Herpes Simplex Virus 1 Small Noncoding RNAs 1 and 2 Activate the Herpesvirus Entry Mediator Promoter

HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient est...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 96; no. 3; p. e0198521
Main Authors Tormanen, Kati, Wang, Shaohui, Matundan, Harry H., Yu, Jack, Jaggi, Ujjaldeep, Ghiasi, Homayon
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 09.02.2022
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1070-6321
1098-5514
DOI10.1128/jvi.01985-21

Cover

Abstract HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.
AbstractList HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.
Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.
Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.
Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.
Author Matundan, Harry H.
Yu, Jack
Wang, Shaohui
Ghiasi, Homayon
Jaggi, Ujjaldeep
Tormanen, Kati
Author_xml – sequence: 1
  givenname: Kati
  surname: Tormanen
  fullname: Tormanen, Kati
  organization: Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
– sequence: 2
  givenname: Shaohui
  surname: Wang
  fullname: Wang, Shaohui
  organization: Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
– sequence: 3
  givenname: Harry H.
  surname: Matundan
  fullname: Matundan, Harry H.
  organization: Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
– sequence: 4
  givenname: Jack
  surname: Yu
  fullname: Yu, Jack
  organization: Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
– sequence: 5
  givenname: Ujjaldeep
  surname: Jaggi
  fullname: Jaggi, Ujjaldeep
  organization: Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
– sequence: 6
  givenname: Homayon
  orcidid: 0000-0003-3291-1995
  surname: Ghiasi
  fullname: Ghiasi, Homayon
  organization: Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34851143$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rFDEUxYNU7Lb65rPkUcGpufkYsy_CUqoVahWr4lvIZDJtlplkmmRW978326mfUJ8CueccfvfcA7Tng7cIPQZyBEDli_XGHRFYSlFRuIcWQJayEgL4HloQQmklmPy6jw5SWhMCnNf8AdpnXAoAzhaoPbVxtAlfuGHs7Xf8xcUpYcAXg-57fB68Ca3zl_jj-Wr3rX2LKV6Z7DY6W5yvLJ4DNje-E5_jFr-zrdM5RPwhhiFkGx-i-53uk310-x6iz69PPh2fVmfv37w9Xp1VmoPMVWc4Ay4ZeWmWnJKlkXVnO5Ciqw1rSEM62TZSsJoX_DKSDS8raUYkdKIWLTtE1Zw7-VFvv5UN1BjdoONWAVG7tlRpS920pSgU_atZP07NYFtjC77-7Qnaqb8n3l2py7BRUtJaEloCnt4GxHA92ZTV4JKxfa-9DVNStCaCMsZkXaTPZqlOA1XrMEVfqriL68mfXL-Afp6tCOgsMDGkFG2njMs6u7DDdP1dqc__Mf23nB8LX7gL
CitedBy_id crossref_primary_10_3390_v16111738
crossref_primary_10_1371_journal_ppat_1011693
crossref_primary_10_29130_dubited_1212643
crossref_primary_10_3389_fcimb_2023_1301859
crossref_primary_10_1186_s43556_024_00199_7
crossref_primary_10_3390_v14071386
crossref_primary_10_1371_journal_ppat_1012307
crossref_primary_10_3390_v14051015
Cites_doi 10.1016/j.immuni.2016.04.019
10.1128/JVI.70.2.976-984.1996
10.1016/0042-6822(91)90159-9
10.1007/BF01379126
10.1128/JVI.00587-11
10.1128/JVI.76.3.1224-1235.2002
10.1128/JVI.02234-08
10.1128/JVI.62.3.749-756.1988
10.1001/archopht.1989.01070020221029
10.1128/JVI.67.6.3653-3655.1993
10.1038/nri1917
10.1128/JVI.01442-07
10.1038/nature07103
10.3109/13550280903296353
10.1080/13550280290101085
10.1111/j.1600-065X.2011.01065.x
10.1038/s41586-021-03589-x
10.1128/JVI.00200-06
10.1038/nature09420
10.1016/j.cell.2008.01.043
10.1080/13550280802216510
10.1016/j.virusres.2013.04.005
10.1016/s0092-8674(00)81363-x
10.1126/science.287.5457.1500
10.1128/JVI.02467-13
10.1016/j.micpath.2007.07.001
10.1128/JVI.68.9.6021-6028.1994
10.1128/JVI.00871-09
10.4049/jimmunol.0902490
10.1128/JVI.01803-18
10.1128/JVI.73.8.6618-6625.1999
10.1128/JVI.63.7.2893-2900.1989
10.1128/JVI.01451-18
10.1126/science.2434993
10.3390/ijms17050702
10.1128/JVI.79.14.9019-9025.2005
10.1007/s00018-018-2938-1
10.1128/JVI.02725-09
10.1128/JVI.61.12.3820-3826.1987
10.1073/pnas.94.19.10379
10.1038/ni1554
10.1128/JVI.00103-19
10.1155/2010/262415
10.1128/JVI.64.10.5019-5028.1990
10.1128/jvi.68.12.8045-8055.1994
10.1016/j.virusres.2004.08.011
10.1006/viro.1997.9020
10.1016/j.jneuroim.2017.03.002
10.1073/pnas.0913351107
10.1128/JVI.00700-20
10.1016/j.chom.2007.06.005
10.1038/ni1144
10.1128/JVI.06550-11
10.1006/viro.2000.0529
10.1128/jvi.77.14.8127-8140.2003
10.1016/j.micinf.2018.04.007
10.1128/jvi.77.17.9221-9231.2003
10.1128/JVI.79.19.12286-12295.2005
10.1128/JVI.65.5.2724-2727.1991
10.1128/JVI.00707-19
10.1128/JVI.62.11.4051-4058.1988
10.1016/j.virol.2011.06.027
10.1128/JVI.68.12.8071-8081.1994
10.1128/JVI.02290-10
10.1128/JVI.75.7.3413-3426.2001
10.1099/0022-1317-69-12-3101
10.1016/j.molcel.2011.08.027
10.1038/s41580-020-00315-9
10.1080/13550280701793957
ContentType Journal Article
Copyright Copyright © 2022 American Society for Microbiology.
Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology
Copyright_xml – notice: Copyright © 2022 American Society for Microbiology.
– notice: Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1128/jvi.01985-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Jung, Jae U
Editor_xml – sequence: 1
  givenname: Jae U
  surname: Jung
  fullname: Jung, Jae U
ExternalDocumentID 10.1128/jvi.01985-21
PMC8826802
01985-21
34851143
10_1128_jvi_01985_21
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY026944
– fundername: NEI NIH HHS
  grantid: R01 EY024649
– fundername: NEI NIH HHS
  grantid: R01 EY029160
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: 1RO1EY029160; 1RO1EY024649
  funderid: https://doi.org/10.13039/100000053
– fundername: ;
  grantid: 1RO1EY029160; 1RO1EY024649
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
AGVNZ
CGR
CUY
CVF
ECM
EIF
NPM
-
02
0R
ABFLS
ABPTK
ADACO
BXI
HZ
KM
RHF
UCJ
X
ZA5
7X8
5PM
.55
.GJ
3O-
41~
6TJ
AAYJJ
ADTOC
ADXHL
AFFNX
AFPKN
AI.
C1A
D0S
EJD
GROUPED_DOAJ
MVM
OHT
UNPAY
VH1
X7M
Y6R
ZGI
ZXP
ID FETCH-LOGICAL-a418t-fc43148307c94209c86fef185f6c3b0b0f8db853644856fe8b4001a3081f565d3
IEDL.DBID UNPAY
ISSN 0022-538X
1098-5514
1070-6321
IngestDate Sun Oct 26 04:05:40 EDT 2025
Tue Sep 30 16:41:08 EDT 2025
Thu Sep 04 17:18:55 EDT 2025
Thu Feb 10 02:55:24 EST 2022
Mon Jul 21 05:48:04 EDT 2025
Wed Oct 01 02:17:00 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HSV-1
infection
HVEM
cornea
virus replication
transfection
luciferase
promoters
transfection systems
Language English
License All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-fc43148307c94209c86fef185f6c3b0b0f8db853644856fe8b4001a3081f565d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0003-3291-1995
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.asm.org/doi/pdf/10.1128/jvi.01985-21
PMID 34851143
PQID 2605233386
PQPubID 23479
PageCount 17
ParticipantIDs unpaywall_primary_10_1128_jvi_01985_21
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8826802
proquest_miscellaneous_2605233386
asm2_journals_10_1128_jvi_01985_21
pubmed_primary_34851143
crossref_citationtrail_10_1128_jvi_01985_21
crossref_primary_10_1128_jvi_01985_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220209
PublicationDateYYYYMMDD 2022-02-09
PublicationDate_xml – month: 2
  year: 2022
  text: 20220209
  day: 9
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Mott KR (e_1_3_3_71_2) 2007; 13
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
Jurak, I, Kramer, MF, Mellor, JC, van Lint, AL, Roth, FP, Knipe, DM, Coen, DM (B22) 2010; 84
Henderson, G, Peng, W, Jin, L, Perng, GC, Nesburn, AB, Wechsler, SL, Jones, C (B10) 2002; 8
Deatly, AM, Spivack, JG, Lavi, E, O'Boyle, DR, Fraser, NW (B21) 1988; 62
Montgomery, RI, Warner, MS, Lum, BJ, Spear, PG (B39) 1996; 87
Chu, C, Qu, K, Zhong, FL, Artandi, SE, Chang, HY (B66) 2011; 44
Cui, C, Griffiths, A, Li, G, Silva, LM, Kramer, MF, Gaasterland, T, Wang, XJ, Coen, DM (B25) 2006; 80
Doerig, C, Pizer, LI, Wilcox, CL (B54) 1991; 183
Thomas, SK, Gough, G, Latchman, DS, Coffin, RS (B58) 1999; 73
Henderson, G, Jaber, T, Carpenter, D, Wechsler, SL, Jones, C (B63) 2009; 15
Doerig, C, Pizer, LI, Wilcox, CL (B55) 1991; 65
Connolly, SA, Landsburg, DJ, Carfi, A, Wiley, DC, Cohen, GH, Eisenberg, RJ (B40) 2003; 77
Ward-Kavanagh, LK, Lin, WW, Sedy, JR, Ware, CF (B49) 2016; 44
Matundan, H, Ghiasi, H (B46) 2019; 93
Ware, CF (B33) 2011; 244
Wechsler, SL, Nesburn, AB, Watson, R, Slanina, S, Ghiasi, H (B17) 1988; 69
Cai, G, Anumanthan, A, Brown, JA, Greenfield, EA, Zhu, B, Freeman, GJ (B35) 2008; 9
Tormanen, K, Allen, S, Mott, KR, Ghiasi, H (B14) 2019; 93
Chentoufi, AA, Kritzer, E, Tran, MV, Dasgupta, G, Lim, CH, Yu, DC, Afifi, RE, Jiang, X, Carpenter, D, Osorio, N, Hsiang, C, Nesburn, AB, Wechsler, SL, BenMohamed, L (B16) 2011; 85
Taylor, JM, Lin, E, Susmarski, N, Yoon, M, Zago, A, Ware, CF, Pfeffer, K, Miyoshi, J, Takai, Y, Spear, PG (B30) 2007; 2
Mott, KR, Osorio, Y, Brown, DJ, Morishige, N, Wahlert, A, Jester, JV, Ghiasi, H (B70) 2007; 13
Ghiasi, H, Kaiwar, R, Slanina, S, Nesburn, AB, Wechsler, SL (B68) 1994; 138
Kramer, MF, Jurak, I, Pesola, JM, Boissel, S, Knipe, DM, Coen, DM (B26) 2011; 417
Suenaga, T, Satoh, T, Somboonthum, P, Kawaguchi, Y, Mori, Y, Arase, H (B32) 2010; 107
Allen, SJ, Hamrah, P, Gate, DM, Mott, KR, Mantopoulos, D, Zheng, L, Town, T, Jones, C, von Andrian, UH, Freeman, GJ, Sharpe, AH, Benmohamed, L, Ahmed, R, Wechsler, SL, Ghiasi, H (B15) 2011; 85
Wechsler, SL, Nesburn, AB, Watson, R, Slanina, SM, Ghiasi, H (B18) 1988; 62
Fareed, MU, Spivack, JG (B59) 1994; 68
Koujah, L, Suryawanshi, RK, Shukla, D (B1) 2019; 76
Liesegang, TJ, Melton, LJ, Daly, PJ, Ilstrup, DM (B2) 1989; 107
Jin, L, Perng, GC, Mott, KR, Osorio, N, Naito, J, Brick, DJ, Carpenter, D, Jones, C, Wechsler, SL (B12) 2005; 79
Sedy, JR, Gavrieli, M, Potter, KG, Hurchla, MA, Lindsley, RC, Hildner, K, Scheu, S, Pfeffer, K, Ware, CF, Murphy, TL, Murphy, KM (B34) 2005; 6
Umbach, JL, Kramer, MF, Jurak, I, Karnowski, HW, Coen, DM, Cullen, BR (B23) 2008; 454
Spear, PG, Eisenberg, RJ, Cohen, GH (B28) 2000; 275
Satoh, T, Arii, J, Suenaga, T, Wang, J, Kogure, A, Uehori, J, Arase, N, Shiratori, I, Tanaka, S, Kawaguchi, Y, Spear, PG, Lanier, LL, Arase, H (B29) 2008; 132
Silva, LF, Jones, C (B65) 2012; 86
Naito, J, Mukerjee, R, Mott, KR, Kang, W, Osorio, N, Fraser, NW, Perng, GC (B53) 2005; 108
Statello, L, Guo, CJ, Chen, LL, Huarte, M (B67) 2021; 22
Yoon, M, Zago, A, Shukla, D, Spear, PG (B38) 2003; 77
Wang, S, Hirose, S, Ghiasi, H (B42) 2019; 93
Perng, GC, Jones, C, Ciacci-Zanella, J, Stone, M, Henderson, G, Yukht, A, Slanina, SM, Hofman, FM, Ghiasi, H, Nesburn, AB, Wechsler, SL (B8) 2000; 287
Yang, F, Tanasa, B, Micheletti, R, Ohgi, KA, Aggarwal, AK, Rosenfeld, MG (B51) 2021; 595
Jaggi, U, Varanasi, SK, Bhela, S, Rouse, BT (B3) 2018; 20
Jin, L, Carpenter, D, Moerdyk-Schauwecker, M, Vanarsdall, AL, Osorio, N, Hsiang, C, Jones, C, Wechsler, SL (B13) 2008; 14
Lock, M, Miller, C, Fraser, NW (B56) 2001; 75
Tormanen, K, Wang, S, Jaggi, U, Ghiasi, H (B43) 2020; 94
Lagunoff, M, Roizman, B (B52) 1994; 68
Drolet, BS, Perng, GC, Cohen, J, Slanina, SM, Yukht, A, Nesburn, AB, Wechsler, SL (B62) 1998; 242
Mott, KR, Perng, GC, Osorio, Y, Kousoulas, KG, Ghiasi, H (B69) 2007; 81
Stevens, JG, Wagner, EK, Devi-Rao, GB, Cook, ML, Feldman, LT (B44) 1987; 235
Perng, GC, Maguen, B, Jin, L, Mott, KR, Osorio, N, Slanina, SM, Yukht, A, Ghiasi, H, Nesburn, AB, Inman, M, Henderson, G, Jones, C, Wechsler, SL (B9) 2002; 76
Allen, SJ, Rhode-Kurnow, A, Mott, KR, Jiang, X, Carpenter, D, Rodriguez-Barbosa, JI, Jones, C, Wechsler, SL, Ware, CF, Ghiasi, H (B37) 2014; 88
Murphy, KM, Nelson, CA, Sedy, JR (B48) 2006; 6
da Silva, LF, Jones, C (B64) 2013; 175
Cheung, TC, Oborne, LM, Steinberg, MW, Macauley, MG, Fukuyama, S, Sanjo, H, D'Souza, C, Norris, PS, Pfeffer, K, Murphy, KM, Kronenberg, M, Spear, PG, Ware, CF (B36) 2009; 183
Leib, DA, Bogard, CL, Kosz-Vnenchak, M, Hicks, KA, Coen, DM, Knipe, DM, Schaffer, PA (B7) 1989; 63
Branco, FJ, Fraser, NW (B11) 2005; 79
Wang, S, Ljubimov, AV, Jin, L, Pfeffer, K, Kronenberg, M, Ghiasi, H (B41) 2018; 92
Perng, GC, Ghiasi, H, Slanina, SM, Nesburn, AB, Wechsler, SL (B6) 1996; 70
Farrell, MJ, Hill, JM, Margolis, TP, Stevens, JG, Wagner, EK, Feldman, LT (B60) 1993; 67
Shen, W, Silva, M, Jaber, T, Vitvitskaia, O, Li, S, Henderson, G, Jones, C (B27) 2009; 83
Rock, DL, Nesburn, AB, Ghiasi, H, Ong, J, Lewis, TL, Lokensgard, JR, Wechsler, SL (B19) 1987; 61
Li, R, Zhu, H, Luo, Y (B50) 2016; 17
Mott, KR, Bresee, CJ, Allen, SJ, BenMohamed, L, Wechsler, SL, Ghiasi, H (B4) 2009; 83
Perng, GC, Dunkel, EC, Geary, PA, Slanina, SM, Ghiasi, H, Kaiwar, R, Nesburn, AB, Wechsler, SL (B5) 1994; 68
Zwaagstra, JC, Ghiasi, H, Slanina, SM, Nesburn, AB, Wheatley, SC, Lillycrop, K, Wood, J, Latchman, DS, Patel, K, Wechsler, SL (B20) 1990; 64
Randall, G, Lagunoff, M, Roizman, B (B57) 1997; 94
Perng, GC, Jones, C (B61) 2010; 2010
Phelan, D, Barrozo, ER, Bloom, DC (B45) 2017; 308
Carpenter, D, Henderson, G, Hsiang, C, Osorio, N, BenMohamed, L, Jones, C, Wechsler, SL (B47) 2008; 44
Peng, W, Vitvitskaia, O, Carpenter, D, Wechsler, SL, Jones, C (B24) 2008; 14
Arii, J, Goto, H, Suenaga, T, Oyama, M, Kozuka-Hata, H, Imai, T, Minowa, A, Akashi, H, Arase, H, Kawaoka, Y, Kawaguchi, Y (B31) 2010; 467
References_xml – volume: 13
  start-page: 1802
  year: 2007
  ident: e_1_3_3_71_2
  article-title: The corneas of naive mice contain both CD4+ and CD8+ T cells
  publication-title: Mol Vis
– ident: e_1_3_3_50_2
  doi: 10.1016/j.immuni.2016.04.019
– ident: e_1_3_3_7_2
  doi: 10.1128/JVI.70.2.976-984.1996
– ident: e_1_3_3_55_2
  doi: 10.1016/0042-6822(91)90159-9
– ident: e_1_3_3_69_2
  doi: 10.1007/BF01379126
– ident: e_1_3_3_17_2
  doi: 10.1128/JVI.00587-11
– ident: e_1_3_3_10_2
  doi: 10.1128/JVI.76.3.1224-1235.2002
– ident: e_1_3_3_5_2
  doi: 10.1128/JVI.02234-08
– ident: e_1_3_3_22_2
  doi: 10.1128/JVI.62.3.749-756.1988
– ident: e_1_3_3_3_2
  doi: 10.1001/archopht.1989.01070020221029
– ident: e_1_3_3_61_2
  doi: 10.1128/JVI.67.6.3653-3655.1993
– ident: e_1_3_3_49_2
  doi: 10.1038/nri1917
– ident: e_1_3_3_70_2
  doi: 10.1128/JVI.01442-07
– ident: e_1_3_3_24_2
  doi: 10.1038/nature07103
– ident: e_1_3_3_64_2
  doi: 10.3109/13550280903296353
– ident: e_1_3_3_11_2
  doi: 10.1080/13550280290101085
– ident: e_1_3_3_34_2
  doi: 10.1111/j.1600-065X.2011.01065.x
– ident: e_1_3_3_52_2
  doi: 10.1038/s41586-021-03589-x
– ident: e_1_3_3_26_2
  doi: 10.1128/JVI.00200-06
– ident: e_1_3_3_32_2
  doi: 10.1038/nature09420
– ident: e_1_3_3_30_2
  doi: 10.1016/j.cell.2008.01.043
– ident: e_1_3_3_14_2
  doi: 10.1080/13550280802216510
– ident: e_1_3_3_65_2
  doi: 10.1016/j.virusres.2013.04.005
– ident: e_1_3_3_40_2
  doi: 10.1016/s0092-8674(00)81363-x
– ident: e_1_3_3_9_2
  doi: 10.1126/science.287.5457.1500
– ident: e_1_3_3_38_2
  doi: 10.1128/JVI.02467-13
– ident: e_1_3_3_48_2
  doi: 10.1016/j.micpath.2007.07.001
– ident: e_1_3_3_53_2
  doi: 10.1128/JVI.68.9.6021-6028.1994
– ident: e_1_3_3_28_2
  doi: 10.1128/JVI.00871-09
– ident: e_1_3_3_37_2
  doi: 10.4049/jimmunol.0902490
– ident: e_1_3_3_47_2
  doi: 10.1128/JVI.01803-18
– ident: e_1_3_3_59_2
  doi: 10.1128/JVI.73.8.6618-6625.1999
– ident: e_1_3_3_8_2
  doi: 10.1128/JVI.63.7.2893-2900.1989
– ident: e_1_3_3_42_2
  doi: 10.1128/JVI.01451-18
– ident: e_1_3_3_45_2
  doi: 10.1126/science.2434993
– ident: e_1_3_3_51_2
  doi: 10.3390/ijms17050702
– ident: e_1_3_3_12_2
  doi: 10.1128/JVI.79.14.9019-9025.2005
– ident: e_1_3_3_2_2
  doi: 10.1007/s00018-018-2938-1
– ident: e_1_3_3_23_2
  doi: 10.1128/JVI.02725-09
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.61.12.3820-3826.1987
– ident: e_1_3_3_58_2
  doi: 10.1073/pnas.94.19.10379
– ident: e_1_3_3_36_2
  doi: 10.1038/ni1554
– ident: e_1_3_3_15_2
  doi: 10.1128/JVI.00103-19
– ident: e_1_3_3_62_2
  doi: 10.1155/2010/262415
– ident: e_1_3_3_21_2
  doi: 10.1128/JVI.64.10.5019-5028.1990
– ident: e_1_3_3_6_2
  doi: 10.1128/jvi.68.12.8045-8055.1994
– ident: e_1_3_3_54_2
  doi: 10.1016/j.virusres.2004.08.011
– ident: e_1_3_3_63_2
  doi: 10.1006/viro.1997.9020
– ident: e_1_3_3_46_2
  doi: 10.1016/j.jneuroim.2017.03.002
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.0913351107
– ident: e_1_3_3_44_2
  doi: 10.1128/JVI.00700-20
– ident: e_1_3_3_31_2
  doi: 10.1016/j.chom.2007.06.005
– ident: e_1_3_3_35_2
  doi: 10.1038/ni1144
– ident: e_1_3_3_66_2
  doi: 10.1128/JVI.06550-11
– ident: e_1_3_3_29_2
  doi: 10.1006/viro.2000.0529
– ident: e_1_3_3_41_2
  doi: 10.1128/jvi.77.14.8127-8140.2003
– ident: e_1_3_3_4_2
  doi: 10.1016/j.micinf.2018.04.007
– ident: e_1_3_3_39_2
  doi: 10.1128/jvi.77.17.9221-9231.2003
– ident: e_1_3_3_13_2
  doi: 10.1128/JVI.79.19.12286-12295.2005
– ident: e_1_3_3_56_2
  doi: 10.1128/JVI.65.5.2724-2727.1991
– ident: e_1_3_3_43_2
  doi: 10.1128/JVI.00707-19
– ident: e_1_3_3_19_2
  doi: 10.1128/JVI.62.11.4051-4058.1988
– ident: e_1_3_3_27_2
  doi: 10.1016/j.virol.2011.06.027
– ident: e_1_3_3_60_2
  doi: 10.1128/JVI.68.12.8071-8081.1994
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.02290-10
– ident: e_1_3_3_57_2
  doi: 10.1128/JVI.75.7.3413-3426.2001
– ident: e_1_3_3_18_2
  doi: 10.1099/0022-1317-69-12-3101
– ident: e_1_3_3_67_2
  doi: 10.1016/j.molcel.2011.08.027
– ident: e_1_3_3_68_2
  doi: 10.1038/s41580-020-00315-9
– ident: e_1_3_3_25_2
  doi: 10.1080/13550280701793957
– volume: 467
  start-page: 859
  year: 2010
  end-page: 862
  ident: B31
  article-title: Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1
  publication-title: Nature
  doi: 10.1038/nature09420
– volume: 20
  start-page: 337
  year: 2018
  end-page: 345
  ident: B3
  article-title: On the role of retinoic acid in virus induced inflammatory response in cornea
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2018.04.007
– volume: 67
  start-page: 3653
  year: 1993
  end-page: 3655
  ident: B60
  article-title: The herpes simplex virus type 1 reactivation function lies outside the latency-associated transcript open reading frame ORF-2
  publication-title: J Virol
  doi: 10.1128/JVI.67.6.3653-3655.1993
– volume: 62
  start-page: 749
  year: 1988
  end-page: 756
  ident: B21
  article-title: Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome
  publication-title: J Virol
  doi: 10.1128/JVI.62.3.749-756.1988
– volume: 138
  start-page: 199
  year: 1994
  end-page: 212
  ident: B68
  article-title: Expression and characterization of baculovirus expressed herpes simplex virus type 1 glycoprotein L
  publication-title: Arch Virol
  doi: 10.1007/BF01379126
– volume: 235
  start-page: 1056
  year: 1987
  end-page: 1059
  ident: B44
  article-title: RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons
  publication-title: Science
  doi: 10.1126/science.2434993
– volume: 94
  start-page: 10379
  year: 1997
  end-page: 10384
  ident: B57
  article-title: The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.19.10379
– volume: 107
  start-page: 1155
  year: 1989
  end-page: 1159
  ident: B2
  article-title: Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1989.01070020221029
– volume: 175
  start-page: 101
  year: 2013
  end-page: 109
  ident: B64
  article-title: Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associated transcript (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon promoter activity and promote cell survival
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2013.04.005
– volume: 80
  start-page: 5499
  year: 2006
  end-page: 5508
  ident: B25
  article-title: Prediction and identification of herpes simplex virus 1-encoded microRNAs
  publication-title: J Virol
  doi: 10.1128/JVI.00200-06
– volume: 73
  start-page: 6618
  year: 1999
  end-page: 6625
  ident: B58
  article-title: Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency
  publication-title: J Virol
  doi: 10.1128/JVI.73.8.6618-6625.1999
– volume: 2010
  start-page: 262415
  year: 2010
  ident: B61
  article-title: Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle
  publication-title: Interdiscip Perspect Infect Dis
  doi: 10.1155/2010/262415
– volume: 88
  start-page: 1961
  year: 2014
  end-page: 1971
  ident: B37
  article-title: Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latency
  publication-title: J Virol
  doi: 10.1128/JVI.02467-13
– volume: 14
  start-page: 41
  year: 2008
  end-page: 52
  ident: B24
  article-title: Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript
  publication-title: J Neurovirol
  doi: 10.1080/13550280701793957
– volume: 65
  start-page: 2724
  year: 1991
  end-page: 2727
  ident: B55
  article-title: An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1
  publication-title: J Virol
  doi: 10.1128/JVI.65.5.2724-2727.1991
– volume: 62
  start-page: 4051
  year: 1988
  end-page: 4058
  ident: B18
  article-title: Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames
  publication-title: J Virol
  doi: 10.1128/JVI.62.11.4051-4058.1988
– volume: 17
  start-page: 702
  year: 2016
  ident: B50
  article-title: Understanding the functions of long non-coding RNAs through their higher-order structures
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17050702
– volume: 244
  start-page: 5
  year: 2011
  end-page: 8
  ident: B33
  article-title: The TNF receptor super family in immune regulation
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2011.01065.x
– volume: 183
  start-page: 423
  year: 1991
  end-page: 426
  ident: B54
  article-title: Detection of the latency-associated transcript in neuronal cultures during the latent infection with herpes simplex virus type 1
  publication-title: Virology
  doi: 10.1016/0042-6822(91)90159-9
– volume: 107
  start-page: 866
  year: 2010
  end-page: 871
  ident: B32
  article-title: Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913351107
– volume: 64
  start-page: 5019
  year: 1990
  end-page: 5028
  ident: B20
  article-title: Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript
  publication-title: J Virol
  doi: 10.1128/JVI.64.10.5019-5028.1990
– volume: 83
  start-page: 2246
  year: 2009
  end-page: 2254
  ident: B4
  article-title: Level of herpes simplex virus type 1 latency correlates with severity of corneal scarring and exhaustion of CD8+ T cells in trigeminal ganglia of latently infected mice
  publication-title: J Virol
  doi: 10.1128/JVI.02234-08
– volume: 44
  start-page: 98
  year: 2008
  end-page: 102
  ident: B47
  article-title: Introducing point mutations into the ATGs of the putative open reading frames of the HSV-1 gene encoding the latency associated transcript (LAT) reduces its anti-apoptosis activity
  publication-title: Microb Pathog
  doi: 10.1016/j.micpath.2007.07.001
– volume: 417
  start-page: 239
  year: 2011
  end-page: 247
  ident: B26
  article-title: Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia
  publication-title: Virology
  doi: 10.1016/j.virol.2011.06.027
– volume: 287
  start-page: 1500
  year: 2000
  end-page: 1503
  ident: B8
  article-title: Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript
  publication-title: Science
  doi: 10.1126/science.287.5457.1500
– volume: 79
  start-page: 9019
  year: 2005
  end-page: 9025
  ident: B11
  article-title: Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis
  publication-title: J Virol
  doi: 10.1128/JVI.79.14.9019-9025.2005
– volume: 86
  start-page: 1670
  year: 2012
  end-page: 1682
  ident: B65
  article-title: Two microRNAs encoded within the bovine herpesvirus 1 latency-related gene promote cell survival by interacting with RIG-I and stimulating NF-kappaB-dependent transcription and beta interferon signaling pathways
  publication-title: J Virol
  doi: 10.1128/JVI.06550-11
– volume: 84
  start-page: 4659
  year: 2010
  end-page: 4672
  ident: B22
  article-title: Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2
  publication-title: J Virol
  doi: 10.1128/JVI.02725-09
– volume: 68
  start-page: 6021
  year: 1994
  end-page: 6028
  ident: B52
  article-title: Expression of a herpes simplex virus 1 open reading frame antisense to the gamma(1)34.5 gene and transcribed by an RNA 3' coterminal with the unspliced latency-associated transcript
  publication-title: J Virol
  doi: 10.1128/JVI.68.9.6021-6028.1994
– volume: 61
  start-page: 3820
  year: 1987
  end-page: 3826
  ident: B19
  article-title: Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1
  publication-title: J Virol
  doi: 10.1128/JVI.61.12.3820-3826.1987
– volume: 63
  start-page: 2893
  year: 1989
  end-page: 2900
  ident: B7
  article-title: A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency
  publication-title: J Virol
  doi: 10.1128/JVI.63.7.2893-2900.1989
– volume: 275
  start-page: 1
  year: 2000
  end-page: 8
  ident: B28
  article-title: Three classes of cell surface receptors for alphaherpesvirus entry
  publication-title: Virology
  doi: 10.1006/viro.2000.0529
– volume: 85
  start-page: 9127
  year: 2011
  end-page: 9138
  ident: B16
  article-title: The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ T cells in latently infected trigeminal ganglia: a novel immune evasion mechanism
  publication-title: J Virol
  doi: 10.1128/JVI.00587-11
– volume: 75
  start-page: 3413
  year: 2001
  end-page: 3426
  ident: B56
  article-title: Analysis of protein expression from within the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1
  publication-title: J Virol
  doi: 10.1128/JVI.75.7.3413-3426.2001
– volume: 81
  start-page: 12962
  year: 2007
  end-page: 12972
  ident: B69
  article-title: A recombinant herpes simplex virus type 1 expressing two additional copies of gK is more pathogenic than wild-type virus in two different strains of mice
  publication-title: J Virol
  doi: 10.1128/JVI.01442-07
– volume: 308
  start-page: 65
  year: 2017
  end-page: 101
  ident: B45
  article-title: HSV1 latent transcription and non-coding RNA: a critical retrospective
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2017.03.002
– volume: 44
  start-page: 1005
  year: 2016
  end-page: 1019
  ident: B49
  article-title: The TNF receptor superfamily in co-stimulating and co-inhibitory responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.019
– volume: 6
  start-page: 90
  year: 2005
  end-page: 98
  ident: B34
  article-title: B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator
  publication-title: Nat Immunol
  doi: 10.1038/ni1144
– volume: 132
  start-page: 935
  year: 2008
  end-page: 944
  ident: B29
  article-title: PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.043
– volume: 93
  year: 2019
  ident: B46
  article-title: Herpes simplex virus 1 ICP22 suppresses CD80 expression by murine dendritic cells
  publication-title: J Virol
  doi: 10.1128/JVI.01803-18
– volume: 108
  start-page: 101
  year: 2005
  end-page: 110
  ident: B53
  article-title: Identification of a protein encoded in the herpes simplex virus type 1 latency associated transcript promoter region
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2004.08.011
– volume: 8
  start-page: 103
  year: 2002
  end-page: 111
  ident: B10
  article-title: Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript
  publication-title: J Neurovirol
  doi: 10.1080/13550280290101085
– volume: 93
  year: 2019
  ident: B14
  article-title: The latency-associated transcript inhibits apoptosis via downregulation of components of the type I interferon pathway during latent herpes simplex virus 1 ocular infection
  publication-title: J Virol
  doi: 10.1128/JVI.00103-19
– volume: 183
  start-page: 7286
  year: 2009
  end-page: 7296
  ident: B36
  article-title: T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902490
– volume: 454
  start-page: 780
  year: 2008
  end-page: 783
  ident: B23
  article-title: MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs
  publication-title: Nature
  doi: 10.1038/nature07103
– volume: 76
  start-page: 405
  year: 2019
  end-page: 419
  ident: B1
  article-title: Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-018-2938-1
– volume: 79
  start-page: 12286
  year: 2005
  end-page: 12295
  ident: B12
  article-title: A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse
  publication-title: J Virol
  doi: 10.1128/JVI.79.19.12286-12295.2005
– volume: 87
  start-page: 427
  year: 1996
  end-page: 436
  ident: B39
  article-title: Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81363-x
– volume: 94
  year: 2020
  ident: B43
  article-title: Restoring herpesvirus entry mediator (HVEM) immune function in HVEM(-/-) mice rescues herpes simplex virus 1 latency and reactivation independently of binding to glycoprotein D
  publication-title: J Virol
  doi: 10.1128/JVI.00700-20
– volume: 77
  start-page: 9221
  year: 2003
  end-page: 9231
  ident: B38
  article-title: Mutations in the N termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, nectin-2, and 3-O-sulfated heparan sulfate but not with nectin-1
  publication-title: J Virol
  doi: 10.1128/jvi.77.17.9221-9231.2003
– volume: 92
  year: 2018
  ident: B41
  article-title: Herpes simplex virus 1 latency and the kinetics of reactivation are regulated by a complex network of interactions between the herpesvirus entry mediator, its ligands (gD, BTLA, LIGHT, and CD160), and the latency-associated transcript
  publication-title: J Virol
  doi: 10.1128/JVI.01451-18
– volume: 77
  start-page: 8127
  year: 2003
  end-page: 8140
  ident: B40
  article-title: Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD-HveA/HVEM binding interface
  publication-title: J Virol
  doi: 10.1128/jvi.77.14.8127-8140.2003
– volume: 22
  start-page: 96
  year: 2021
  end-page: 118
  ident: B67
  article-title: Gene regulation by long non-coding RNAs and its biological functions
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-00315-9
– volume: 69
  start-page: 3101
  year: 1988
  end-page: 3106
  ident: B17
  article-title: Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-69-12-3101
– volume: 595
  start-page: 444
  year: 2021
  end-page: 449
  ident: B51
  article-title: Shape of promoter antisense RNAs regulates ligand-induced transcription activation
  publication-title: Nature
  doi: 10.1038/s41586-021-03589-x
– volume: 13
  start-page: 1802
  year: 2007
  end-page: 1812
  ident: B70
  article-title: The corneas of naive mice contain both CD4+ and CD8+ T cells
  publication-title: Mol Vis
– volume: 68
  start-page: 8071
  year: 1994
  end-page: 8081
  ident: B59
  article-title: Two open reading frames (ORF1 and ORF2) within the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency
  publication-title: J Virol
  doi: 10.1128/JVI.68.12.8071-8081.1994
– volume: 70
  start-page: 976
  year: 1996
  end-page: 984
  ident: B6
  article-title: The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3- kilobase primary transcript
  publication-title: J Virol
  doi: 10.1128/JVI.70.2.976-984.1996
– volume: 2
  start-page: 19
  year: 2007
  end-page: 28
  ident: B30
  article-title: Alternative entry receptors for herpes simplex virus and their roles in disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.06.005
– volume: 93
  year: 2019
  ident: B42
  article-title: The absence of lymphotoxin-alpha, an HVEM ligand, affects HSV-1 infection in vivo differently than the absence of other HVEM cellular ligands
  publication-title: J Virol
  doi: 10.1128/JVI.00707-19
– volume: 85
  start-page: 4184
  year: 2011
  end-page: 4197
  ident: B15
  article-title: The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus type 1
  publication-title: J Virol
  doi: 10.1128/JVI.02290-10
– volume: 76
  start-page: 1224
  year: 2002
  end-page: 1235
  ident: B9
  article-title: A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels
  publication-title: J Virol
  doi: 10.1128/JVI.76.3.1224-1235.2002
– volume: 242
  start-page: 221
  year: 1998
  end-page: 232
  ident: B62
  article-title: The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein
  publication-title: Virology
  doi: 10.1006/viro.1997.9020
– volume: 9
  start-page: 176
  year: 2008
  end-page: 185
  ident: B35
  article-title: CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator
  publication-title: Nat Immunol
  doi: 10.1038/ni1554
– volume: 15
  start-page: 439
  year: 2009
  end-page: 448
  ident: B63
  article-title: Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript
  publication-title: J Neurovirol
  doi: 10.3109/13550280903296353
– volume: 44
  start-page: 667
  year: 2011
  end-page: 678
  ident: B66
  article-title: Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.08.027
– volume: 83
  start-page: 9131
  year: 2009
  end-page: 9139
  ident: B27
  article-title: Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis
  publication-title: J Virol
  doi: 10.1128/JVI.00871-09
– volume: 6
  start-page: 671
  year: 2006
  end-page: 681
  ident: B48
  article-title: Balancing co-stimulation and inhibition with BTLA and HVEM
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1917
– volume: 68
  start-page: 8045
  year: 1994
  end-page: 8055
  ident: B5
  article-title: The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency
  publication-title: J Virol
  doi: 10.1128/jvi.68.12.8045-8055.1994
– volume: 14
  start-page: 389
  year: 2008
  end-page: 400
  ident: B13
  article-title: Cellular FLIP can substitute for the herpes simplex virus type 1 latency-associated transcript gene to support a wild-type virus reactivation phenotype in mice
  publication-title: J Neurovirol
  doi: 10.1080/13550280802216510
SSID ssj0014464
Score 2.435362
Snippet HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response...
Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has...
SourceID unpaywall
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0198521
SubjectTerms Animals
Binding Sites
Cells, Cultured
Cellular Response to Infection
Codon, Initiator
Gene Expression Regulation, Viral
Herpes Simplex - virology
Herpesvirus 1, Human - physiology
Humans
Mice
Mutation
Nucleic Acid Conformation
Peptides
Promoter Regions, Genetic
Rabbits
RNA, Small Untranslated - genetics
RNA, Viral
Virology
Virus Activation
Virus Replication
Title Herpes Simplex Virus 1 Small Noncoding RNAs 1 and 2 Activate the Herpesvirus Entry Mediator Promoter
URI https://www.ncbi.nlm.nih.gov/pubmed/34851143
https://journals.asm.org/doi/10.1128/jvi.01985-21
https://www.proquest.com/docview/2605233386
https://pubmed.ncbi.nlm.nih.gov/PMC8826802
https://journals.asm.org/doi/pdf/10.1128/jvi.01985-21
UnpaywallVersion publishedVersion
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 1098-5514
  databaseCode: KQ8
  dateStart: 19670201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 1098-5514
  databaseCode: DIK
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 1098-5514
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 1098-5514
  databaseCode: RPM
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NToi9MD5HGUwGAS8oXeLYmfNYoY0KadXE6FSeIiexRUeXVEkzGH89d_mo6KYheI0vjn25O_9Ovg-ANwfKqjS10nG1SR1hQuvgqagdjVBDSyNC5VKi8PE4GE3Ep6mcboDscmFaDpYDXV7UF_mk2YvUtv0I1f755WyAsERJh9LHNwOJELwHm5PxyfBrVxkclXjaxBqia-Q3uVdUN5PQQRf8fm0qtMj4Rb5-Ot2AnDcjJ-9V2UJf_dDz-R_H0tE2nHUbaqJRvg-qZTxIfl2r9fjfO34A91ugyoaNZD2EDZM9grtN68qrx5COTLEwJTudUXnhn-xsVlQl89jpBS6SjfMsyelUZJ_HQ3qss5RxNkzqZmqGIepkzQSX9XuH1N6EHddtQ_KCndQxgqZ4ApOjwy8fRk7bscHRwlNLxyaIR4RCu5GEgrthogJrLEICGyR-7MYuCkaMAIGcQolDKkYT4mkfcYlFZJn6T6GX5Zl5BgxNDw8semMqRCcudWPOEx0oJaRMCdP04TX9sKhjX1R7M1xFyK6oZlfEvT68735nlLQ1z6n1xvwW6rcr6kVT6-MWuledZESojHTDojOTV2VEziH30esP-rDTSMpqJl8QuBW48IM1GVoRUKHv9ZFs9q0u-I1eUKBc3od3K2n76wKf_yvhLmxxUhiKQg9fQG9ZVOYlgqxlvAd3Pk69vVaxfgMXAx85
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5VqRC8QLnDpQUBL8jBWa_d9WNUtYqQGlWUVOHJWu-hpk3tyI4L5dcz4yMirYrg1Tte745nZr_RzgHwflc6aYwLPV9Z4wkbOw9PReUphBoqtCKWPiUKH06i8VR8mYWzLQi7XJiWg-VAlRf1RT5p9tK4th-h_Hx2OR8gLJGhR-nj21GIELwH29PJ0eh7VxkclXjWxBqiaxQ0uVdUN5PQQRf8fm0qtMj4Rb55Ot2AnDcjJ-9W2VJd_VCLxR_H0sEDOOk21ESjnA-qVTrQv67VevzvHe_A_RaoslEjWQ9hy2aP4E7TuvLqMZixLZa2ZMdzKi_8k53Mi6pkQ3Z8gYtkkzzTOZ2K7OtkRI9VZhhnI103U7MMUSdrJris39un9ibssG4bkhfsqI4RtMUTmB7sf9sbe23HBk-JoVx5TiMeERLtho4F92MtI2cdQgIX6SD1Ux8FI0WAQE5hiEMyRRMyVAHiEofI0gRPoZflmX0ODE0Pjxx6YzJGJ874KedaRVKKMDSEafrwjn5Y0rEvqb0ZLhNkV1KzK-HDPnzqfmei25rn1HpjcQv1hzX1sqn1cQvd204yElRGumFRmc2rMiHnkAfo9Ud9eNZIynqmQBC4Fbjw3Q0ZWhNQoe_NkWx-Whf8Ri8okj7vw8e1tP11gS_-lfAl3OOkMBSFHr-C3qqo7GsEWav0TatSvwFhZh5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Herpes+Simplex+Virus+1+Small+Noncoding+RNAs+1+and+2+Activate+the+Herpesvirus+Entry+Mediator+Promoter&rft.jtitle=Journal+of+virology&rft.au=Tormanen%2C+Kati&rft.au=Wang%2C+Shaohui&rft.au=Matundan%2C+Harry+H.&rft.au=Yu%2C+Jack&rft.date=2022-02-09&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=96&rft.issue=3&rft_id=info:doi/10.1128%2Fjvi.01985-21&rft_id=info%3Apmid%2F34851143&rft.externalDocID=PMC8826802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon