Molecular Basis of Class A β-Lactamase Inhibition by Relebactam

β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO)...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 63; no. 10
Main Authors Tooke, Catherine L., Hinchliffe, Philip, Lang, Pauline A., Mulholland, Adrian J., Brem, Jürgen, Schofield, Christopher J., Spencer, James
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2019
Subjects
Online AccessGet full text
ISSN0066-4804
1098-6596
1098-6596
DOI10.1128/AAC.00564-19

Cover

Abstract β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae . β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae . We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC 50 ]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae , with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI–β-lactam combinations.
AbstractList β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae . β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae . We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC 50 ]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae , with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI–β-lactam combinations.
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC ]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing , with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant Enterobacteriaceae. We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC50]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing Klebsiella pneumoniae, with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against Stenotrophomonas maltophilia K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI–β-lactam combinations.
Author Mulholland, Adrian J.
Spencer, James
Hinchliffe, Philip
Schofield, Christopher J.
Tooke, Catherine L.
Brem, Jürgen
Lang, Pauline A.
Author_xml – sequence: 1
  givenname: Catherine L.
  orcidid: 0000-0003-2180-3235
  surname: Tooke
  fullname: Tooke, Catherine L.
  organization: School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
– sequence: 2
  givenname: Philip
  orcidid: 0000-0001-8611-4743
  surname: Hinchliffe
  fullname: Hinchliffe, Philip
  organization: School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
– sequence: 3
  givenname: Pauline A.
  orcidid: 0000-0003-3187-1469
  surname: Lang
  fullname: Lang, Pauline A.
  organization: Department of Chemistry, University of Oxford, Oxford, United Kingdom
– sequence: 4
  givenname: Adrian J.
  orcidid: 0000-0003-1015-4567
  surname: Mulholland
  fullname: Mulholland, Adrian J.
  organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
– sequence: 5
  givenname: Jürgen
  orcidid: 0000-0002-0137-3226
  surname: Brem
  fullname: Brem, Jürgen
  organization: Department of Chemistry, University of Oxford, Oxford, United Kingdom
– sequence: 6
  givenname: Christopher J.
  orcidid: 0000-0002-0290-6565
  surname: Schofield
  fullname: Schofield, Christopher J.
  organization: Department of Chemistry, University of Oxford, Oxford, United Kingdom
– sequence: 7
  givenname: James
  orcidid: 0000-0002-4602-0571
  surname: Spencer
  fullname: Spencer, James
  organization: School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31383664$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1L5TAUhoM46PVj51q6VLBOkianyUa8XpwZ4Yogug5pe6qRtNGmFfxb_hB_k71eHRwZV4fDefLw5t0gq21okZAdRg8Z4-rndDo7pFSCSJleIRNGtUpBalglE0oBUqGoWCcbMd7RcZearpH1jGUqAxATcnwePJaDt11yYqOLSaiTmbcxJtPk5Tmd27K3jY2YnLW3rnC9C21SPCWX6LF4u22RH7X1Ebff5ya5_nV6NfuTzi9-n82m89QKpvqUSSkyzDMGOmcsq1FxwSpQOSAqBAsaRMV5LmvQohJSgNWqKKu6lmrEdbZJjpbe-6FosCqx7TvrzX3nGts9mWCd-ffSultzEx4N5MAkXwj23gVdeBgw9qZxsUTvbYthiIZzUFrQnOUjur9EbWy4uQtD145fM4yaReNmbNy8NW7YQrv7OdffQB8VjwBfAmUXYuywNqXr7aLIMabz31kPvjz68P4XfwX1apqs
CitedBy_id crossref_primary_10_1080_07391102_2020_1805365
crossref_primary_10_1128_mbio_01793_21
crossref_primary_10_1080_14756366_2024_2435365
crossref_primary_10_1080_1120009X_2020_1786634
crossref_primary_10_1021_acsinfecdis_0c00575
crossref_primary_10_1016_j_bios_2021_113526
crossref_primary_10_1021_acsomega_2c02328
crossref_primary_10_1128_AAC_00574_21
crossref_primary_10_1016_j_ejmech_2024_116556
crossref_primary_10_3390_antibiotics10121520
crossref_primary_10_1007_s00894_022_05336_z
crossref_primary_10_3947_ic_2021_0051
crossref_primary_10_1128_aac_00350_23
crossref_primary_10_1016_j_ejmech_2022_114571
crossref_primary_10_1016_j_indcrop_2024_118075
crossref_primary_10_3390_antibiotics12121705
crossref_primary_10_3390_antibiotics10050577
crossref_primary_10_2147_IDR_S224228
crossref_primary_10_1248_cpb_c19_00842
crossref_primary_10_1093_jac_dkac171
crossref_primary_10_1016_j_ejmech_2021_113257
crossref_primary_10_1016_j_ijantimicag_2024_107271
crossref_primary_10_1128_AAC_02255_19
crossref_primary_10_3390_ph15040463
crossref_primary_10_1080_07391102_2023_2227724
crossref_primary_10_1002_pro_4911
crossref_primary_10_1016_j_ijantimicag_2023_106935
crossref_primary_10_1002_phar_2447
crossref_primary_10_3390_antibiotics10091110
crossref_primary_10_1038_s42004_024_01236_w
crossref_primary_10_1042_BCJ20240478
crossref_primary_10_3389_fmicb_2021_688509
crossref_primary_10_1074_jbc_RA120_016461
crossref_primary_10_3389_fcimb_2022_849564
crossref_primary_10_1021_acsinfecdis_4c00119
crossref_primary_10_1007_s40262_021_01056_4
crossref_primary_10_1128_AAC_00297_20
crossref_primary_10_1128_aac_01721_23
crossref_primary_10_3390_ijms21239308
crossref_primary_10_1021_acs_chemrev_1c00138
crossref_primary_10_3390_microorganisms11071798
crossref_primary_10_1128_aac_00078_23
crossref_primary_10_1016_j_molstruc_2023_136151
crossref_primary_10_1038_s41467_021_24757_7
crossref_primary_10_1038_s41598_022_09392_6
crossref_primary_10_1128_CMR_00115_20
crossref_primary_10_1021_acsinfecdis_3c00715
crossref_primary_10_1002_phar_2950
crossref_primary_10_1128_AAC_01160_21
crossref_primary_10_1128_AAC_02073_20
crossref_primary_10_1093_jac_dkaa497
crossref_primary_10_5812_jjm_153574
crossref_primary_10_1039_C9MD00557A
crossref_primary_10_1093_jac_dkae375
crossref_primary_10_1080_07853890_2024_2403724
crossref_primary_10_1186_s12934_024_02421_1
Cites_doi 10.1107/S0907444909052925
10.1101/138594
10.1107/S0907444913015308
10.3389/fmicb.2012.00110
10.1128/AAC.00642-17
10.1128/jb.151.2.591-599.1982
10.1128/AAC.02406-17
10.1038/s41579-019-0159-8
10.1128/AAC.02625-14
10.1128/AAC.1.4.283
10.1021/bi300508r
10.1093/jac/dki453
10.1107/S2059798317017235
10.1128/AAC.02112-18
10.1021/bi501052t
10.1128/AAC.00163-08
10.1128/AAC.00501-17
10.1007/s40265-017-0851-9
10.1128/AAC.00371-16
10.1002/prot.21485
10.1074/jbc.M112.348540
10.1074/jbc.M407606200
10.1111/mmi.13831
10.1002/pro.454
10.1128/AAC.00777-17
10.1128/AAC.49.8.3421-3427.2005
10.1371/journal.pone.0136813
10.1055/s-0034-1396929
10.1107/S0907444996012255
10.1093/jac/dkz026
10.1073/pnas.1205073109
10.1107/S0907444994003112
10.1016/j.idc.2016.02.007
10.1016/j.bmcl.2013.12.101
10.1128/AAC.02260-16
10.1128/CMR.00037-09
10.1107/S0907444904019158
10.1128/AAC.00548-15
10.1107/S0021889807021206
10.1128/AAC.00693-09
10.1128/AAC.04406-14
10.1097/SMJ.0b013e3181fd7d5a
10.1021/acs.jmedchem.7b00158
10.1128/AAC.01809-18
10.1021/acs.biochem.8b00480
10.1038/nmicrobiol.2017.104
10.1128/AAC.02510-16
10.1128/AAC.48.1.1-14.2004
10.1128/AAC.02476-16
10.1128/AAC.00174-18
10.1128/AAC.00734-08
10.1128/AAC.01009-09
10.1021/acsinfecdis.7b00113
10.1128/AAC.02247-12
10.1042/bj2760269
10.1039/c6ob00353b
10.1371/journal.ppat.1004949
10.1074/jbc.M113.485979
10.1021/acs.jmedchem.8b00091
10.1021/acsinfecdis.5b00007
10.1042/bj0550170
10.1021/bi700300u
ContentType Journal Article
Copyright Copyright © 2019 Tooke et al.
Copyright © 2019 Tooke et al. 2019 Tooke et al.
Copyright_xml – notice: Copyright © 2019 Tooke et al.
– notice: Copyright © 2019 Tooke et al. 2019 Tooke et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/AAC.00564-19
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Class A β-Lactamase Inhibition by Relebactam, Tooke et al
Class A β-Lactamase Inhibition by Relebactam
EISSN 1098-6596
ExternalDocumentID PMC6761529
00564-19
31383664
10_1128_AAC_00564_19
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/J014400/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L01386X/1
– fundername: MRF_
  grantid: MRF-145-0004-TPG-AVISO
– fundername: Medical Research Council
  grantid: MR/N002679/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M012107/1
– fundername: UK Research and Innovation | Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/M012107/1
  funderid: https://doi.org/10.13039/501100000268
– fundername: Innovative Medicines Initiative (IMI)
  grantid: FP7/2007-2013
  funderid: https://doi.org/10.13039/501100010767
– fundername: UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/M022609/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/M013219/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: BB/L01386X/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: UK Research and Innovation | MRC | Medical Research Foundation
  grantid: MRF-145-0004-TPG-AVISO
  funderid: https://doi.org/10.13039/501100009187
– fundername: UK Research and Innovation | Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/J014400/1
  funderid: https://doi.org/10.13039/501100000268
– fundername: ;
  grantid: BB/L01386X/1
– fundername: ;
  grantid: FP7/2007-2013
– fundername: ;
  grantid: BB/J014400/1
– fundername: ;
  grantid: EP/M013219/1
– fundername: ;
  grantid: EP/M022609/1
– fundername: ;
  grantid: BB/M012107/1
– fundername: ;
  grantid: MRF-145-0004-TPG-AVISO
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
AAYXX
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
RHF
ZA5
7X8
5PM
ID FETCH-LOGICAL-a418t-15543e731697113fe8241d6876ee8e6a6964d2275f694d4546a98bcdff5813f93
ISSN 0066-4804
1098-6596
IngestDate Thu Aug 21 18:23:03 EDT 2025
Fri Sep 05 08:07:41 EDT 2025
Tue Dec 28 13:59:14 EST 2021
Sat May 31 02:10:56 EDT 2025
Tue Jul 01 04:33:01 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords relebactam
antibiotic resistance
avibactam
diazabicyclooctane
serine β-lactamase inhibitors
Language English
License Copyright © 2019 Tooke et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a418t-15543e731697113fe8241d6876ee8e6a6964d2275f694d4546a98bcdff5813f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Tooke CL, Hinchliffe P, Lang PA, Mulholland AJ, Brem J, Schofield CJ, Spencer J. 2019. Molecular basis of class A β-lactamase inhibition by relebactam. Antimicrob Agents Chemother 63:e00564-19. https://doi.org/10.1128/AAC.00564-19.
ORCID 0000-0002-0290-6565
0000-0001-8611-4743
0000-0003-3187-1469
0000-0002-4602-0571
0000-0003-1015-4567
0000-0002-0137-3226
0000-0003-2180-3235
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6761529
PMID 31383664
PQID 2268940717
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6761529
proquest_miscellaneous_2268940717
asm2_journals_10_1128_AAC_00564_19
pubmed_primary_31383664
crossref_citationtrail_10_1128_AAC_00564_19
crossref_primary_10_1128_AAC_00564_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2019
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
CLSI (e_1_3_3_48_2) 2015
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
DeLano WL (e_1_3_3_57_2) 2002
e_1_3_3_6_2
e_1_3_3_8_2
Morrison JF (e_1_3_3_62_2) 1988; 61
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
Hemarajata, P, Humphries, RM (B23) 2019
Mojica, MF, Papp-Wallace, KM, Taracila, MA, Barnes, MD, Rutter, JD, Jacobs, MR, LiPuma, JJ, Walsh, TJ, Vila, AJ, Bonomo, RA (B30) 2017; 61
Shields, RK, Clancy, CJ, Hao, B, Chen, L, Press, EG, Iovine, NM, Kreiswirth, BN, Nguyen, MH (B28) 2015; 59
King, DT, King, AM, Lal, SM, Wright, GD, Strynadka, NC (B43) 2015; 1
Ehmann, DE, Jahic, H, Ross, PL, Gu, RF, Hu, J, Durand-Réville, TF, Lahiri, S, Thresher, J, Livchak, S, Gao, N, Palmer, T, Walkup, GK, Fisher, SL (B20) 2013; 288
Zhanel, GG, Lawrence, CK, Adam, H, Schweizer, F, Zelenitsky, S, Zhanel, M, Lagacé-Wiens, PRS, Walkty, A, Denisuik, A, Golden, A, Gin, AS, Hoban, DJ, Lynch, JP, Karlowsky, JA (B22) 2018; 78
Winter, G, Lobley, CM, Prince, SM (B50) 2013; 69
DeLano, WL (B56) 2002
Poirel, L, Ortiz De La Rosa, JM, Kieffer, N, Dubois, V, Jayol, A, Nordmann, P (B64) 2018; 63
Levitt, PS, Papp-Wallace, KM, Taracila, MA, Hujer, AM, Winkler, ML, Smith, KM, Xu, Y, Harris, ME, Bonomo, RA (B26) 2012; 287
Lahiri, SD, Mangani, S, Durand-Reville, T, Benvenuti, M, De Luca, F, Sanyal, G, Docquier, JD (B19) 2013; 57
McCoy, AJ, Grosse-Kunstleve, RW, Adams, PD, Winn, MD, Storoni, LC, Read, RJ (B52) 2007; 40
Gould, VC, Okazaki, A, Avison, MB (B46) 2006; 57
O'Callaghan, CH, Morris, A, Kirby, SM, Shingler, AH (B57) 1972; 1
Blizzard, TA, Chen, H, Kim, S, Wu, J, Bodner, R, Gude, C, Imbriglio, J, Young, K, Park, YW, Ogawa, A, Raghoobar, S, Hairston, N, Painter, RE, Wisniewski, D, Scapin, G, Fitzgerald, P, Sharma, N, Lu, J, Ha, S, Hermes, J, Hammond, ML (B14) 2014; 24
Durand-Réville, TF, Guler, S, Comita-Prevoir, J, Chen, B, Bifulco, N, Huynh, H, Lahiri, S, Shapiro, AB, McLeod, SM, Carter, NM, Moussa, SH, Velez-Vega, C, Olivier, NB, McLaughlin, R, Gao, N, Thresher, J, Palmer, T, Andrews, B, Giacobbe, RA, Newman, JV, Ehmann, DE, de Jonge, B, O'Donnell, J, Mueller, JP, Tommasi, RA, Miller, AA (B17) 2017; 2
Choi, H, Paton, RS, Park, H, Schofield, CJ (B18) 2016; 14
Mangat, CS, Vadlamani, G, Holicek, V, Chu, M, Larmour, VLC, Vocadlo, DJ, Mulvey, MR, Mark, BL (B59) 2019; 63
Bush, K, Jacoby, GA (B2) 2010; 54
Adams, PD, Afonine, PV, Bunkoczi, G, Chen, VB, Davis, IW, Echols, N, Headd, JJ, Hung, LW, Kapral, GJ, Grosse-Kunstleve, RW, McCoy, AJ, Moriarty, NW, Oeffner, R, Read, RJ, Richardson, DC, Richardson, JS, Terwilliger, TC, Zwart, PH (B54) 2010; 66
Papp-Wallace, KM, Winkler, ML, Gatta, JA, Taracila, MA, Chilakala, S, Xu, Y, Johnson, JK, Bonomo, RA (B63) 2014; 58
Cantón, R, González-Alba, JM, Galán, JC (B3) 2012; 3
Forage, RG, Lin, EC (B29) 1982; 151
Papp-Wallace, KM, Barnes, MD, Alsop, J, Taracila, MA, Bethel, CR, Becka, SA, van Duin, D, Kreiswirth, BN, Kaye, KS, Bonomo, RA (B21) 2018; 62
Barnes, MD, Bethel, CR, Alsop, J, Becka, SA, Rutter, JD, Papp-Wallace, KM, Bonomo, RA (B33) 2018; 62
Ke, W, Bethel, CR, Thomson, JM, Bonomo, RA, van den Akker, F (B42) 2007; 46
Krishnan, NP, Nguyen, NQ, Papp-Wallace, KM, Bonomo, RA, van den Akker, F (B34) 2015; 10
Xu, H, Hazra, S, Blanchard, JS (B58) 2012; 51
Drawz, SM, Bonomo, RA (B10) 2010; 23
Arnold, RS, Thom, KA, Sharma, S, Phillips, M, Kristie Johnson, J, Morgan, DJ (B4) 2011; 104
Abbott, IJ, Peleg, AY (B6) 2015; 36
Majiduddin, FK, Palzkill, T (B35) 2005; 49
Doucet, N, Pelletier, JN (B38) 2007; 69
Papp-Wallace, KM, Taracila, M, Wallace, CJ, Hujer, KM, Bethel, CR, Hornick, JM, Bonomo, RA (B39) 2010; 19
Papp-Wallace, KM, Winkler, ML, Taracila, MA, Bonomo, RA (B24) 2015; 59
Doucet, N, De Wals, PY, Pelletier, JN (B37) 2004; 279
Ourghanlian, C, Soroka, D, Arthur, M (B44) 2017; 61
Papp-Wallace, KM, Bonomo, RA (B11) 2016; 30
B45
Morrison, JF, Walsh, CT (B61) 1988; 61
Dixon, M (B32) 1953; 55
Jin, W, Wachino, JI, Yamaguchi, Y, Kimura, K, Kumar, A, Yamada, M, Morinaka, A, Sakamaki, Y, Yonezawa, M, Kurosaki, H, Arakawa, Y (B62) 2017; 61
Bonnet, R (B8) 2004; 48
Calvopiña, K, Hinchliffe, P, Brem, J, Heesom, KJ, Johnson, S, Cain, R, Lohans, CT, Fishwick, CWG, Schofield, CJ, Spencer, J, Avison, MB (B25) 2017; 106
Mehta, SC, Rice, K, Palzkill, T (B7) 2015; 11
(B51) 1994; 50
Papp-Wallace, KM, Nguyen, NQ, Jacobs, MR, Bethel, CR, Barnes, MD, Kumar, V, Bajaksouzian, S, Rudin, SD, Rather, PN, Bhavsar, S, Ravikumar, T, Deshpande, PK, Patil, V, Yeole, R, Bhagwat, SS, Patel, MV, van den Akker, F, Bonomo, RA (B16) 2018; 61
Winter, G, Waterman, DG, Parkhurst, JM, Brewster, AS, Gildea, RJ, Gerstel, M, Fuentes-Montero, L, Vollmar, M, Michels-Clark, T, Young, ID, Sauter, NK, Evans, G (B49) 2018; 74
Calvopiña, K, Umland, KD, Rydzik, AM, Hinchliffe, P, Brem, J, Spencer, J, Schofield, CJ, Avison, MB (B5) 2016; 60
Papp-Wallace, KM, Bethel, CR, Distler, AM, Kasuboski, C, Taracila, M, Bonomo, RA (B12) 2010; 54
Haidar, G, Clancy, CJ, Chen, L, Samanta, P, Shields, RK, Kreiswirth, BN, Nguyen, MH (B27) 2017; 61
Ambler, RP, Coulson, AF, Frère, JM, Ghuysen, JM, Joris, B, Forsman, M, Levesque, RC, Tiraby, G, Waley, SG (B1) 1991; 276
Pemberton, OA, Zhang, X, Chen, Y (B40) 2017; 60
Bush, K, Bradford, PA (B15) 2019; 17
Cahill, ST, Cain, R, Wang, DY, Lohans, CT, Wareham, DW, Oswin, HP, Mohammed, J, Spencer, J, Fishwick, CW, McDonough, MA, Schofield, CJ, Brem, J (B48) 2017; 61
Emsley, P, Cowtan, K (B55) 2004; 60
Petrella, S, Ziental-Gelus, N, Mayer, C, Renard, M, Jarlier, V, Sougakoff, W (B41) 2008; 52
Ehmann, DE, Jahić, H, Ross, PL, Gu, RF, Hu, J, Kern, G, Walkup, GK, Fisher, SL (B13) 2012; 109
Murshudov, GN, Vagin, AA, Dodson, EJ (B53) 1997; 53
Shapiro, AB, Gao, N, Jahic, H, Carter, NM, Chen, A, Miller, AA (B60) 2017; 3
Ruggiero, M, Papp-Wallace, KM, Taracila, MA, Mojica, MF, Bethel, CR, Rudin, SD, Zeiser, ET, Gutkind, G, Bonomo, RA, Power, P (B65) 2017; 61
(B47) 2015
Fritz, RA, Alzate-Morales, JH, Spencer, J, Mulholland, AJ, van der Kamp, MW (B9) 2018; 57
Wolter, DJ, Kurpiel, PM, Woodford, N, Palepou, MF, Goering, RV, Hanson, ND (B31) 2009; 53
Stewart, NK, Smith, CA, Frase, H, Black, DJ, Vakulenko, SB (B36) 2015; 54
References_xml – ident: e_1_3_3_55_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_3_46_2
  doi: 10.1101/138594
– ident: e_1_3_3_51_2
  doi: 10.1107/S0907444913015308
– ident: e_1_3_3_4_2
  doi: 10.3389/fmicb.2012.00110
– ident: e_1_3_3_28_2
  doi: 10.1128/AAC.00642-17
– ident: e_1_3_3_30_2
  doi: 10.1128/jb.151.2.591-599.1982
– ident: e_1_3_3_34_2
  doi: 10.1128/AAC.02406-17
– ident: e_1_3_3_16_2
  doi: 10.1038/s41579-019-0159-8
– ident: e_1_3_3_64_2
  doi: 10.1128/AAC.02625-14
– ident: e_1_3_3_58_2
  doi: 10.1128/AAC.1.4.283
– ident: e_1_3_3_59_2
  doi: 10.1021/bi300508r
– ident: e_1_3_3_47_2
  doi: 10.1093/jac/dki453
– ident: e_1_3_3_50_2
  doi: 10.1107/S2059798317017235
– ident: e_1_3_3_60_2
  doi: 10.1128/AAC.02112-18
– ident: e_1_3_3_37_2
  doi: 10.1021/bi501052t
– ident: e_1_3_3_42_2
  doi: 10.1128/AAC.00163-08
– ident: e_1_3_3_63_2
  doi: 10.1128/AAC.00501-17
– ident: e_1_3_3_23_2
  doi: 10.1007/s40265-017-0851-9
– ident: e_1_3_3_6_2
  doi: 10.1128/AAC.00371-16
– ident: e_1_3_3_39_2
  doi: 10.1002/prot.21485
– volume-title: The PyMOL user’s manual, p 452
  year: 2002
  ident: e_1_3_3_57_2
– ident: e_1_3_3_27_2
  doi: 10.1074/jbc.M112.348540
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.M407606200
– ident: e_1_3_3_26_2
  doi: 10.1111/mmi.13831
– ident: e_1_3_3_40_2
  doi: 10.1002/pro.454
– ident: e_1_3_3_31_2
  doi: 10.1128/AAC.00777-17
– ident: e_1_3_3_36_2
  doi: 10.1128/AAC.49.8.3421-3427.2005
– ident: e_1_3_3_35_2
  doi: 10.1371/journal.pone.0136813
– ident: e_1_3_3_7_2
  doi: 10.1055/s-0034-1396929
– ident: e_1_3_3_54_2
  doi: 10.1107/S0907444996012255
– ident: e_1_3_3_24_2
  doi: 10.1093/jac/dkz026
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1205073109
– ident: e_1_3_3_52_2
  doi: 10.1107/S0907444994003112
– ident: e_1_3_3_12_2
  doi: 10.1016/j.idc.2016.02.007
– ident: e_1_3_3_15_2
  doi: 10.1016/j.bmcl.2013.12.101
– ident: e_1_3_3_49_2
  doi: 10.1128/AAC.02260-16
– ident: e_1_3_3_11_2
  doi: 10.1128/CMR.00037-09
– ident: e_1_3_3_56_2
  doi: 10.1107/S0907444904019158
– ident: e_1_3_3_29_2
  doi: 10.1128/AAC.00548-15
– volume-title: M100‐S25 performance standards for antimicrobial susceptibility testing; 25th informational supplement
  year: 2015
  ident: e_1_3_3_48_2
– ident: e_1_3_3_53_2
  doi: 10.1107/S0021889807021206
– ident: e_1_3_3_13_2
  doi: 10.1128/AAC.00693-09
– ident: e_1_3_3_25_2
  doi: 10.1128/AAC.04406-14
– ident: e_1_3_3_5_2
  doi: 10.1097/SMJ.0b013e3181fd7d5a
– ident: e_1_3_3_41_2
  doi: 10.1021/acs.jmedchem.7b00158
– ident: e_1_3_3_65_2
  doi: 10.1128/AAC.01809-18
– ident: e_1_3_3_10_2
  doi: 10.1021/acs.biochem.8b00480
– ident: e_1_3_3_18_2
  doi: 10.1038/nmicrobiol.2017.104
– ident: e_1_3_3_45_2
  doi: 10.1128/AAC.02510-16
– volume: 61
  start-page: 201
  year: 1988
  ident: e_1_3_3_62_2
  article-title: The behavior and significance of slow-binding enzyme inhibitors
  publication-title: Adv Enzymol Relat Areas Mol Biol
– ident: e_1_3_3_9_2
  doi: 10.1128/AAC.48.1.1-14.2004
– ident: e_1_3_3_66_2
  doi: 10.1128/AAC.02476-16
– ident: e_1_3_3_22_2
  doi: 10.1128/AAC.00174-18
– ident: e_1_3_3_32_2
  doi: 10.1128/AAC.00734-08
– ident: e_1_3_3_3_2
  doi: 10.1128/AAC.01009-09
– ident: e_1_3_3_61_2
  doi: 10.1021/acsinfecdis.7b00113
– ident: e_1_3_3_20_2
  doi: 10.1128/AAC.02247-12
– ident: e_1_3_3_2_2
  doi: 10.1042/bj2760269
– ident: e_1_3_3_19_2
  doi: 10.1039/c6ob00353b
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.ppat.1004949
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M113.485979
– ident: e_1_3_3_17_2
  doi: 10.1021/acs.jmedchem.8b00091
– ident: e_1_3_3_44_2
  doi: 10.1021/acsinfecdis.5b00007
– ident: e_1_3_3_33_2
  doi: 10.1042/bj0550170
– ident: e_1_3_3_43_2
  doi: 10.1021/bi700300u
– volume: 63
  year: 2019
  ident: B59
  article-title: Molecular basis for the potent inhibition of the emerging carbapenemase VCC-1 by avibactam
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02112-18
– volume: 54
  start-page: 890
  year: 2010
  end-page: 897
  ident: B12
  article-title: Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00693-09
– volume: 61
  year: 2017
  ident: B27
  article-title: Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00642-17
– volume: 106
  start-page: 492
  year: 2017
  end-page: 504
  ident: B25
  article-title: Structural/mechanistic insights into the efficacy of nonclassical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13831
– volume: 57
  start-page: 3560
  year: 2018
  end-page: 3563
  ident: B9
  article-title: Multiscale simulations of clavulanate inhibition identify the reactive complex in class A β-lactamases and predict the efficiency of inhibition
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00480
– volume: 30
  start-page: 441
  year: 2016
  end-page: 464
  ident: B11
  article-title: New β-lactamase inhibitors in the clinic
  publication-title: Infect Dis Clin North Am
  doi: 10.1016/j.idc.2016.02.007
– volume: 3
  start-page: 833
  year: 2017
  end-page: 844
  ident: B60
  article-title: Reversibility of covalent, broad-spectrum serine beta-lactamase inhibition by the diazabicyclooctenone ETX2514
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.7b00113
– volume: 60
  start-page: 4170
  year: 2016
  end-page: 4175
  ident: B5
  article-title: Sideromimic modification of lactivicin dramatically increases potency against extensively drug-resistant Stenotrophomonas maltophilia clinical isolates
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00371-16
– volume: 78
  start-page: 65
  year: 2018
  end-page: 98
  ident: B22
  article-title: Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations
  publication-title: Drugs
  doi: 10.1007/s40265-017-0851-9
– volume: 1
  start-page: 175
  year: 2015
  end-page: 184
  ident: B43
  article-title: Molecular mechanism of avibactam-mediated β-lactamase inhibition
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.5b00007
– volume: 104
  start-page: 40
  year: 2011
  end-page: 45
  ident: B4
  article-title: Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria
  publication-title: South Med J
  doi: 10.1097/SMJ.0b013e3181fd7d5a
– volume: 54
  start-page: 588
  year: 2015
  end-page: 597
  ident: B36
  article-title: Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases
  publication-title: Biochemistry
  doi: 10.1021/bi501052t
– volume: 276
  start-page: 269
  year: 1991
  end-page: 270
  ident: B1
  article-title: A standard numbering scheme for the class A beta-lactamases
  publication-title: Biochem J
  doi: 10.1042/bj2760269
– volume: 50
  start-page: 760
  year: 1994
  end-page: 763
  ident: B51
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444994003112
– volume: 109
  start-page: 11663
  year: 2012
  end-page: 11668
  ident: B13
  article-title: Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1205073109
– volume: 63
  year: 2018
  ident: B64
  article-title: Acquisition of extended-spectrum β-lactamase GES-6 leading to resistance to ceftolozane-tazobactam combination in Pseudomonas aeruginosa
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01809-18
– volume: 10
  year: 2015
  ident: B34
  article-title: Inhibition of Klebsiella β-lactamases (SHV-1 and KPC-2) by avibactam: a structural study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0136813
– volume: 59
  start-page: 3710
  year: 2015
  end-page: 3717
  ident: B24
  article-title: Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.04406-14
– volume: 48
  start-page: 1
  year: 2004
  end-page: 14
  ident: B8
  article-title: Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.48.1.1-14.2004
– volume: 69
  start-page: 1260
  year: 2013
  end-page: 1273
  ident: B50
  article-title: Decision making in xia2
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444913015308
– year: 2019
  ident: B23
  article-title: Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2
  publication-title: J Antimicrob Chemother, in press
  doi: 10.1093/jac/dkz026
– volume: 61
  year: 2017
  ident: B62
  article-title: Structural insights into the TLA-3 extended-spectrum β-lactamase and its inhibition by avibactam and OP0595
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00501-17
– volume: 61
  year: 2017
  ident: B30
  article-title: Avibactam restores the susceptibility of clinical isolates of Stenotrophomonas maltophilia to aztreonam
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00777-17
– volume: 287
  start-page: 31783
  year: 2012
  end-page: 31793
  ident: B26
  article-title: Exploring the role of a conserved class A residue in the Ω-loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.348540
– volume: 51
  start-page: 4551
  year: 2012
  end-page: 4557
  ident: B58
  article-title: NXL104 irreversibly inhibits the beta-lactamase from Mycobacterium tuberculosis
  publication-title: Biochemistry
  doi: 10.1021/bi300508r
– volume: 59
  start-page: 5793
  year: 2015
  end-page: 5797
  ident: B28
  article-title: Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum beta-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00548-15
– volume: 11
  year: 2015
  ident: B7
  article-title: Natural variants of the KPC-2 carbapenemase have evolved increased catalytic efficiency for ceftazidime hydrolysis at the cost of enzyme stability
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004949
– volume: 58
  start-page: 4290
  year: 2014
  end-page: 4297
  ident: B63
  article-title: Reclaiming the efficacy of β-lactam-β-lactamase inhibitor combinations: avibactam restores the susceptibility of CMY-2-producing Escherichia coli to ceftazidime
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02625-14
– volume: 61
  year: 2017
  ident: B48
  article-title: Cyclic boronates inhibit all classes of β-lactamases
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02260-16
– volume: 55
  start-page: 170
  year: 1953
  ident: B32
  article-title: The determination of enzyme inhibitor constants
  publication-title: Biochem J
  doi: 10.1042/bj0550170
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: B55
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 60
  start-page: 3525
  year: 2017
  end-page: 3530
  ident: B40
  article-title: Molecular basis of substrate recognition and product release by the Klebsiella pneumoniae carbapenemase (KPC-2)
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b00158
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: B52
  article-title: Phaser crystallographic software
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889807021206
– volume: 62
  year: 2018
  ident: B21
  article-title: Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00174-18
– volume: 61
  year: 2017
  ident: B44
  article-title: Inhibition by avibactam and clavulanate of the beta-lactamases KPC-2 and CTX-M-15 harboring the substitution N(132)G in the conserved SDN motif
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02510-16
– volume: 61
  start-page: 201
  year: 1988
  end-page: 301
  ident: B61
  article-title: The behavior and significance of slow-binding enzyme inhibitors
  publication-title: Adv Enzymol Relat Areas Mol Biol
– volume: 53
  start-page: 240
  year: 1997
  end-page: 255
  ident: B53
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444996012255
– volume: 57
  start-page: 2496
  year: 2013
  end-page: 2505
  ident: B19
  article-title: Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02247-12
– volume: 19
  start-page: 1714
  year: 2010
  end-page: 1727
  ident: B39
  article-title: Elucidating the role of Trp105 in the KPC-2 β-lactamase
  publication-title: Protein Sci
  doi: 10.1002/pro.454
– volume: 69
  start-page: 340
  year: 2007
  end-page: 348
  ident: B38
  article-title: Simulated annealing exploration of an active-site tyrosine in TEM-1 beta-lactamase suggests the existence of alternate conformations
  publication-title: Proteins
  doi: 10.1002/prot.21485
– volume: 46
  start-page: 5732
  year: 2007
  end-page: 5740
  ident: B42
  article-title: Crystal structure of KPC-2: insights into carbapenemase activity in class A beta-lactamases
  publication-title: Biochemistry
  doi: 10.1021/bi700300u
– volume: 1
  start-page: 283
  year: 1972
  end-page: 288
  ident: B57
  article-title: Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.1.4.283
– volume: 36
  start-page: 99
  year: 2015
  end-page: 110
  ident: B6
  article-title: Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies
  publication-title: Semin Respir Crit Care Med
  doi: 10.1055/s-0034-1396929
– ident: B45
  article-title: Takebayashi Y , Wan Nur Ismah WAK , Findlay J , Heesom KJ , Zhang J , Williams OM , MacGowan AP , Avison MB . 2017 . Prediction of cephalosporin and carbapenem susceptibility in multi-drug resistant gram-negative bacteria using liquid chromatography-tandem mass spectrometry . bioRxiv doi: 10.1101/138594 .
– volume: 57
  start-page: 199
  year: 2006
  end-page: 203
  ident: B46
  article-title: Beta-lactam resistance and beta-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dki453
– volume: 23
  start-page: 160
  year: 2010
  end-page: 201
  ident: B10
  article-title: Three decades of beta-lactamase inhibitors
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00037-09
– volume: 62
  year: 2018
  ident: B33
  article-title: Inactivation of the Pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02406-17
– volume: 54
  start-page: 969
  year: 2010
  end-page: 976
  ident: B2
  article-title: Updated functional classification of beta-lactamases
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01009-09
– volume: 61
  start-page: 4067
  year: 2018
  end-page: 4086
  ident: B16
  article-title: Strategic approaches to overcome resistance against Gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: activity of three novel diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b00091
– volume: 74
  start-page: 85
  year: 2018
  end-page: 97
  ident: B49
  article-title: DIALS: implementation and evaluation of a new integration package
  publication-title: Acta Crystallogr D Struct Biol
  doi: 10.1107/S2059798317017235
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: B54
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 49
  start-page: 3421
  year: 2005
  end-page: 3427
  ident: B35
  article-title: Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.8.3421-3427.2005
– volume: 53
  start-page: 557
  year: 2009
  end-page: 562
  ident: B31
  article-title: Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00734-08
– volume: 24
  start-page: 780
  year: 2014
  end-page: 785
  ident: B14
  article-title: Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2013.12.101
– volume: 288
  start-page: 27960
  year: 2013
  end-page: 27971
  ident: B20
  article-title: Kinetics of avibactam inhibition against class A, C, and D β-lactamases
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.485979
– volume: 17
  start-page: 295
  year: 2019
  end-page: 306
  ident: B15
  article-title: Interplay between β-lactamases and new β-lactamase inhibitors
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0159-8
– year: 2002
  ident: B56
  publication-title: The PyMOL user’s manual, p 452 ;DeLano Scientific, San Carlos ;California, USA
– volume: 2
  start-page: 17104
  year: 2017
  ident: B17
  article-title: ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.104
– volume: 279
  start-page: 46295
  year: 2004
  end-page: 46303
  ident: B37
  article-title: Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M407606200
– year: 2015
  ident: B47
  publication-title: M100‐S25 performance standards for antimicrobial susceptibility testing; 25th informational supplement ;CLSI ;Wayne, PA
– volume: 3
  start-page: 110
  year: 2012
  ident: B3
  article-title: CTX-M enzymes: origin and diffusion
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2012.00110
– volume: 52
  start-page: 3725
  year: 2008
  end-page: 3736
  ident: B41
  article-title: Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A beta-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00163-08
– volume: 14
  start-page: 4116
  year: 2016
  end-page: 4128
  ident: B18
  article-title: Investigations on recyclisation and hydrolysis in avibactam mediated serine β-lactamase inhibition
  publication-title: Org Biomol Chem
  doi: 10.1039/c6ob00353b
– volume: 61
  year: 2017
  ident: B65
  article-title: Exploring the landscape of diazabicyclooctane (DBO) inhibition: avibactam inactivation of PER-2 β-lactamase
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02476-16
– volume: 151
  start-page: 591
  year: 1982
  end-page: 599
  ident: B29
  article-title: DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418
  publication-title: J Bacteriol
SSID ssj0006590
Score 2.543656
Snippet β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Azabicyclo Compounds
Azabicyclo Compounds - chemistry
Azabicyclo Compounds - metabolism
Azabicyclo Compounds - pharmacology
Aztreonam - chemistry
Aztreonam - metabolism
Aztreonam - pharmacology
beta-Lactam Resistance
beta-Lactam Resistance - genetics
beta-Lactamase Inhibitors
beta-Lactamase Inhibitors - chemistry
beta-Lactamase Inhibitors - metabolism
beta-Lactamase Inhibitors - pharmacology
beta-Lactamases
beta-Lactamases - chemistry
beta-Lactamases - genetics
beta-Lactamases - metabolism
Binding Sites
Ceftazidime - chemistry
Ceftazidime - metabolism
Ceftazidime - pharmacology
Chromosomes, Bacterial - chemistry
Chromosomes, Bacterial - enzymology
Clinical Trials, Phase III as Topic
Cloning, Molecular
Drug Combinations
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Humans
Imipenem - chemistry
Imipenem - metabolism
Imipenem - pharmacology
Isoenzymes - antagonists & inhibitors
Isoenzymes - chemistry
Isoenzymes - genetics
Isoenzymes - metabolism
Klebsiella pneumoniae
Klebsiella pneumoniae - drug effects
Klebsiella pneumoniae - enzymology
Klebsiella pneumoniae - genetics
Mechanisms of Resistance
Microbial Sensitivity Tests
Models, Molecular
Plasmids - chemistry
Plasmids - metabolism
Protein Binding
Protein Interaction Domains and Motifs
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Stenotrophomonas maltophilia
Stenotrophomonas maltophilia - drug effects
Stenotrophomonas maltophilia - enzymology
Stenotrophomonas maltophilia - genetics
Title Molecular Basis of Class A β-Lactamase Inhibition by Relebactam
URI https://www.ncbi.nlm.nih.gov/pubmed/31383664
https://journals.asm.org/doi/10.1128/AAC.00564-19
https://www.proquest.com/docview/2268940717
https://pubmed.ncbi.nlm.nih.gov/PMC6761529
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgvCMqt3GQQ3UuX0jiOY7-RVUPTRNFAnbS3yEkcWqlNpzV9KD-LH8Jv4thxLoVNGrxUVeKmbb7j4-OT830HofdStzVSI5hIfho4EIETJ1aecGTiZinNRkIaKaXJF3ZyTk8v_ItOZ9NmlxTxMPlxLa_kf1CFY4CrZsn-A7L1ReEAvAd84RUQhtdbYTypetsOjqQVFjFNLmG298fH_SPifJZJIZewUoEjmM1jU5-lI85vsNrE5lw7Og3zYr6cG2kmLSHw3bDfDPFtppaWqlWn4GuxzppEOGglsvNkttC9V5qkTV36YzPUuiZRfyhsMF_MtFXaVHd6pX3PaTst4Yq6wK1oMQG0i2oVn07mjbhU2ykz5lBediEeqtIPa5lT5pfNbitHbT2hNcjR9QsA0aSGMBwPtcgpdaw_3pXUrk7dQXdJACGXfpb_tRGZh-8tmUv2d1V8CcI_tC8Mi7hcL8luQPPXLuXPYttW9DJ9iB7YbQcOSxt6hDoq76J7ZSPSbRfdn9gSiy46OCvFzLeHeNpw89aH-ACfNTLn28foY2192FgfXmXYWB8O8a-fjeXhxvJwvMWN5T1B55-Op-MTx_bjcCR1eeHo0NNTutWZCFzXyxSH8C9lsJ4qxRWTTDCaEhL4GRM0pT5lUvA4SbPM5zBceE_RXr7K1XOEeaogMmc-pVRST7oxI0lCiSuDIBglIuuhd_reRnayrSOzVyU8AgAiA0Dkih4aVHc-SqyivW6ssrhhdL8efVkqudww7m0FYgSuVj8_k7labdYR7FS4MAmQHnpWglpfyXM97jFGeyjYgbseoGXcd8_k85mRc2cB7CqIeHGbv_wS7TeT7RXaK6426jVExUX8xtjwb2Hvs0k
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Basis+of+Class+A+%CE%B2-Lactamase+Inhibition+by+Relebactam&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Tooke%2C+Catherine+L&rft.au=Hinchliffe%2C+Philip&rft.au=Lang%2C+Pauline+A&rft.au=Mulholland%2C+Adrian+J&rft.date=2019-10-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=63&rft.issue=10&rft_id=info:doi/10.1128%2FAAC.00564-19&rft.externalDocID=00564-19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon