Stabilizing Terminal Ni(III)–Hydroxide Complex Using NNN-Pincer Ligands: Synthesis and Characterization
The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from T...
Saved in:
Published in | Inorganic chemistry Vol. 58; no. 9; pp. 6257 - 6267 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.05.2019
|
Online Access | Get full text |
ISSN | 0020-1669 1520-510X 1520-510X |
DOI | 10.1021/acs.inorgchem.9b00466 |
Cover
Abstract | The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1·· )2–(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations. |
---|---|
AbstractList | The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1··)2-(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations.The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1··)2-(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations. The reaction of [Ni(COD) ] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L ) reveals a susceptibility to oxidation in an inert atmosphere ([O ] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [Ni (L ) (OH)] (1). Various isotopically labeled experiments ( O/ O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations. The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1·· )2–(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations. |
Author | Das, Chinmoy Shukla, Pragya Vaidya, Shefali Kumar, Pardeep Sundararajan, Mahesh Rajpurohit, Jitendrasingh Shanmugam, Maheswaran Shanmugam, Muralidharan |
AuthorAffiliation | Department of Chemistry Manchester Institute of Biotechnology Theoretical Chemistry Section |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Manchester Institute of Biotechnology – name: Theoretical Chemistry Section |
Author_xml | – sequence: 1 givenname: Jitendrasingh surname: Rajpurohit fullname: Rajpurohit, Jitendrasingh organization: Department of Chemistry – sequence: 2 givenname: Pragya surname: Shukla fullname: Shukla, Pragya organization: Department of Chemistry – sequence: 3 givenname: Pardeep surname: Kumar fullname: Kumar, Pardeep organization: Department of Chemistry – sequence: 4 givenname: Chinmoy surname: Das fullname: Das, Chinmoy organization: Department of Chemistry – sequence: 5 givenname: Shefali surname: Vaidya fullname: Vaidya, Shefali organization: Department of Chemistry – sequence: 6 givenname: Mahesh surname: Sundararajan fullname: Sundararajan, Mahesh organization: Theoretical Chemistry Section – sequence: 7 givenname: Muralidharan surname: Shanmugam fullname: Shanmugam, Muralidharan organization: Manchester Institute of Biotechnology – sequence: 8 givenname: Maheswaran orcidid: 0000-0002-9012-743X surname: Shanmugam fullname: Shanmugam, Maheswaran email: eswar@chem.iitb.ac.in organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31009214$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEURq2KqgTaR2g1S7qY1H_jmSmrKioQKQpIgNSd5bE9yUUzdrAnEmHVd-ANeZI6TWDBhpWvdc-xff0doQPnnUXoK8Fjgin5oXQcg_NhoZe2H9cNxlyID2hECorzguA_B2iEcaqJEPUhOorxDmNcMy4-oUNGUkkJHyG4HlQDHTyCW2Q3NvTgVJfN4WQ6nX5__vt0sTHBP4Cx2cT3q84-ZLdxi87n8_wKnLYhm8FCORN_ZtcbNyxthJilfTZZqqD0YAM8qgG8-4w-tqqL9st-PUa3Z79vJhf57PJ8Ovk1yxUn5ZCzKr1LFIWqjG4Ia7loS8rbuqQFFhWtObemLI02mLKyKYQwjJG6sg2uTMMoYcfoZHfuKvj7tY2D7CFq23XKWb-OkiaG8BILkdBve3Td9NbIVYBehY18-Z4EnO4AHXyMwbZSw_B_miEo6CTBchuGTGHI1zDkPoxkF2_slwve88jO27bv_DqkSOI7zj_2NaQK |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_3c02358 crossref_primary_10_1016_j_mcat_2025_114923 crossref_primary_10_1021_acs_inorgchem_2c01472 crossref_primary_10_1016_j_poly_2020_114609 crossref_primary_10_1039_D3DT03746K crossref_primary_10_1021_jacs_3c03651 crossref_primary_10_1002_chem_202302824 crossref_primary_10_1016_j_inoche_2023_111582 crossref_primary_10_1039_D2NJ02480B crossref_primary_10_1021_acs_joc_4c02118 crossref_primary_10_1021_acs_inorgchem_9b02804 crossref_primary_10_1002_ijch_201900142 crossref_primary_10_1016_j_poly_2022_115846 crossref_primary_10_1007_s11696_022_02340_8 crossref_primary_10_1021_acs_inorgchem_4c05005 crossref_primary_10_1039_D2DT03949D crossref_primary_10_1021_jacs_2c02454 crossref_primary_10_1039_D4CC06415A crossref_primary_10_1021_acsaem_3c00055 crossref_primary_10_1007_s11224_019_01429_3 crossref_primary_10_1246_cl_220232 |
Cites_doi | 10.1021/ja963180e 10.1021/ja0673229 10.1002/wcms.1327 10.1021/ja2015718 10.1021/ja039889k 10.1039/c39790000241 10.1021/jacs.6b08406 10.1063/1.448800 10.1021/ic301675t 10.1021/ic50222a034 10.1063/1.3382344 10.1063/1.448975 10.1021/ja5024749 10.1021/ja00379a039 10.1007/978-3-642-74599-7 10.1021/jacs.5b04082 10.1021/ja00012a064 10.1039/C4CS00244J 10.1039/C9DT00056A 10.1016/0022-328X(94)00025-8 10.1016/j.abb.2013.09.002 10.1103/PhysRevLett.27.479 10.1021/jacs.6b10303 10.1039/a909719h 10.1021/jacs.6b07544 10.1126/science.1183281 10.1039/c2dt30112a 10.1021/ic500901y 10.1088/1361-6528/aaaff5 10.1021/ja2024993 10.1039/b608311k 10.1021/jacs.6b02405 10.1016/j.jmr.2005.08.013 10.1021/ja8100825 10.1039/DT9920003427 10.1021/jacs.6b06862 10.1021/jp952268w 10.1021/ja512014z 10.1021/ja100564b 10.1063/1.456153 10.1039/b615503k 10.1021/om00133a022 10.1021/ic00287a019 10.1103/PhysRevA.38.3098 10.1002/anie.201309222 10.1039/c39790001063 10.1021/cr068437y 10.1039/c0cs00165a 10.1039/C6SC03039D 10.1021/j100879a003 10.1021/ic961297y 10.1021/ar100093z 10.1038/nature09015 10.1002/chem.201406485 10.1021/ic060621e 10.1021/ja039283w 10.1039/b004165n 10.1021/ja304068t 10.1021/ja408073m 10.1021/ja9065943 10.1021/ic50130a005 10.1063/1.2834918 10.1021/ja00519a015 10.1002/qua.24481 10.1021/ja407589e 10.1021/acs.organomet.5b00568 10.1021/ja105924f 10.1021/ic020701s 10.1021/ja00473a067 10.1021/ic50085a005 10.1002/ejic.201100569 10.1021/ja030149l 10.1021/ja00343a056 10.1039/C2CC37193F 10.1103/PhysRevB.37.785 10.1039/b508541a 10.1021/ja804305x 10.1039/C4CC09594D 10.1002/1521-3773(20021018)41:20<3873::AID-ANIE3873>3.0.CO;2-8 10.1021/om900751f 10.1039/c1dt10902b 10.1021/acs.inorgchem.5b01898 10.1039/B920047A 10.1002/anie.201003214 10.1063/1.448799 10.1021/jacs.5b03192 10.1073/pnas.0709471104 10.1016/0020-1650(72)80198-3 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.inorgchem.9b00466 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 6267 |
ExternalDocumentID | 31009214 10_1021_acs_inorgchem_9b00466 a891362540 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a417t-38214655a8dcb13f46f724f97250682944ed77dcd0237b566d33198eb08db3213 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 00:23:34 EDT 2025 Thu Apr 03 07:00:58 EDT 2025 Tue Jul 01 01:38:46 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Thu Aug 27 13:44:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a417t-38214655a8dcb13f46f724f97250682944ed77dcd0237b566d33198eb08db3213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9012-743X |
PMID | 31009214 |
PQID | 2213147066 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2213147066 pubmed_primary_31009214 crossref_citationtrail_10_1021_acs_inorgchem_9b00466 crossref_primary_10_1021_acs_inorgchem_9b00466 acs_journals_10_1021_acs_inorgchem_9b00466 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-06 |
PublicationDateYYYYMMDD | 2019-05-06 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref17/cit17b ref17/cit17c ref17/cit17a ref23/cit23a ref23/cit23b ref16/cit16 ref23/cit23c ref27/cit27a ref27/cit27c ref12/cit12b ref12/cit12a ref23/cit23d ref2/cit2b ref2/cit2a Bencini A. G. (ref31/cit31a) 1990 ref20/cit20 ref5/cit5b ref26/cit26b ref26/cit26c ref26/cit26d ref5/cit5a ref19/cit19 ref21/cit21 ref7/cit7d ref3/cit3b ref11/cit11c ref3/cit3c ref11/cit11b ref3/cit3a ref11/cit11d ref26/cit26a ref3/cit3f ref32/cit32g ref3/cit3g ref32/cit32f ref3/cit3d ref11/cit11a ref32/cit32e ref3/cit3e ref13/cit13 ref32/cit32d ref7/cit7c ref32/cit32c ref7/cit7b ref32/cit32b ref7/cit7a ref32/cit32a Fahlman A. (ref27/cit27b) 1967 ref32/cit32l ref32/cit32k ref32/cit32j ref32/cit32i ref32/cit32h ref6/cit6 ref9/cit9b ref29/cit29b ref9/cit9a ref29/cit29a ref8/cit8a ref25/cit25b ref10/cit10a ref8/cit8c ref10/cit10b ref8/cit8b ref25/cit25a ref8/cit8e ref8/cit8d ref8/cit8g ref31/cit31b ref8/cit8f Parr R. G. W. Y. (ref15/cit15) 1994 ref8/cit8i ref8/cit8h ref8/cit8j ref28/cit28 ref18/cit18b ref4/cit4a ref18/cit18c ref4/cit4b ref18/cit18a ref14/cit14a ref24/cit24c ref24/cit24b ref14/cit14b ref24/cit24d ref24/cit24a ref30/cit30a ref22/cit22 ref30/cit30b ref33/cit33 ref1/cit1 |
References_xml | – ident: ref32/cit32e doi: 10.1021/ja963180e – ident: ref32/cit32h doi: 10.1021/ja0673229 – ident: ref22/cit22 doi: 10.1002/wcms.1327 – ident: ref23/cit23d doi: 10.1021/ja2015718 – ident: ref3/cit3c doi: 10.1021/ja039889k – ident: ref10/cit10b doi: 10.1039/c39790000241 – ident: ref32/cit32k doi: 10.1021/jacs.6b08406 – ident: ref18/cit18c doi: 10.1063/1.448800 – ident: ref11/cit11c doi: 10.1021/ic301675t – ident: ref7/cit7b doi: 10.1021/ic50222a034 – ident: ref17/cit17c doi: 10.1063/1.3382344 – ident: ref18/cit18b doi: 10.1063/1.448975 – ident: ref4/cit4a doi: 10.1021/ja5024749 – ident: ref30/cit30b doi: 10.1021/ja00379a039 – volume-title: Electron Paramagnetic Resonance of Exchange Coupled Systems year: 1990 ident: ref31/cit31a doi: 10.1007/978-3-642-74599-7 – ident: ref4/cit4b doi: 10.1021/jacs.5b04082 – ident: ref8/cit8f doi: 10.1021/ja00012a064 – ident: ref26/cit26c doi: 10.1039/C4CS00244J – ident: ref11/cit11d doi: 10.1039/C9DT00056A – ident: ref12/cit12a doi: 10.1016/0022-328X(94)00025-8 – ident: ref1/cit1 doi: 10.1016/j.abb.2013.09.002 – ident: ref29/cit29a doi: 10.1103/PhysRevLett.27.479 – ident: ref8/cit8g doi: 10.1021/jacs.6b10303 – ident: ref9/cit9b doi: 10.1039/a909719h – ident: ref32/cit32a doi: 10.1021/jacs.6b07544 – ident: ref9/cit9a doi: 10.1126/science.1183281 – ident: ref23/cit23c doi: 10.1039/c2dt30112a – ident: ref26/cit26d doi: 10.1021/ic500901y – ident: ref8/cit8c doi: 10.1088/1361-6528/aaaff5 – ident: ref6/cit6 doi: 10.1021/ja2024993 – ident: ref24/cit24c doi: 10.1039/b608311k – ident: ref8/cit8i doi: 10.1021/jacs.6b02405 – ident: ref14/cit14a doi: 10.1016/j.jmr.2005.08.013 – ident: ref32/cit32g doi: 10.1021/ja8100825 – ident: ref8/cit8b doi: 10.1039/DT9920003427 – volume-title: Density-Functional Theory of Atoms and Molecules year: 1994 ident: ref15/cit15 – ident: ref8/cit8h doi: 10.1021/jacs.6b06862 – volume-title: ESCA: atomic, molecular and solid state structure studied by means of electron spectroscopy year: 1967 ident: ref27/cit27b – ident: ref28/cit28 doi: 10.1021/jp952268w – ident: ref25/cit25a doi: 10.1021/ja512014z – ident: ref3/cit3f doi: 10.1021/ja100564b – ident: ref19/cit19 doi: 10.1063/1.456153 – ident: ref24/cit24a doi: 10.1039/b615503k – ident: ref33/cit33 doi: 10.1021/om00133a022 – ident: ref7/cit7c doi: 10.1021/ic00287a019 – ident: ref17/cit17a doi: 10.1103/PhysRevA.38.3098 – ident: ref8/cit8a doi: 10.1002/anie.201309222 – ident: ref10/cit10a doi: 10.1039/c39790001063 – ident: ref23/cit23b doi: 10.1021/cr068437y – ident: ref32/cit32b doi: 10.1039/c0cs00165a – ident: ref14/cit14b – ident: ref25/cit25b doi: 10.1039/C6SC03039D – ident: ref27/cit27c doi: 10.1021/j100879a003 – ident: ref32/cit32l doi: 10.1021/ic961297y – ident: ref26/cit26b doi: 10.1021/ar100093z – ident: ref2/cit2a doi: 10.1038/nature09015 – ident: ref8/cit8j doi: 10.1002/chem.201406485 – ident: ref32/cit32c doi: 10.1021/ic060621e – ident: ref32/cit32i doi: 10.1021/ja039283w – ident: ref24/cit24d doi: 10.1039/b004165n – ident: ref3/cit3d doi: 10.1021/ja304068t – ident: ref32/cit32d doi: 10.1021/ja408073m – ident: ref30/cit30a doi: 10.1021/ja9065943 – ident: ref27/cit27a doi: 10.1021/ic50130a005 – ident: ref20/cit20 doi: 10.1063/1.2834918 – ident: ref3/cit3b doi: 10.1021/ja00519a015 – ident: ref16/cit16 doi: 10.1002/qua.24481 – ident: ref3/cit3g doi: 10.1021/ja407589e – ident: ref5/cit5b doi: 10.1021/acs.organomet.5b00568 – ident: ref3/cit3e doi: 10.1021/ja105924f – ident: ref8/cit8d doi: 10.1021/ic020701s – ident: ref3/cit3a doi: 10.1021/ja00473a067 – ident: ref8/cit8e doi: 10.1021/ic50085a005 – ident: ref23/cit23a doi: 10.1002/ejic.201100569 – ident: ref32/cit32f doi: 10.1021/ja030149l – ident: ref7/cit7a doi: 10.1021/ja00343a056 – ident: ref11/cit11a doi: 10.1039/C2CC37193F – ident: ref17/cit17b doi: 10.1103/PhysRevB.37.785 – ident: ref21/cit21 doi: 10.1039/b508541a – ident: ref32/cit32j doi: 10.1021/ja804305x – ident: ref7/cit7d doi: 10.1039/C4CC09594D – ident: ref11/cit11b doi: 10.1002/1521-3773(20021018)41:20<3873::AID-ANIE3873>3.0.CO;2-8 – ident: ref12/cit12b doi: 10.1021/om900751f – ident: ref24/cit24b doi: 10.1039/c1dt10902b – ident: ref31/cit31b doi: 10.1021/acs.inorgchem.5b01898 – ident: ref13/cit13 doi: 10.1039/B920047A – ident: ref2/cit2b doi: 10.1002/anie.201003214 – ident: ref18/cit18a doi: 10.1063/1.448799 – ident: ref5/cit5a doi: 10.1021/jacs.5b03192 – ident: ref26/cit26a doi: 10.1073/pnas.0709471104 – ident: ref29/cit29b doi: 10.1016/0020-1650(72)80198-3 |
SSID | ssj0009346 |
Score | 2.4200978 |
Snippet | The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert... The reaction of [Ni(COD) ] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L ) reveals a susceptibility to oxidation in an inert... The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6257 |
Title | Stabilizing Terminal Ni(III)–Hydroxide Complex Using NNN-Pincer Ligands: Synthesis and Characterization |
URI | http://dx.doi.org/10.1021/acs.inorgchem.9b00466 https://www.ncbi.nlm.nih.gov/pubmed/31009214 https://www.proquest.com/docview/2213147066 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Dnrx_X4QwYMK3W2abNp4k0XZFS2CCt5K0yRSXKvYXVBP_gf_ob_ESR8rIot6bGhCZzLJfGVmvkFo1wRUGS1cB6Bs4jBFuSM8lzmMxJQHnpZc2trh85B3rtnpTetmDDVHRPA90oyTHDAojIAQ9w1RBOP4OJr0OPgai4Xal18su7SszLH_RIRzUZfsjFrGuqQk_-6SRuDMwt-czKKLumqnTDO5awz6spG8_iRx_Ksoc2imwp74qDSWeTSmswU01a5bvi2iFKCnTZZ9BX-Gr8o0mR4O071ut7v_8fbeeVHwOanS2F4jPf2Mi4wDHIahc5GC-Tzhs_TWFg8f4suXDLBlnuYYnnF7yAtdln0uoeuT46t2x6l6MTgxI37foYHtAN5qxYFKJKGGceN7zAgfIBTsqWBMK99XiQIM4EvAiIrC4Q60dAMlqUfoMprIHjK9ijAzkraM0oZISzdoCQRdoo3QgI6U8MUaOgBFRdVZyqMiTO6RyA4OtRdV2ltDrN67KKlYzW1zjd5v0xrDaY8lrcdvE3Zqw4hgU2xUJc70wyCPPBCOMN-176yUFjNc0kZPBChu_T8ibaBpUIgosir5JproPw30FiCfvtwurP0Ty-cAcA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEB626SG9pP9NmqZVoYe24K1lybKV27I07LYbU8iG5mZWlhRMtk6JdyHJqe_QN8yTZOS_0EJY9mhhCc1o5PnMzHwD8MHGTFsjfQ-hbOZxzYQnA597nM6YiAOjhHK1w4eJGB3zbyfhSQ9EWwuDmyhxpbIK4t-xC9AvbiwvcBRl-dWXVUxOPICHoeDCtWwYDI_uyHZZXaDjfo2oELKt3LlvGeeZsvJfz3QP3KzczsFj-NltuMo2OesvF6qfXf_H5bi-RE9gq0GiZFCbzlPomeIZbA7bBnDPIUcg6lJnr9G7kWmdNDMnSf5xPB5_uvnzd3SlcVe5NsR9VObmklT5ByRJEu9HjsZ0QSb5qSsl3idHVwUizTIvCT6TYccSXReBvoDjg6_T4chrOjN4M06jhcdi1w88DGexzhRllgsbBdzKCAEVnrDk3Ogo0plGRBApRIya4VWPjfJjrVhA2UvYKM4Lsw2EW8VCq42lypEPOjpBnxorDWIlLSO5A59RUWlzs8q0CpoHNHWDnfbSRns7wNsjTLOG49y12pivmtbvpv2uST5WTXjf2keKh-JiLLPCnC_LNEDhKI98986r2nC6JV0sRaLiXq8j0jvYHE0PJ-lknHzfhUeoHFnlW4o3sLG4WJo9xEQL9ba6ALeuOgjS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSG0vhZZHeRVX4lCQssSx14m5oaWr3ZZGSICExCFaxzaKug2I7EqFE_-Bf8gvYSbJpqISQnDMw5ZnPBN_0cx8Q8imi7hxVvkeQNnUE4ZLTwW-8AQbcBkFVkuNtcO_Ytk7ET9O26d1ViXWwsAiCpipKIP46NWXxtUMA2wH72c5PAF5_rRUGZeTb8gMgBKGbRv2Okf_CHd5VaSDv0dMSjWp3nlqGjyd0uLx6fQE5CyPnu4sOWsWXWac_G6NR7qV3vzH5_g6qebIhxqR0r3KhD6SKZt_Iu86k0Zw8yQDQIoptDdwytHjKnlmSOPsW7_f37q_vetdG1hZZizFj8vQ_qVlHgKN49g7zMCoruhBdo4lxbv06DoHxFlkBYVr2mnYoqti0AVy0v1-3Ol5dYcGbyBYOPJ4hH3B2-1BZFLNuBPShYFwKgRgBTuthLAmDE1qABmEGpCj4eDykdV-ZDQPGF8k0_lFbj8TKpzmbWesYxpJCJFW0GfWKQuYyahQLZNtUFRSe1iRlMHzgCV4s9FeUmtvmYjJNiZpzXWOLTeGzw1rNcMuK7KP5wZ8ndhIApuCsZZBbi_GRRKAcEyEPr6zVBlPMyXGVBQobuUlIm2Qt4f73eSgH_9cJe9BN6pMu5RrZHp0NbbrAI1G-kvpAw8P7AtM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+Terminal+Ni%28III%29-Hydroxide+Complex+Using+NNN-Pincer+Ligands%3A+Synthesis+and+Characterization&rft.jtitle=Inorganic+chemistry&rft.au=Rajpurohit%2C+Jitendrasingh&rft.au=Shukla%2C+Pragya&rft.au=Kumar%2C+Pardeep&rft.au=Das%2C+Chinmoy&rft.date=2019-05-06&rft.eissn=1520-510X&rft.volume=58&rft.issue=9&rft.spage=6257&rft_id=info:doi/10.1021%2Facs.inorgchem.9b00466&rft_id=info%3Apmid%2F31009214&rft.externalDocID=31009214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |