Molecular Basis of Class A β-Lactamase Inhibition by Relebactam
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO)...
Saved in:
Published in | Antimicrobial agents and chemotherapy Vol. 63; no. 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0066-4804 1098-6596 1098-6596 |
DOI | 10.1128/AAC.00564-19 |
Cover
Abstract | β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant
Enterobacteriaceae
.
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant
Enterobacteriaceae
. We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC
50
]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing
Klebsiella pneumoniae
, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against
Stenotrophomonas maltophilia
K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI–β-lactam combinations. |
---|---|
AbstractList | β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant
Enterobacteriaceae
.
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant
Enterobacteriaceae
. We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC
50
]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing
Klebsiella pneumoniae
, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against
Stenotrophomonas maltophilia
K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI–β-lactam combinations. β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC ]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing , with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations. β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations. β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae. We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI–β-lactam combinations. |
Author | Mulholland, Adrian J. Spencer, James Hinchliffe, Philip Schofield, Christopher J. Tooke, Catherine L. Brem, Jürgen Lang, Pauline A. |
Author_xml | – sequence: 1 givenname: Catherine L. orcidid: 0000-0003-2180-3235 surname: Tooke fullname: Tooke, Catherine L. organization: School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom – sequence: 2 givenname: Philip orcidid: 0000-0001-8611-4743 surname: Hinchliffe fullname: Hinchliffe, Philip organization: School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom – sequence: 3 givenname: Pauline A. orcidid: 0000-0003-3187-1469 surname: Lang fullname: Lang, Pauline A. organization: Department of Chemistry, University of Oxford, Oxford, United Kingdom – sequence: 4 givenname: Adrian J. orcidid: 0000-0003-1015-4567 surname: Mulholland fullname: Mulholland, Adrian J. organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom – sequence: 5 givenname: Jürgen orcidid: 0000-0002-0137-3226 surname: Brem fullname: Brem, Jürgen organization: Department of Chemistry, University of Oxford, Oxford, United Kingdom – sequence: 6 givenname: Christopher J. orcidid: 0000-0002-0290-6565 surname: Schofield fullname: Schofield, Christopher J. organization: Department of Chemistry, University of Oxford, Oxford, United Kingdom – sequence: 7 givenname: James orcidid: 0000-0002-4602-0571 surname: Spencer fullname: Spencer, James organization: School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31383664$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1L5TAUhoM46PVj51q6VLBOkianyUa8XpwZ4Yogug5pe6qRtNGmFfxb_hB_k71eHRwZV4fDefLw5t0gq21okZAdRg8Z4-rndDo7pFSCSJleIRNGtUpBalglE0oBUqGoWCcbMd7RcZearpH1jGUqAxATcnwePJaDt11yYqOLSaiTmbcxJtPk5Tmd27K3jY2YnLW3rnC9C21SPCWX6LF4u22RH7X1Ebff5ya5_nV6NfuTzi9-n82m89QKpvqUSSkyzDMGOmcsq1FxwSpQOSAqBAsaRMV5LmvQohJSgNWqKKu6lmrEdbZJjpbe-6FosCqx7TvrzX3nGts9mWCd-ffSultzEx4N5MAkXwj23gVdeBgw9qZxsUTvbYthiIZzUFrQnOUjur9EbWy4uQtD145fM4yaReNmbNy8NW7YQrv7OdffQB8VjwBfAmUXYuywNqXr7aLIMabz31kPvjz68P4XfwX1apqs |
CitedBy_id | crossref_primary_10_1080_07391102_2020_1805365 crossref_primary_10_1128_mbio_01793_21 crossref_primary_10_1080_14756366_2024_2435365 crossref_primary_10_1080_1120009X_2020_1786634 crossref_primary_10_1021_acsinfecdis_0c00575 crossref_primary_10_1016_j_bios_2021_113526 crossref_primary_10_1021_acsomega_2c02328 crossref_primary_10_1128_AAC_00574_21 crossref_primary_10_1016_j_ejmech_2024_116556 crossref_primary_10_3390_antibiotics10121520 crossref_primary_10_1007_s00894_022_05336_z crossref_primary_10_3947_ic_2021_0051 crossref_primary_10_1128_aac_00350_23 crossref_primary_10_1016_j_ejmech_2022_114571 crossref_primary_10_1016_j_indcrop_2024_118075 crossref_primary_10_3390_antibiotics12121705 crossref_primary_10_3390_antibiotics10050577 crossref_primary_10_2147_IDR_S224228 crossref_primary_10_1248_cpb_c19_00842 crossref_primary_10_1093_jac_dkac171 crossref_primary_10_1016_j_ejmech_2021_113257 crossref_primary_10_1016_j_ijantimicag_2024_107271 crossref_primary_10_1128_AAC_02255_19 crossref_primary_10_3390_ph15040463 crossref_primary_10_1080_07391102_2023_2227724 crossref_primary_10_1002_pro_4911 crossref_primary_10_1016_j_ijantimicag_2023_106935 crossref_primary_10_1002_phar_2447 crossref_primary_10_3390_antibiotics10091110 crossref_primary_10_1038_s42004_024_01236_w crossref_primary_10_1042_BCJ20240478 crossref_primary_10_3389_fmicb_2021_688509 crossref_primary_10_1074_jbc_RA120_016461 crossref_primary_10_3389_fcimb_2022_849564 crossref_primary_10_1021_acsinfecdis_4c00119 crossref_primary_10_1007_s40262_021_01056_4 crossref_primary_10_1128_AAC_00297_20 crossref_primary_10_1128_aac_01721_23 crossref_primary_10_3390_ijms21239308 crossref_primary_10_1021_acs_chemrev_1c00138 crossref_primary_10_3390_microorganisms11071798 crossref_primary_10_1128_aac_00078_23 crossref_primary_10_1016_j_molstruc_2023_136151 crossref_primary_10_1038_s41467_021_24757_7 crossref_primary_10_1038_s41598_022_09392_6 crossref_primary_10_1128_CMR_00115_20 crossref_primary_10_1021_acsinfecdis_3c00715 crossref_primary_10_1002_phar_2950 crossref_primary_10_1128_AAC_01160_21 crossref_primary_10_1128_AAC_02073_20 crossref_primary_10_1093_jac_dkaa497 crossref_primary_10_5812_jjm_153574 crossref_primary_10_1039_C9MD00557A crossref_primary_10_1093_jac_dkae375 crossref_primary_10_1080_07853890_2024_2403724 crossref_primary_10_1186_s12934_024_02421_1 |
Cites_doi | 10.1107/S0907444909052925 10.1101/138594 10.1107/S0907444913015308 10.3389/fmicb.2012.00110 10.1128/AAC.00642-17 10.1128/jb.151.2.591-599.1982 10.1128/AAC.02406-17 10.1038/s41579-019-0159-8 10.1128/AAC.02625-14 10.1128/AAC.1.4.283 10.1021/bi300508r 10.1093/jac/dki453 10.1107/S2059798317017235 10.1128/AAC.02112-18 10.1021/bi501052t 10.1128/AAC.00163-08 10.1128/AAC.00501-17 10.1007/s40265-017-0851-9 10.1128/AAC.00371-16 10.1002/prot.21485 10.1074/jbc.M112.348540 10.1074/jbc.M407606200 10.1111/mmi.13831 10.1002/pro.454 10.1128/AAC.00777-17 10.1128/AAC.49.8.3421-3427.2005 10.1371/journal.pone.0136813 10.1055/s-0034-1396929 10.1107/S0907444996012255 10.1093/jac/dkz026 10.1073/pnas.1205073109 10.1107/S0907444994003112 10.1016/j.idc.2016.02.007 10.1016/j.bmcl.2013.12.101 10.1128/AAC.02260-16 10.1128/CMR.00037-09 10.1107/S0907444904019158 10.1128/AAC.00548-15 10.1107/S0021889807021206 10.1128/AAC.00693-09 10.1128/AAC.04406-14 10.1097/SMJ.0b013e3181fd7d5a 10.1021/acs.jmedchem.7b00158 10.1128/AAC.01809-18 10.1021/acs.biochem.8b00480 10.1038/nmicrobiol.2017.104 10.1128/AAC.02510-16 10.1128/AAC.48.1.1-14.2004 10.1128/AAC.02476-16 10.1128/AAC.00174-18 10.1128/AAC.00734-08 10.1128/AAC.01009-09 10.1021/acsinfecdis.7b00113 10.1128/AAC.02247-12 10.1042/bj2760269 10.1039/c6ob00353b 10.1371/journal.ppat.1004949 10.1074/jbc.M113.485979 10.1021/acs.jmedchem.8b00091 10.1021/acsinfecdis.5b00007 10.1042/bj0550170 10.1021/bi700300u |
ContentType | Journal Article |
Copyright | Copyright © 2019 Tooke et al. Copyright © 2019 Tooke et al. 2019 Tooke et al. |
Copyright_xml | – notice: Copyright © 2019 Tooke et al. – notice: Copyright © 2019 Tooke et al. 2019 Tooke et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/AAC.00564-19 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Class A β-Lactamase Inhibition by Relebactam, Tooke et al Class A β-Lactamase Inhibition by Relebactam |
EISSN | 1098-6596 |
ExternalDocumentID | PMC6761529 00564-19 31383664 10_1128_AAC_00564_19 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/J014400/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L01386X/1 – fundername: MRF_ grantid: MRF-145-0004-TPG-AVISO – fundername: Medical Research Council grantid: MR/N002679/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M012107/1 – fundername: UK Research and Innovation | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/M012107/1 funderid: https://doi.org/10.13039/501100000268 – fundername: Innovative Medicines Initiative (IMI) grantid: FP7/2007-2013 funderid: https://doi.org/10.13039/501100010767 – fundername: UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/M022609/1 funderid: https://doi.org/10.13039/501100000266 – fundername: UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/M013219/1 funderid: https://doi.org/10.13039/501100000266 – fundername: UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC) grantid: BB/L01386X/1 funderid: https://doi.org/10.13039/501100000266 – fundername: UK Research and Innovation | MRC | Medical Research Foundation grantid: MRF-145-0004-TPG-AVISO funderid: https://doi.org/10.13039/501100009187 – fundername: UK Research and Innovation | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/J014400/1 funderid: https://doi.org/10.13039/501100000268 – fundername: ; grantid: BB/L01386X/1 – fundername: ; grantid: FP7/2007-2013 – fundername: ; grantid: BB/J014400/1 – fundername: ; grantid: EP/M013219/1 – fundername: ; grantid: EP/M022609/1 – fundername: ; grantid: BB/M012107/1 – fundername: ; grantid: MRF-145-0004-TPG-AVISO |
GroupedDBID | --- .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 AAGFI AAYXX ACGFO ADBBV AENEX AGNAY AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 J5H K-O KQ8 L7B LSO MVM NEJ O9- OK1 P2P RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZGI ZXP ~A~ CGR CUY CVF ECM EIF NPM - 0R 55 AAPBV ABFLS ADACO BXI HZ RHF ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a418t-15543e731697113fe8241d6876ee8e6a6964d2275f694d4546a98bcdff5813f93 |
ISSN | 0066-4804 1098-6596 |
IngestDate | Thu Aug 21 18:23:03 EDT 2025 Fri Sep 05 08:07:41 EDT 2025 Tue Dec 28 13:59:14 EST 2021 Sat May 31 02:10:56 EDT 2025 Tue Jul 01 04:33:01 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | relebactam antibiotic resistance avibactam diazabicyclooctane serine β-lactamase inhibitors |
Language | English |
License | Copyright © 2019 Tooke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a418t-15543e731697113fe8241d6876ee8e6a6964d2275f694d4546a98bcdff5813f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Tooke CL, Hinchliffe P, Lang PA, Mulholland AJ, Brem J, Schofield CJ, Spencer J. 2019. Molecular basis of class A β-lactamase inhibition by relebactam. Antimicrob Agents Chemother 63:e00564-19. https://doi.org/10.1128/AAC.00564-19. |
ORCID | 0000-0002-0290-6565 0000-0001-8611-4743 0000-0003-3187-1469 0000-0002-4602-0571 0000-0003-1015-4567 0000-0002-0137-3226 0000-0003-2180-3235 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6761529 |
PMID | 31383664 |
PQID | 2268940717 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6761529 proquest_miscellaneous_2268940717 asm2_journals_10_1128_AAC_00564_19 pubmed_primary_31383664 crossref_citationtrail_10_1128_AAC_00564_19 crossref_primary_10_1128_AAC_00564_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial agents and chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2019 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 CLSI (e_1_3_3_48_2) 2015 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 DeLano WL (e_1_3_3_57_2) 2002 e_1_3_3_6_2 e_1_3_3_8_2 Morrison JF (e_1_3_3_62_2) 1988; 61 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 Hemarajata, P, Humphries, RM (B23) 2019 Mojica, MF, Papp-Wallace, KM, Taracila, MA, Barnes, MD, Rutter, JD, Jacobs, MR, LiPuma, JJ, Walsh, TJ, Vila, AJ, Bonomo, RA (B30) 2017; 61 Shields, RK, Clancy, CJ, Hao, B, Chen, L, Press, EG, Iovine, NM, Kreiswirth, BN, Nguyen, MH (B28) 2015; 59 King, DT, King, AM, Lal, SM, Wright, GD, Strynadka, NC (B43) 2015; 1 Ehmann, DE, Jahic, H, Ross, PL, Gu, RF, Hu, J, Durand-Réville, TF, Lahiri, S, Thresher, J, Livchak, S, Gao, N, Palmer, T, Walkup, GK, Fisher, SL (B20) 2013; 288 Zhanel, GG, Lawrence, CK, Adam, H, Schweizer, F, Zelenitsky, S, Zhanel, M, Lagacé-Wiens, PRS, Walkty, A, Denisuik, A, Golden, A, Gin, AS, Hoban, DJ, Lynch, JP, Karlowsky, JA (B22) 2018; 78 Winter, G, Lobley, CM, Prince, SM (B50) 2013; 69 DeLano, WL (B56) 2002 Poirel, L, Ortiz De La Rosa, JM, Kieffer, N, Dubois, V, Jayol, A, Nordmann, P (B64) 2018; 63 Levitt, PS, Papp-Wallace, KM, Taracila, MA, Hujer, AM, Winkler, ML, Smith, KM, Xu, Y, Harris, ME, Bonomo, RA (B26) 2012; 287 Lahiri, SD, Mangani, S, Durand-Reville, T, Benvenuti, M, De Luca, F, Sanyal, G, Docquier, JD (B19) 2013; 57 McCoy, AJ, Grosse-Kunstleve, RW, Adams, PD, Winn, MD, Storoni, LC, Read, RJ (B52) 2007; 40 Gould, VC, Okazaki, A, Avison, MB (B46) 2006; 57 O'Callaghan, CH, Morris, A, Kirby, SM, Shingler, AH (B57) 1972; 1 Blizzard, TA, Chen, H, Kim, S, Wu, J, Bodner, R, Gude, C, Imbriglio, J, Young, K, Park, YW, Ogawa, A, Raghoobar, S, Hairston, N, Painter, RE, Wisniewski, D, Scapin, G, Fitzgerald, P, Sharma, N, Lu, J, Ha, S, Hermes, J, Hammond, ML (B14) 2014; 24 Durand-Réville, TF, Guler, S, Comita-Prevoir, J, Chen, B, Bifulco, N, Huynh, H, Lahiri, S, Shapiro, AB, McLeod, SM, Carter, NM, Moussa, SH, Velez-Vega, C, Olivier, NB, McLaughlin, R, Gao, N, Thresher, J, Palmer, T, Andrews, B, Giacobbe, RA, Newman, JV, Ehmann, DE, de Jonge, B, O'Donnell, J, Mueller, JP, Tommasi, RA, Miller, AA (B17) 2017; 2 Choi, H, Paton, RS, Park, H, Schofield, CJ (B18) 2016; 14 Mangat, CS, Vadlamani, G, Holicek, V, Chu, M, Larmour, VLC, Vocadlo, DJ, Mulvey, MR, Mark, BL (B59) 2019; 63 Bush, K, Jacoby, GA (B2) 2010; 54 Adams, PD, Afonine, PV, Bunkoczi, G, Chen, VB, Davis, IW, Echols, N, Headd, JJ, Hung, LW, Kapral, GJ, Grosse-Kunstleve, RW, McCoy, AJ, Moriarty, NW, Oeffner, R, Read, RJ, Richardson, DC, Richardson, JS, Terwilliger, TC, Zwart, PH (B54) 2010; 66 Papp-Wallace, KM, Winkler, ML, Gatta, JA, Taracila, MA, Chilakala, S, Xu, Y, Johnson, JK, Bonomo, RA (B63) 2014; 58 Cantón, R, González-Alba, JM, Galán, JC (B3) 2012; 3 Forage, RG, Lin, EC (B29) 1982; 151 Papp-Wallace, KM, Barnes, MD, Alsop, J, Taracila, MA, Bethel, CR, Becka, SA, van Duin, D, Kreiswirth, BN, Kaye, KS, Bonomo, RA (B21) 2018; 62 Barnes, MD, Bethel, CR, Alsop, J, Becka, SA, Rutter, JD, Papp-Wallace, KM, Bonomo, RA (B33) 2018; 62 Ke, W, Bethel, CR, Thomson, JM, Bonomo, RA, van den Akker, F (B42) 2007; 46 Krishnan, NP, Nguyen, NQ, Papp-Wallace, KM, Bonomo, RA, van den Akker, F (B34) 2015; 10 Xu, H, Hazra, S, Blanchard, JS (B58) 2012; 51 Drawz, SM, Bonomo, RA (B10) 2010; 23 Arnold, RS, Thom, KA, Sharma, S, Phillips, M, Kristie Johnson, J, Morgan, DJ (B4) 2011; 104 Abbott, IJ, Peleg, AY (B6) 2015; 36 Majiduddin, FK, Palzkill, T (B35) 2005; 49 Doucet, N, Pelletier, JN (B38) 2007; 69 Papp-Wallace, KM, Taracila, M, Wallace, CJ, Hujer, KM, Bethel, CR, Hornick, JM, Bonomo, RA (B39) 2010; 19 Papp-Wallace, KM, Winkler, ML, Taracila, MA, Bonomo, RA (B24) 2015; 59 Doucet, N, De Wals, PY, Pelletier, JN (B37) 2004; 279 Ourghanlian, C, Soroka, D, Arthur, M (B44) 2017; 61 Papp-Wallace, KM, Bonomo, RA (B11) 2016; 30 B45 Morrison, JF, Walsh, CT (B61) 1988; 61 Dixon, M (B32) 1953; 55 Jin, W, Wachino, JI, Yamaguchi, Y, Kimura, K, Kumar, A, Yamada, M, Morinaka, A, Sakamaki, Y, Yonezawa, M, Kurosaki, H, Arakawa, Y (B62) 2017; 61 Bonnet, R (B8) 2004; 48 Calvopiña, K, Hinchliffe, P, Brem, J, Heesom, KJ, Johnson, S, Cain, R, Lohans, CT, Fishwick, CWG, Schofield, CJ, Spencer, J, Avison, MB (B25) 2017; 106 Mehta, SC, Rice, K, Palzkill, T (B7) 2015; 11 (B51) 1994; 50 Papp-Wallace, KM, Nguyen, NQ, Jacobs, MR, Bethel, CR, Barnes, MD, Kumar, V, Bajaksouzian, S, Rudin, SD, Rather, PN, Bhavsar, S, Ravikumar, T, Deshpande, PK, Patil, V, Yeole, R, Bhagwat, SS, Patel, MV, van den Akker, F, Bonomo, RA (B16) 2018; 61 Winter, G, Waterman, DG, Parkhurst, JM, Brewster, AS, Gildea, RJ, Gerstel, M, Fuentes-Montero, L, Vollmar, M, Michels-Clark, T, Young, ID, Sauter, NK, Evans, G (B49) 2018; 74 Calvopiña, K, Umland, KD, Rydzik, AM, Hinchliffe, P, Brem, J, Spencer, J, Schofield, CJ, Avison, MB (B5) 2016; 60 Papp-Wallace, KM, Bethel, CR, Distler, AM, Kasuboski, C, Taracila, M, Bonomo, RA (B12) 2010; 54 Haidar, G, Clancy, CJ, Chen, L, Samanta, P, Shields, RK, Kreiswirth, BN, Nguyen, MH (B27) 2017; 61 Ambler, RP, Coulson, AF, Frère, JM, Ghuysen, JM, Joris, B, Forsman, M, Levesque, RC, Tiraby, G, Waley, SG (B1) 1991; 276 Pemberton, OA, Zhang, X, Chen, Y (B40) 2017; 60 Bush, K, Bradford, PA (B15) 2019; 17 Cahill, ST, Cain, R, Wang, DY, Lohans, CT, Wareham, DW, Oswin, HP, Mohammed, J, Spencer, J, Fishwick, CW, McDonough, MA, Schofield, CJ, Brem, J (B48) 2017; 61 Emsley, P, Cowtan, K (B55) 2004; 60 Petrella, S, Ziental-Gelus, N, Mayer, C, Renard, M, Jarlier, V, Sougakoff, W (B41) 2008; 52 Ehmann, DE, Jahić, H, Ross, PL, Gu, RF, Hu, J, Kern, G, Walkup, GK, Fisher, SL (B13) 2012; 109 Murshudov, GN, Vagin, AA, Dodson, EJ (B53) 1997; 53 Shapiro, AB, Gao, N, Jahic, H, Carter, NM, Chen, A, Miller, AA (B60) 2017; 3 Ruggiero, M, Papp-Wallace, KM, Taracila, MA, Mojica, MF, Bethel, CR, Rudin, SD, Zeiser, ET, Gutkind, G, Bonomo, RA, Power, P (B65) 2017; 61 (B47) 2015 Fritz, RA, Alzate-Morales, JH, Spencer, J, Mulholland, AJ, van der Kamp, MW (B9) 2018; 57 Wolter, DJ, Kurpiel, PM, Woodford, N, Palepou, MF, Goering, RV, Hanson, ND (B31) 2009; 53 Stewart, NK, Smith, CA, Frase, H, Black, DJ, Vakulenko, SB (B36) 2015; 54 |
References_xml | – ident: e_1_3_3_55_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_3_46_2 doi: 10.1101/138594 – ident: e_1_3_3_51_2 doi: 10.1107/S0907444913015308 – ident: e_1_3_3_4_2 doi: 10.3389/fmicb.2012.00110 – ident: e_1_3_3_28_2 doi: 10.1128/AAC.00642-17 – ident: e_1_3_3_30_2 doi: 10.1128/jb.151.2.591-599.1982 – ident: e_1_3_3_34_2 doi: 10.1128/AAC.02406-17 – ident: e_1_3_3_16_2 doi: 10.1038/s41579-019-0159-8 – ident: e_1_3_3_64_2 doi: 10.1128/AAC.02625-14 – ident: e_1_3_3_58_2 doi: 10.1128/AAC.1.4.283 – ident: e_1_3_3_59_2 doi: 10.1021/bi300508r – ident: e_1_3_3_47_2 doi: 10.1093/jac/dki453 – ident: e_1_3_3_50_2 doi: 10.1107/S2059798317017235 – ident: e_1_3_3_60_2 doi: 10.1128/AAC.02112-18 – ident: e_1_3_3_37_2 doi: 10.1021/bi501052t – ident: e_1_3_3_42_2 doi: 10.1128/AAC.00163-08 – ident: e_1_3_3_63_2 doi: 10.1128/AAC.00501-17 – ident: e_1_3_3_23_2 doi: 10.1007/s40265-017-0851-9 – ident: e_1_3_3_6_2 doi: 10.1128/AAC.00371-16 – ident: e_1_3_3_39_2 doi: 10.1002/prot.21485 – volume-title: The PyMOL user’s manual, p 452 year: 2002 ident: e_1_3_3_57_2 – ident: e_1_3_3_27_2 doi: 10.1074/jbc.M112.348540 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.M407606200 – ident: e_1_3_3_26_2 doi: 10.1111/mmi.13831 – ident: e_1_3_3_40_2 doi: 10.1002/pro.454 – ident: e_1_3_3_31_2 doi: 10.1128/AAC.00777-17 – ident: e_1_3_3_36_2 doi: 10.1128/AAC.49.8.3421-3427.2005 – ident: e_1_3_3_35_2 doi: 10.1371/journal.pone.0136813 – ident: e_1_3_3_7_2 doi: 10.1055/s-0034-1396929 – ident: e_1_3_3_54_2 doi: 10.1107/S0907444996012255 – ident: e_1_3_3_24_2 doi: 10.1093/jac/dkz026 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1205073109 – ident: e_1_3_3_52_2 doi: 10.1107/S0907444994003112 – ident: e_1_3_3_12_2 doi: 10.1016/j.idc.2016.02.007 – ident: e_1_3_3_15_2 doi: 10.1016/j.bmcl.2013.12.101 – ident: e_1_3_3_49_2 doi: 10.1128/AAC.02260-16 – ident: e_1_3_3_11_2 doi: 10.1128/CMR.00037-09 – ident: e_1_3_3_56_2 doi: 10.1107/S0907444904019158 – ident: e_1_3_3_29_2 doi: 10.1128/AAC.00548-15 – volume-title: M100‐S25 performance standards for antimicrobial susceptibility testing; 25th informational supplement year: 2015 ident: e_1_3_3_48_2 – ident: e_1_3_3_53_2 doi: 10.1107/S0021889807021206 – ident: e_1_3_3_13_2 doi: 10.1128/AAC.00693-09 – ident: e_1_3_3_25_2 doi: 10.1128/AAC.04406-14 – ident: e_1_3_3_5_2 doi: 10.1097/SMJ.0b013e3181fd7d5a – ident: e_1_3_3_41_2 doi: 10.1021/acs.jmedchem.7b00158 – ident: e_1_3_3_65_2 doi: 10.1128/AAC.01809-18 – ident: e_1_3_3_10_2 doi: 10.1021/acs.biochem.8b00480 – ident: e_1_3_3_18_2 doi: 10.1038/nmicrobiol.2017.104 – ident: e_1_3_3_45_2 doi: 10.1128/AAC.02510-16 – volume: 61 start-page: 201 year: 1988 ident: e_1_3_3_62_2 article-title: The behavior and significance of slow-binding enzyme inhibitors publication-title: Adv Enzymol Relat Areas Mol Biol – ident: e_1_3_3_9_2 doi: 10.1128/AAC.48.1.1-14.2004 – ident: e_1_3_3_66_2 doi: 10.1128/AAC.02476-16 – ident: e_1_3_3_22_2 doi: 10.1128/AAC.00174-18 – ident: e_1_3_3_32_2 doi: 10.1128/AAC.00734-08 – ident: e_1_3_3_3_2 doi: 10.1128/AAC.01009-09 – ident: e_1_3_3_61_2 doi: 10.1021/acsinfecdis.7b00113 – ident: e_1_3_3_20_2 doi: 10.1128/AAC.02247-12 – ident: e_1_3_3_2_2 doi: 10.1042/bj2760269 – ident: e_1_3_3_19_2 doi: 10.1039/c6ob00353b – ident: e_1_3_3_8_2 doi: 10.1371/journal.ppat.1004949 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M113.485979 – ident: e_1_3_3_17_2 doi: 10.1021/acs.jmedchem.8b00091 – ident: e_1_3_3_44_2 doi: 10.1021/acsinfecdis.5b00007 – ident: e_1_3_3_33_2 doi: 10.1042/bj0550170 – ident: e_1_3_3_43_2 doi: 10.1021/bi700300u – volume: 63 year: 2019 ident: B59 article-title: Molecular basis for the potent inhibition of the emerging carbapenemase VCC-1 by avibactam publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02112-18 – volume: 54 start-page: 890 year: 2010 end-page: 897 ident: B12 article-title: Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00693-09 – volume: 61 year: 2017 ident: B27 article-title: Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00642-17 – volume: 106 start-page: 492 year: 2017 end-page: 504 ident: B25 article-title: Structural/mechanistic insights into the efficacy of nonclassical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates publication-title: Mol Microbiol doi: 10.1111/mmi.13831 – volume: 57 start-page: 3560 year: 2018 end-page: 3563 ident: B9 article-title: Multiscale simulations of clavulanate inhibition identify the reactive complex in class A β-lactamases and predict the efficiency of inhibition publication-title: Biochemistry doi: 10.1021/acs.biochem.8b00480 – volume: 30 start-page: 441 year: 2016 end-page: 464 ident: B11 article-title: New β-lactamase inhibitors in the clinic publication-title: Infect Dis Clin North Am doi: 10.1016/j.idc.2016.02.007 – volume: 3 start-page: 833 year: 2017 end-page: 844 ident: B60 article-title: Reversibility of covalent, broad-spectrum serine beta-lactamase inhibition by the diazabicyclooctenone ETX2514 publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.7b00113 – volume: 60 start-page: 4170 year: 2016 end-page: 4175 ident: B5 article-title: Sideromimic modification of lactivicin dramatically increases potency against extensively drug-resistant Stenotrophomonas maltophilia clinical isolates publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00371-16 – volume: 78 start-page: 65 year: 2018 end-page: 98 ident: B22 article-title: Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations publication-title: Drugs doi: 10.1007/s40265-017-0851-9 – volume: 1 start-page: 175 year: 2015 end-page: 184 ident: B43 article-title: Molecular mechanism of avibactam-mediated β-lactamase inhibition publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.5b00007 – volume: 104 start-page: 40 year: 2011 end-page: 45 ident: B4 article-title: Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria publication-title: South Med J doi: 10.1097/SMJ.0b013e3181fd7d5a – volume: 54 start-page: 588 year: 2015 end-page: 597 ident: B36 article-title: Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases publication-title: Biochemistry doi: 10.1021/bi501052t – volume: 276 start-page: 269 year: 1991 end-page: 270 ident: B1 article-title: A standard numbering scheme for the class A beta-lactamases publication-title: Biochem J doi: 10.1042/bj2760269 – volume: 50 start-page: 760 year: 1994 end-page: 763 ident: B51 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444994003112 – volume: 109 start-page: 11663 year: 2012 end-page: 11668 ident: B13 article-title: Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1205073109 – volume: 63 year: 2018 ident: B64 article-title: Acquisition of extended-spectrum β-lactamase GES-6 leading to resistance to ceftolozane-tazobactam combination in Pseudomonas aeruginosa publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01809-18 – volume: 10 year: 2015 ident: B34 article-title: Inhibition of Klebsiella β-lactamases (SHV-1 and KPC-2) by avibactam: a structural study publication-title: PLoS One doi: 10.1371/journal.pone.0136813 – volume: 59 start-page: 3710 year: 2015 end-page: 3717 ident: B24 article-title: Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.04406-14 – volume: 48 start-page: 1 year: 2004 end-page: 14 ident: B8 article-title: Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.48.1.1-14.2004 – volume: 69 start-page: 1260 year: 2013 end-page: 1273 ident: B50 article-title: Decision making in xia2 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444913015308 – year: 2019 ident: B23 article-title: Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2 publication-title: J Antimicrob Chemother, in press doi: 10.1093/jac/dkz026 – volume: 61 year: 2017 ident: B62 article-title: Structural insights into the TLA-3 extended-spectrum β-lactamase and its inhibition by avibactam and OP0595 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00501-17 – volume: 61 year: 2017 ident: B30 article-title: Avibactam restores the susceptibility of clinical isolates of Stenotrophomonas maltophilia to aztreonam publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00777-17 – volume: 287 start-page: 31783 year: 2012 end-page: 31793 ident: B26 article-title: Exploring the role of a conserved class A residue in the Ω-loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis publication-title: J Biol Chem doi: 10.1074/jbc.M112.348540 – volume: 51 start-page: 4551 year: 2012 end-page: 4557 ident: B58 article-title: NXL104 irreversibly inhibits the beta-lactamase from Mycobacterium tuberculosis publication-title: Biochemistry doi: 10.1021/bi300508r – volume: 59 start-page: 5793 year: 2015 end-page: 5797 ident: B28 article-title: Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum beta-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00548-15 – volume: 11 year: 2015 ident: B7 article-title: Natural variants of the KPC-2 carbapenemase have evolved increased catalytic efficiency for ceftazidime hydrolysis at the cost of enzyme stability publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004949 – volume: 58 start-page: 4290 year: 2014 end-page: 4297 ident: B63 article-title: Reclaiming the efficacy of β-lactam-β-lactamase inhibitor combinations: avibactam restores the susceptibility of CMY-2-producing Escherichia coli to ceftazidime publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02625-14 – volume: 61 year: 2017 ident: B48 article-title: Cyclic boronates inhibit all classes of β-lactamases publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02260-16 – volume: 55 start-page: 170 year: 1953 ident: B32 article-title: The determination of enzyme inhibitor constants publication-title: Biochem J doi: 10.1042/bj0550170 – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: B55 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 – volume: 60 start-page: 3525 year: 2017 end-page: 3530 ident: B40 article-title: Molecular basis of substrate recognition and product release by the Klebsiella pneumoniae carbapenemase (KPC-2) publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b00158 – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: B52 article-title: Phaser crystallographic software publication-title: J Appl Crystallogr doi: 10.1107/S0021889807021206 – volume: 62 year: 2018 ident: B21 article-title: Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00174-18 – volume: 61 year: 2017 ident: B44 article-title: Inhibition by avibactam and clavulanate of the beta-lactamases KPC-2 and CTX-M-15 harboring the substitution N(132)G in the conserved SDN motif publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02510-16 – volume: 61 start-page: 201 year: 1988 end-page: 301 ident: B61 article-title: The behavior and significance of slow-binding enzyme inhibitors publication-title: Adv Enzymol Relat Areas Mol Biol – volume: 53 start-page: 240 year: 1997 end-page: 255 ident: B53 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444996012255 – volume: 57 start-page: 2496 year: 2013 end-page: 2505 ident: B19 article-title: Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02247-12 – volume: 19 start-page: 1714 year: 2010 end-page: 1727 ident: B39 article-title: Elucidating the role of Trp105 in the KPC-2 β-lactamase publication-title: Protein Sci doi: 10.1002/pro.454 – volume: 69 start-page: 340 year: 2007 end-page: 348 ident: B38 article-title: Simulated annealing exploration of an active-site tyrosine in TEM-1 beta-lactamase suggests the existence of alternate conformations publication-title: Proteins doi: 10.1002/prot.21485 – volume: 46 start-page: 5732 year: 2007 end-page: 5740 ident: B42 article-title: Crystal structure of KPC-2: insights into carbapenemase activity in class A beta-lactamases publication-title: Biochemistry doi: 10.1021/bi700300u – volume: 1 start-page: 283 year: 1972 end-page: 288 ident: B57 article-title: Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.1.4.283 – volume: 36 start-page: 99 year: 2015 end-page: 110 ident: B6 article-title: Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies publication-title: Semin Respir Crit Care Med doi: 10.1055/s-0034-1396929 – ident: B45 article-title: Takebayashi Y , Wan Nur Ismah WAK , Findlay J , Heesom KJ , Zhang J , Williams OM , MacGowan AP , Avison MB . 2017 . Prediction of cephalosporin and carbapenem susceptibility in multi-drug resistant gram-negative bacteria using liquid chromatography-tandem mass spectrometry . bioRxiv doi: 10.1101/138594 . – volume: 57 start-page: 199 year: 2006 end-page: 203 ident: B46 article-title: Beta-lactam resistance and beta-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships publication-title: J Antimicrob Chemother doi: 10.1093/jac/dki453 – volume: 23 start-page: 160 year: 2010 end-page: 201 ident: B10 article-title: Three decades of beta-lactamase inhibitors publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00037-09 – volume: 62 year: 2018 ident: B33 article-title: Inactivation of the Pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02406-17 – volume: 54 start-page: 969 year: 2010 end-page: 976 ident: B2 article-title: Updated functional classification of beta-lactamases publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01009-09 – volume: 61 start-page: 4067 year: 2018 end-page: 4086 ident: B16 article-title: Strategic approaches to overcome resistance against Gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: activity of three novel diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.8b00091 – volume: 74 start-page: 85 year: 2018 end-page: 97 ident: B49 article-title: DIALS: implementation and evaluation of a new integration package publication-title: Acta Crystallogr D Struct Biol doi: 10.1107/S2059798317017235 – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: B54 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 49 start-page: 3421 year: 2005 end-page: 3427 ident: B35 article-title: Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.8.3421-3427.2005 – volume: 53 start-page: 557 year: 2009 end-page: 562 ident: B31 article-title: Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00734-08 – volume: 24 start-page: 780 year: 2014 end-page: 785 ident: B14 article-title: Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2013.12.101 – volume: 288 start-page: 27960 year: 2013 end-page: 27971 ident: B20 article-title: Kinetics of avibactam inhibition against class A, C, and D β-lactamases publication-title: J Biol Chem doi: 10.1074/jbc.M113.485979 – volume: 17 start-page: 295 year: 2019 end-page: 306 ident: B15 article-title: Interplay between β-lactamases and new β-lactamase inhibitors publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0159-8 – year: 2002 ident: B56 publication-title: The PyMOL user’s manual, p 452 ;DeLano Scientific, San Carlos ;California, USA – volume: 2 start-page: 17104 year: 2017 ident: B17 article-title: ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.104 – volume: 279 start-page: 46295 year: 2004 end-page: 46303 ident: B37 article-title: Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase publication-title: J Biol Chem doi: 10.1074/jbc.M407606200 – year: 2015 ident: B47 publication-title: M100‐S25 performance standards for antimicrobial susceptibility testing; 25th informational supplement ;CLSI ;Wayne, PA – volume: 3 start-page: 110 year: 2012 ident: B3 article-title: CTX-M enzymes: origin and diffusion publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00110 – volume: 52 start-page: 3725 year: 2008 end-page: 3736 ident: B41 article-title: Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A beta-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00163-08 – volume: 14 start-page: 4116 year: 2016 end-page: 4128 ident: B18 article-title: Investigations on recyclisation and hydrolysis in avibactam mediated serine β-lactamase inhibition publication-title: Org Biomol Chem doi: 10.1039/c6ob00353b – volume: 61 year: 2017 ident: B65 article-title: Exploring the landscape of diazabicyclooctane (DBO) inhibition: avibactam inactivation of PER-2 β-lactamase publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02476-16 – volume: 151 start-page: 591 year: 1982 end-page: 599 ident: B29 article-title: DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418 publication-title: J Bacteriol |
SSID | ssj0006590 |
Score | 2.543656 |
Snippet | β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Azabicyclo Compounds Azabicyclo Compounds - chemistry Azabicyclo Compounds - metabolism Azabicyclo Compounds - pharmacology Aztreonam - chemistry Aztreonam - metabolism Aztreonam - pharmacology beta-Lactam Resistance beta-Lactam Resistance - genetics beta-Lactamase Inhibitors beta-Lactamase Inhibitors - chemistry beta-Lactamase Inhibitors - metabolism beta-Lactamase Inhibitors - pharmacology beta-Lactamases beta-Lactamases - chemistry beta-Lactamases - genetics beta-Lactamases - metabolism Binding Sites Ceftazidime - chemistry Ceftazidime - metabolism Ceftazidime - pharmacology Chromosomes, Bacterial - chemistry Chromosomes, Bacterial - enzymology Clinical Trials, Phase III as Topic Cloning, Molecular Drug Combinations Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Genetic Vectors - chemistry Genetic Vectors - metabolism Humans Imipenem - chemistry Imipenem - metabolism Imipenem - pharmacology Isoenzymes - antagonists & inhibitors Isoenzymes - chemistry Isoenzymes - genetics Isoenzymes - metabolism Klebsiella pneumoniae Klebsiella pneumoniae - drug effects Klebsiella pneumoniae - enzymology Klebsiella pneumoniae - genetics Mechanisms of Resistance Microbial Sensitivity Tests Models, Molecular Plasmids - chemistry Plasmids - metabolism Protein Binding Protein Interaction Domains and Motifs Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Stenotrophomonas maltophilia Stenotrophomonas maltophilia - drug effects Stenotrophomonas maltophilia - enzymology Stenotrophomonas maltophilia - genetics |
Title | Molecular Basis of Class A β-Lactamase Inhibition by Relebactam |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31383664 https://journals.asm.org/doi/10.1128/AAC.00564-19 https://www.proquest.com/docview/2268940717 https://pubmed.ncbi.nlm.nih.gov/PMC6761529 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgvCMqt3GQQ3UuX0jiOY7-RVUPTRNFAnbS3yEkcWqlNpzV9KD-LH8Jv4thxLoVNGrxUVeKmbb7j4-OT830HofdStzVSI5hIfho4EIETJ1aecGTiZinNRkIaKaXJF3ZyTk8v_ItOZ9NmlxTxMPlxLa_kf1CFY4CrZsn-A7L1ReEAvAd84RUQhtdbYTypetsOjqQVFjFNLmG298fH_SPifJZJIZewUoEjmM1jU5-lI85vsNrE5lw7Og3zYr6cG2kmLSHw3bDfDPFtppaWqlWn4GuxzppEOGglsvNkttC9V5qkTV36YzPUuiZRfyhsMF_MtFXaVHd6pX3PaTst4Yq6wK1oMQG0i2oVn07mjbhU2ykz5lBediEeqtIPa5lT5pfNbitHbT2hNcjR9QsA0aSGMBwPtcgpdaw_3pXUrk7dQXdJACGXfpb_tRGZh-8tmUv2d1V8CcI_tC8Mi7hcL8luQPPXLuXPYttW9DJ9iB7YbQcOSxt6hDoq76J7ZSPSbRfdn9gSiy46OCvFzLeHeNpw89aH-ACfNTLn28foY2192FgfXmXYWB8O8a-fjeXhxvJwvMWN5T1B55-Op-MTx_bjcCR1eeHo0NNTutWZCFzXyxSH8C9lsJ4qxRWTTDCaEhL4GRM0pT5lUvA4SbPM5zBceE_RXr7K1XOEeaogMmc-pVRST7oxI0lCiSuDIBglIuuhd_reRnayrSOzVyU8AgAiA0Dkih4aVHc-SqyivW6ssrhhdL8efVkqudww7m0FYgSuVj8_k7labdYR7FS4MAmQHnpWglpfyXM97jFGeyjYgbseoGXcd8_k85mRc2cB7CqIeHGbv_wS7TeT7RXaK6426jVExUX8xtjwb2Hvs0k |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Basis+of+Class+A+%CE%B2-Lactamase+Inhibition+by+Relebactam&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Tooke%2C+Catherine+L&rft.au=Hinchliffe%2C+Philip&rft.au=Lang%2C+Pauline+A&rft.au=Mulholland%2C+Adrian+J&rft.date=2019-10-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=63&rft.issue=10&rft_id=info:doi/10.1128%2FAAC.00564-19&rft.externalDocID=00564-19 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |