/cit64 doi: 10.1029/1999JD900788 – ident: ref29/cit29 doi: 10.1063/1.1323224 – ident: ref79/cit79 doi: 10.5194/acp-17-7807-2017 – ident: ref50/cit50 doi: 10.1021/jp408166m – ident: ref65/cit65 doi: 10.1002/chem.19960021009 – ident: ref70/cit70 doi: 10.1021/jp045049w – ident: ref43/cit43 doi: 10.1016/j.cpc.2016.02.013 – ident: ref54/cit54 doi: 10.1039/c2cp40294g – ident: ref13/cit13 doi: 10.1038/nature17432 – ident: ref78/cit78 doi: 10.1021/es500319q – ident: ref9/cit9 doi: 10.1016/j.coche.2016.09.006 – ident: ref74/cit74 doi: 10.1021/jz301701x – ident: ref28/cit28 doi: 10.1063/1.1329672 – ident: ref63/cit63 doi: 10.1126/science.1220712 – ident: ref10/cit10 doi: 10.1021/ja4034439 – ident: ref15/cit15 doi: 10.1016/j.compchemeng.2012.11.009 – ident: ref57/cit57 doi: 10.1021/jp035423c – ident: ref69/cit69 doi: 10.1021/ja00075a045 – ident: ref3/cit3 doi: 10.1016/j.proci.2016.07.100 – ident: ref33/cit33 doi: 10.1007/978-3-7091-2812-1_13 – ident: ref22/cit22 doi: 10.1002/jcc.23833 – ident: ref61/cit61 doi: 10.1126/science.1112532 – ident: ref6/cit6 doi: 10.1021/acs.accounts.6b00606 – ident: ref81/cit81 doi: 10.1016/0009-2614(92)85543-J – ident: ref41/cit41 doi: 10.1021/ja00397a026 – ident: ref25/cit25 doi: 10.1021/acs.jctc.5b00866 – ident: ref38/cit38 doi: 10.1021/acscentsci.6b00219 – ident: ref59/cit59 doi: 10.1021/jp4118985 – ident: ref42/cit42 doi: 10.1016/j.pecs.2010.06.006 – ident: ref75/cit75 doi: 10.1039/C7CP05541B – ident: ref19/cit19 doi: 10.1073/pnas.202427399 – ident: ref39/cit39 doi: 10.1021/acs.accounts.6b00023 – ident: ref46/cit46 – ident: ref34/cit34 – ident: ref21/cit21 doi: 10.1002/tcr.201600043 – ident: ref60/cit60 doi: 10.1039/c3cp52598h – ident: ref80/cit80 doi: 10.1021/es8010282 – ident: ref35/cit35 doi: 10.1016/j.cpc.2012.03.007 – ident: ref1/cit1 doi: 10.1021/acs.accounts.7b00010 – ident: ref77/cit77 doi: 10.1039/c2cs35140d – volume-title: Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters year: 1976 ident: ref44/cit44 – ident: ref72/cit72 doi: 10.1016/j.combustflame.2008.12.007 – ident: ref12/cit12 doi: 10.1021/ja00047a039 – ident: ref53/cit53 doi: 10.1126/science.1234689 – ident: ref66/cit66 doi: 10.1021/ja00016a012 – ident: ref76/cit76 doi: 10.1039/c2cs35070j – ident: ref26/cit26 doi: 10.1063/1.3664901 – ident: ref68/cit68 doi: 10.1039/C5CP03862F – ident: ref71/cit71 doi: 10.1039/b102562g – ident: ref7/cit7 doi: 10.1021/acs.accounts.6b00555 – ident: ref48/cit48 doi: 10.1002/jcc.23481 – ident: ref49/cit49 doi: 10.1007/s00214-007-0310-x – ident: ref82/cit82 doi: 10.1063/1.465100 – ident: ref11/cit11 doi: 10.1021/jz302004w – ident: ref20/cit20 doi: 10.1038/nchem.2099 – ident: ref67/cit67 doi: 10.1021/jp972986d – ident: ref8/cit8 doi: 10.1021/cr500488p – ident: ref58/cit58 doi: 10.1021/jz5008406 – ident: ref40/cit40 doi: 10.1021/ja00519a018 – ident: ref16/cit16 doi: 10.1021/jp057107z – ident: ref52/cit52 doi: 10.1126/science.1213229 – ident: ref55/cit55 doi: 10.1021/jp004631r – ident: ref32/cit32 doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0 – ident: ref73/cit73 doi: 10.1021/jp054934r – ident: ref2/cit2 doi: 10.1039/C6OB02183B – ident: ref30/cit30 doi: 10.1039/C5CP04706D – ident: ref36/cit36 doi: 10.1016/j.cpc.2013.03.011 – ident: ref37/cit37 doi: 10.1039/c1sc00225b – ident: ref62/cit62 doi: 10.1038/nchem.1052  | 
    
| SSID | ssj0004281 | 
    
| Score | 2.5428815 | 
    
| Snippet | Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low... Ketohydroperoxides are important in liquid phase autoxidation and in gas phase partial oxidation and pre-ignition chemistry, but because of their low...  | 
    
| SourceID | unpaywall osti proquest pubmed crossref acs  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1035 | 
    
| SubjectTerms | algorithms analytical chemistry automation autoxidation combustion density functional theory freezing gases INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq7aFw4A1dCshIwAV5m9hOHB9XLVUFalUhViqnyHZsUdgmFUlUbf8W_4PfxMwmWZ5bcU3G0UQzk_km8yLkRVRIa32QzHowN2l4YJmIHVNBG-1SK1KHDc5Hx-nhTL49TU43yLDw7o_xAhifTOLdGCJjHO25mSYAuEdkc3Z8Mv04AFuVLfelgSOKGLivZT-RlrihLJN9qTs4st3PxtUTZXFEmkZX5OrfXNGoApP6F8y8Sbba8sIsLs18_ovrObhN9ocGnq7i5MukbezEXf09z_G6t7pDbvXQk047XblLNnx5j2ztDRvf7pMrAKDnw7pc-t53PQ_0BEDipVnUtArU0O_f2DvfVJ8WBf7GB5bOCk-xSYXCpwXCbF_Q6c-kOJ6Ztk0FuBhurB65f1Y7rB1d0KPlBuv6AZkdvPmwd8j63QzMSM4bpi0PmU6CchCfeJ4mRRx5Lq0IIda-yILi0isPYo-NENoJLQqD6NAUNglaiIdkVFal3ybUwMFIm9RqFaQHCJHg2DDHhY_gaSaMyXMQVt7bVp0v0-Ycwha82gt0TF4PosxdP9wcd2zM11C_XFFfdEM91tDtoFbkAEZwoq7D0iPXQLSksJ0Y-BqUJQdBYaLFlL5qgUPMlaYIhdbTQOCdZkpIBTSPOk1b8cI1VzGP-Ji8WqnetYw-_l_CHXIDEB-WLzIun5BR87X1TwFVNfZZb1U_ADmrHHw priority: 102 providerName: Unpaywall  | 
    
| Title | Unimolecular Reaction Pathways of a γ‑Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods | 
    
| URI | http://dx.doi.org/10.1021/jacs.7b11009 https://www.ncbi.nlm.nih.gov/pubmed/29271202 https://www.proquest.com/docview/1979968185 https://www.proquest.com/docview/2116873475 https://www.osti.gov/servlets/purl/1473944 http://hdl.handle.net/1721.1/119819  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 140 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 1943-2984 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgeyg98P-zFCojAReUVWI7cXyMFkoFalUBK5VTZDu2qNgmFUlULeLAK_AsvAcPwZMws5vsQmGBazK2JvZM_I3nj5CHYSGMcV4ExoG6Cc18kPLIBtIrrWxieGIxwXn_INmbiBdH8dEqQPa8B59hfSBbj6TB0mbqItlgiZQYupeNX6_yH1ka9TBXpgnvAtzPj8YDyNa_HECDChTpT-Byi2y25amenenp9KcDZ_cKed6n7SziTN6P2saM7Mffqzj-41uukssd5qTZQkiukQuuvE42x32rtxvkEyDPk75PLn3lFskO9BDQ4Zme1bTyVNNvX79__vLSNdW7WYE3-MDXceEo5qdQ-KuAhe0Kmq384Tgqa5sKIDG8WE769Li2GDY6o_vz5tX1TTLZffZmvBd0bRkCLRhrAmWYT1XspQXTxLEkLqLQMWG495FyReolE0462PFIc64sV7zQCAx1YWKvOL9FBmVVujuEahgYKp0YJb1wgB5irBhmGXchzKb9kDyAFcs7tarzucecgcWCT7t1HJIn_X7mtqtrju01pmuoHy2pTxf1PNbQbaNo5IBDsJiuxagj24ChJDGTGPjqJSaHrUIfiy5d1QKH6CZNEAWtpwGbO0klFxJobi_EbckLU0xGLGRD8ngpf39l9O5_LNE2uQQ4D4MWAybukUHzoXX3AUs1ZmeuSDtkY3JwmL39AbtbHNo | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELagHMoe-P8py4-RgAvKqrGdOD5WhVVhtxWCXWlvke3YYkU3WZFEqyIOvALPwnvwEDwJM22SwoqivTpja2LPxN9k_gh5NsyEMc6LwDhQN6GZDxIe2kB6pZWNDY8tJjhPZ_HkULw9io6aZHXMhQEmSlipXDrx19UFsEwQDEqDFc7UZXIlikWIttZo_GGdBsmSsEW7Mol5E-d-fjbeQ7b86x7qFaBP_8KYW6Rf56d6cabn8z_und3rZNZxvAw3-bRTV2bHfjlXzPHCr3SDXGsQKB2tROYmueTyW6Q_bhu_3SZfAYeetF1z6Xu3Sn2g7wArnulFSQtPNf3549e373uuKj4uMvyfD-wdZ45itgqFbwzY2y6jo7V3HGeN6qoAgAwPukVfHZcWg0gXdLpsZV3eIYe7rw_Gk6Bp0hBowVgVKMN8oiIvLRgqjsVRFg4dE4Z7HyqXJV4y4aSD8w8158pyxTONMFFnJvKK87uklxe5u0-oholDpWOjpBcOsESE9cMs424Iq2k_IE9hx9JGycp06T9nYL_gaLOPA_KyPdbUNlXOsdnGfAP18476dFXdYwPdNkpICqgES-tajEGyFZhNEvOKga9WcFI4KvS46NwVNXCITtMYMdFmGrDA40RyIYHm3krqOl6YYjJkQzYgLzox_C-jDy6wRU9If3Iw3U_338z2tslVQIAYzhgw8ZD0qs-1ewQoqzKPl7r1G79rI4w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbKIlE48P-zlB8jAZcqVWI7cXxcbVkVSquqUKm3yHZsUbEkK5KoWsSBV-BZeA8egidhZjdJoWIRXOOxNbFn4m8yf4Q8DXNhjPMiMA7UTWjmg5RHNpBeaWUTwxOLCc57-8nOkXh1HB-vkajLhQEmKlipWjjxUatnuW8rDGCpIBiQBqucqQvkYpyAliMaGr85S4VkadQhXpkmvI11Pz8b7yJb_XYXDUrQqT_hzCtkvSlmen6qp9Nf7p7JNXLYc70IOXm_1dRmy346V9Dxv17rOrnaIlE6WorODbLmiptkfdw1gLtFPgMe_dB1z6WHbpkCQQ8AM57qeUVLTzX9_u3Hl6-7ri7fzXP8rw8snuSOYtYKhW8N2N0up6MzLznOGjV1CUAZBvpFt08qi8Gkc7q3aGld3SZHkxdvxztB26wh0IKxOlCG-VTFXlowWBxL4jwKHROGex8pl6deMuGkAzmINOfKcsVzjXBR5yb2ivM7ZFCUhbtHqIaJodKJUdILB5gixjpilnEXwmraD8kT2LGsVbYqW_jRGdgx-LTdxyHZ7I42s221c2y6MV1B_aynni2rfKyg20ApyQCdYIldi7FItgbzSWJ-MfDVCU8GR4WeF124sgEO0XmaIDZaTQOWeJJKLiTQ3F1KXs8LU0xGLGRD8rwXxb8yev8ftugxuXSwPclev9zf3SCXAQhiVGPAxAMyqD827iGArdo8WqjXTw1GJg8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq7aFw4A1dCshIwAV5m9hOHB9XLVUFalUhViqnyHZsUdgmFUlUbf8W_4PfxMwmWZ5bcU3G0UQzk_km8yLkRVRIa32QzHowN2l4YJmIHVNBG-1SK1KHDc5Hx-nhTL49TU43yLDw7o_xAhifTOLdGCJjHO25mSYAuEdkc3Z8Mv04AFuVLfelgSOKGLivZT-RlrihLJN9qTs4st3PxtUTZXFEmkZX5OrfXNGoApP6F8y8Sbba8sIsLs18_ovrObhN9ocGnq7i5MukbezEXf09z_G6t7pDbvXQk047XblLNnx5j2ztDRvf7pMrAKDnw7pc-t53PQ_0BEDipVnUtArU0O_f2DvfVJ8WBf7GB5bOCk-xSYXCpwXCbF_Q6c-kOJ6Ztk0FuBhurB65f1Y7rB1d0KPlBuv6AZkdvPmwd8j63QzMSM4bpi0PmU6CchCfeJ4mRRx5Lq0IIda-yILi0isPYo-NENoJLQqD6NAUNglaiIdkVFal3ybUwMFIm9RqFaQHCJHg2DDHhY_gaSaMyXMQVt7bVp0v0-Ycwha82gt0TF4PosxdP9wcd2zM11C_XFFfdEM91tDtoFbkAEZwoq7D0iPXQLSksJ0Y-BqUJQdBYaLFlL5qgUPMlaYIhdbTQOCdZkpIBTSPOk1b8cI1VzGP-Ji8WqnetYw-_l_CHXIDEB-WLzIun5BR87X1TwFVNfZZb1U_ADmrHHw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unimolecular+Reaction+Pathways+of+a+%CE%B3-Ketohydroperoxide+from+Combined+Application+of+Automated+Reaction+Discovery+Methods&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Grambow%2C+Colin+A.&rft.au=Jamal%2C+Adeel&rft.au=Li%2C+Yi-Pei&rft.au=Green%2C+William+H.&rft.date=2018-01-24&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=3&rft.spage=1035&rft.epage=1048&rft_id=info:doi/10.1021%2Fjacs.7b11009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_7b11009 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |