A novel decision model with Einstein aggregation approach for garbage disposal plant site selection under $ q $-rung orthopair hesitant fuzzy rough information

Environmental science and pollution research has benefits around the globe. Human activity produces more garbage throughout the day as the world's population and lifestyles rise. Choosing a garbage disposal site (GDS) is crucial to effective disposal. In illuminated of the advancements in socie...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 10; pp. 22830 - 22874
Main Authors Attaullah, Khan, Asghar, Rehman, Noor, Al-Duais, Fuad S., Al-Bossly, Afrah, Al-Essa, Laila A., Tag-eldin, Elsayed M
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.20231163

Cover

Abstract Environmental science and pollution research has benefits around the globe. Human activity produces more garbage throughout the day as the world's population and lifestyles rise. Choosing a garbage disposal site (GDS) is crucial to effective disposal. In illuminated of the advancements in society, decision-makers concede a significant challenge for assessing an appropriate location for a garbage disposal site. This research used a multi-attribute decision-making (MADM) approach based on $ q $-rung orthopair hesitant fuzzy rough ($ q $-ROHFR) Einstein aggregation information for evaluating GDS selection schemes and providing decision-making (DM) support to select a suitable waste disposal site. In this study, first, q-ROHFR Einstein average aggregation operators are integrated. Some intriguing characteristics of the suggested operators, such as monotonicity, idempotence and boundedness were also explored. Then, a MADM technique was established using the novel concept of $ q $-ROHFR aggregation operators under Einstein t-norm and t-conorm. In order to help the decision makers (DMs) make a final choice, this technique aims to rank and choose an alternative from a collection of feasible alternatives, as well as to propose a solution based on the ranking of alternatives for a problem with conflicting criteria. The model's adaptability and validity are then demonstrated by an analysis and solution of a numerical issue involving garbage disposal plant site selection. We performed a the sensitivity analysis of the proposed aggregation operators to determine the outcomes of the decision-making procedure. To highlight the potential of our new method, we performed a comparison study using the novel extended TOPSIS and VIKOR schemes based on $ q $-ROHFR information. Furthermore, we compared the results with those existing in the literature. The findings demonstrate that this methodology has a larger range of information representation, more flexibility in the assessment environment, and improved consistency in evaluation results.
AbstractList Environmental science and pollution research has benefits around the globe. Human activity produces more garbage throughout the day as the world's population and lifestyles rise. Choosing a garbage disposal site (GDS) is crucial to effective disposal. In illuminated of the advancements in society, decision-makers concede a significant challenge for assessing an appropriate location for a garbage disposal site. This research used a multi-attribute decision-making (MADM) approach based on $ q $-rung orthopair hesitant fuzzy rough ($ q $-ROHFR) Einstein aggregation information for evaluating GDS selection schemes and providing decision-making (DM) support to select a suitable waste disposal site. In this study, first, q-ROHFR Einstein average aggregation operators are integrated. Some intriguing characteristics of the suggested operators, such as monotonicity, idempotence and boundedness were also explored. Then, a MADM technique was established using the novel concept of $ q $-ROHFR aggregation operators under Einstein t-norm and t-conorm. In order to help the decision makers (DMs) make a final choice, this technique aims to rank and choose an alternative from a collection of feasible alternatives, as well as to propose a solution based on the ranking of alternatives for a problem with conflicting criteria. The model's adaptability and validity are then demonstrated by an analysis and solution of a numerical issue involving garbage disposal plant site selection. We performed a the sensitivity analysis of the proposed aggregation operators to determine the outcomes of the decision-making procedure. To highlight the potential of our new method, we performed a comparison study using the novel extended TOPSIS and VIKOR schemes based on $ q $-ROHFR information. Furthermore, we compared the results with those existing in the literature. The findings demonstrate that this methodology has a larger range of information representation, more flexibility in the assessment environment, and improved consistency in evaluation results.
Author Al-Essa, Laila A.
Al-Duais, Fuad S.
Attaullah
Khan, Asghar
Al-Bossly, Afrah
Rehman, Noor
Tag-eldin, Elsayed M
Author_xml – sequence: 1
  surname: Attaullah
  fullname: Attaullah
  organization: Department of Mathematics, Abdul Wali Khan University, Mardan 23200, KP, Pakistan, Department of Mathematics, University of Chitral, Chitral, 17200, KP, Pakistan
– sequence: 2
  givenname: Asghar
  surname: Khan
  fullname: Khan, Asghar
  organization: Department of Mathematics, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
– sequence: 3
  givenname: Noor
  surname: Rehman
  fullname: Rehman, Noor
  organization: Department of Mathematics and Statistics, Bacha Khan University Charsadda, 24460 KP, Pakistan
– sequence: 4
  givenname: Fuad S.
  surname: Al-Duais
  fullname: Al-Duais, Fuad S.
  organization: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 5
  givenname: Afrah
  surname: Al-Bossly
  fullname: Al-Bossly, Afrah
  organization: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 6
  givenname: Laila A.
  surname: Al-Essa
  fullname: Al-Essa, Laila A.
  organization: Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 7
  givenname: Elsayed M
  surname: Tag-eldin
  fullname: Tag-eldin, Elsayed M
  organization: Faculty of Engineering, Future University in Egypt
BookMark eNp9kcFu3CAQhq0olZqmOfbOIVdvALPGHKMobSNFyiU9W2MYbCIvOIAbbV6mr1p7N62qSu0JGPi-EfN_KE598FgUnxjdVKoSVzvIw4ZTXjFWVyfFGReyKmvVNKd_7N8XFyk9UUo544JLcVb8uCY-fMeRGNQuueDJLpjl-OLyQG6dTxmdJ9D3EXvI6z1MUwygB2JDJD3EDnokxqUpJBjJNILPJLmMJOGI-oDM3mAkl-SZXJZx9j0JMQ9hAhfJgMvbFbHz6-uexDD3A3F-ce8O7T4W7yyMCS_e1vPi2-fbx5uv5f3Dl7ub6_sSBKtziVY1oqsltUyrGjuqmAAKpkHVScU151vZ8aaWTd1UaiuFESit0LJBIRBkdV7cHb0mwFM7RbeDuG8DuPZQCLFvIWanR2yNXCYHzFgAKxpqQG-tQTSMKkNVxxbX5uia_QT7FxjH30JG2zWtdk2r_ZXWAlRHQMeQUkTb6mUo6_dzBDf-kyr_ov7f5SdddK4U
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e36563
crossref_primary_10_1007_s40815_024_01714_2
crossref_primary_10_1016_j_eswa_2024_125735
crossref_primary_10_7769_gesec_v15i10_4287
crossref_primary_10_1016_j_eswa_2023_122354
Cites_doi 10.1016/j.wasman.2017.08.046
10.1002/int.21584
10.1016/S0165-0114(01)00032-X
10.1016/j.fss.2016.08.002
10.1016/j.ejor.2006.01.020
10.1155/2021/6685396
10.1016/j.ijar.2022.01.002
10.3233/JIFS-182667
10.1016/j.ijcce.2023.03.004
10.3934/math.2022292
10.1016/j.ins.2020.10.015
10.1016/j.jclepro.2019.118003
10.1007/s10462-020-09878-7
10.1016/j.ins.2013.03.051
10.1155/2022/5556309
10.1109/TFUZZ.2016.2604005
10.1007/s11135-006-9040-8
10.1186/s40064-016-2233-2
10.1002/int.22133
10.1177/0734242X9701500207
10.1016/j.ijcce.2023.02.007
10.1080/00207230600562213
10.1016/j.rser.2017.05.066
10.1007/s00500-015-2008-7
10.1109/TCSS.2022.3221933
10.1016/j.ins.2016.07.058
10.1038/s41598-022-09323-5
10.3233/JIFS-181832
10.1016/j.ijar.2021.08.004
10.1109/ACCESS.2019.2957916
10.1007/s00500-018-3494-1
10.1016/j.asoc.2016.04.040
10.1016/j.wasman.2010.02.031
10.1155/2021/5150933
10.1201/b11032
10.1016/j.ijcce.2022.12.001
10.3390/en15218000
10.3390/math11102249
10.1007/s40314-023-02245-6
10.1016/j.ins.2022.05.122
10.1016/j.asoc.2020.106212
10.1155/2021/5520264
10.1016/j.patcog.2015.12.002
10.1016/j.ins.2021.04.016
10.1016/j.artmed.2022.102345
10.1016/j.wasman.2013.01.030
10.3389/fenvs.2023.1137689
10.1016/j.dajour.2021.100021
10.3390/e23050563
10.1016/S0019-9958(65)90241-X
10.1016/j.engappai.2016.10.018
10.1038/s41598-023-28722-w
10.1016/j.ins.2006.06.003
10.1002/int.22187
10.3390/sym14050979
10.3390/app122211594
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.20231163
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 22874
ExternalDocumentID oai_doaj_org_article_d7274a1dfaaf480dac5fdeed109d09b1
10.3934/math.20231163
10_3934_math_20231163
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a416t-ef984b670f1c96eb0914a0ad8e9b792c2257b286786839574d4e7f4c78e44ea73
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Fri Oct 03 12:49:00 EDT 2025
Mon Sep 15 10:13:05 EDT 2025
Tue Jul 01 03:57:05 EDT 2025
Thu Apr 24 23:14:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-ef984b670f1c96eb0914a0ad8e9b792c2257b286786839574d4e7f4c78e44ea73
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.20231163
PageCount 45
ParticipantIDs doaj_primary_oai_doaj_org_article_d7274a1dfaaf480dac5fdeed109d09b1
unpaywall_primary_10_3934_math_20231163
crossref_citationtrail_10_3934_math_20231163
crossref_primary_10_3934_math_20231163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231163-1
key-10.3934/math.20231163-22
key-10.3934/math.20231163-23
key-10.3934/math.20231163-20
key-10.3934/math.20231163-21
key-10.3934/math.20231163-26
key-10.3934/math.20231163-27
key-10.3934/math.20231163-24
key-10.3934/math.20231163-25
key-10.3934/math.20231163-28
key-10.3934/math.20231163-29
key-10.3934/math.20231163-30
key-10.3934/math.20231163-6
key-10.3934/math.20231163-33
key-10.3934/math.20231163-7
key-10.3934/math.20231163-34
key-10.3934/math.20231163-8
key-10.3934/math.20231163-31
key-10.3934/math.20231163-9
key-10.3934/math.20231163-32
key-10.3934/math.20231163-2
key-10.3934/math.20231163-37
key-10.3934/math.20231163-3
key-10.3934/math.20231163-38
key-10.3934/math.20231163-4
key-10.3934/math.20231163-35
key-10.3934/math.20231163-5
key-10.3934/math.20231163-36
key-10.3934/math.20231163-39
key-10.3934/math.20231163-40
key-10.3934/math.20231163-41
key-10.3934/math.20231163-44
key-10.3934/math.20231163-45
key-10.3934/math.20231163-42
key-10.3934/math.20231163-43
key-10.3934/math.20231163-48
key-10.3934/math.20231163-49
key-10.3934/math.20231163-46
key-10.3934/math.20231163-47
key-10.3934/math.20231163-51
key-10.3934/math.20231163-52
key-10.3934/math.20231163-50
key-10.3934/math.20231163-11
key-10.3934/math.20231163-55
key-10.3934/math.20231163-12
key-10.3934/math.20231163-56
key-10.3934/math.20231163-53
key-10.3934/math.20231163-10
key-10.3934/math.20231163-54
key-10.3934/math.20231163-15
key-10.3934/math.20231163-59
key-10.3934/math.20231163-16
key-10.3934/math.20231163-13
key-10.3934/math.20231163-57
key-10.3934/math.20231163-14
key-10.3934/math.20231163-58
key-10.3934/math.20231163-19
key-10.3934/math.20231163-17
key-10.3934/math.20231163-18
References_xml – ident: key-10.3934/math.20231163-10
  doi: 10.1016/j.wasman.2017.08.046
– ident: key-10.3934/math.20231163-16
  doi: 10.1002/int.21584
– ident: key-10.3934/math.20231163-34
  doi: 10.1016/S0165-0114(01)00032-X
– ident: key-10.3934/math.20231163-35
  doi: 10.1016/j.fss.2016.08.002
– ident: key-10.3934/math.20231163-29
  doi: 10.1016/j.ejor.2006.01.020
– ident: key-10.3934/math.20231163-36
  doi: 10.1155/2021/6685396
– ident: key-10.3934/math.20231163-21
  doi: 10.1016/j.ijar.2022.01.002
– ident: key-10.3934/math.20231163-17
  doi: 10.3233/JIFS-182667
– ident: key-10.3934/math.20231163-39
  doi: 10.1016/j.ijcce.2023.03.004
– ident: key-10.3934/math.20231163-7
  doi: 10.3934/math.2022292
– ident: key-10.3934/math.20231163-50
  doi: 10.1016/j.ins.2020.10.015
– ident: key-10.3934/math.20231163-9
  doi: 10.1016/j.jclepro.2019.118003
– ident: key-10.3934/math.20231163-12
  doi: 10.1007/s10462-020-09878-7
– ident: key-10.3934/math.20231163-44
  doi: 10.1016/j.ins.2013.03.051
– ident: key-10.3934/math.20231163-6
  doi: 10.1155/2022/5556309
– ident: key-10.3934/math.20231163-18
  doi: 10.1109/TFUZZ.2016.2604005
– ident: key-10.3934/math.20231163-56
  doi: 10.1007/s11135-006-9040-8
– ident: key-10.3934/math.20231163-24
  doi: 10.1186/s40064-016-2233-2
– ident: key-10.3934/math.20231163-58
  doi: 10.1002/int.22133
– ident: key-10.3934/math.20231163-14
– ident: key-10.3934/math.20231163-52
  doi: 10.1177/0734242X9701500207
– ident: key-10.3934/math.20231163-38
  doi: 10.1016/j.ijcce.2023.02.007
– ident: key-10.3934/math.20231163-33
  doi: 10.1080/00207230600562213
– ident: key-10.3934/math.20231163-11
  doi: 10.1016/j.rser.2017.05.066
– ident: key-10.3934/math.20231163-45
  doi: 10.1007/s00500-015-2008-7
– ident: key-10.3934/math.20231163-20
  doi: 10.1109/TCSS.2022.3221933
– ident: key-10.3934/math.20231163-25
  doi: 10.1016/j.ins.2016.07.058
– ident: key-10.3934/math.20231163-5
  doi: 10.1038/s41598-022-09323-5
– ident: key-10.3934/math.20231163-22
  doi: 10.3233/JIFS-181832
– ident: key-10.3934/math.20231163-19
  doi: 10.1016/j.ijar.2021.08.004
– ident: key-10.3934/math.20231163-51
  doi: 10.1109/ACCESS.2019.2957916
– ident: key-10.3934/math.20231163-41
  doi: 10.1007/s00500-018-3494-1
– ident: key-10.3934/math.20231163-28
  doi: 10.1016/j.asoc.2016.04.040
– ident: key-10.3934/math.20231163-54
  doi: 10.1016/j.wasman.2010.02.031
– ident: key-10.3934/math.20231163-3
  doi: 10.1155/2021/5150933
– ident: key-10.3934/math.20231163-59
  doi: 10.1201/b11032
– ident: key-10.3934/math.20231163-37
  doi: 10.1016/j.ijcce.2022.12.001
– ident: key-10.3934/math.20231163-1
  doi: 10.3390/en15218000
– ident: key-10.3934/math.20231163-27
  doi: 10.3390/math11102249
– ident: key-10.3934/math.20231163-42
  doi: 10.1007/s40314-023-02245-6
– ident: key-10.3934/math.20231163-40
  doi: 10.1016/j.ins.2022.05.122
– ident: key-10.3934/math.20231163-48
  doi: 10.1016/j.asoc.2020.106212
– ident: key-10.3934/math.20231163-55
  doi: 10.1155/2021/5520264
– ident: key-10.3934/math.20231163-43
  doi: 10.1016/j.patcog.2015.12.002
– ident: key-10.3934/math.20231163-30
  doi: 10.1016/j.ins.2021.04.016
– ident: key-10.3934/math.20231163-46
  doi: 10.1016/j.artmed.2022.102345
– ident: key-10.3934/math.20231163-53
  doi: 10.1016/j.wasman.2013.01.030
– ident: key-10.3934/math.20231163-4
  doi: 10.3389/fenvs.2023.1137689
– ident: key-10.3934/math.20231163-23
  doi: 10.1016/j.dajour.2021.100021
– ident: key-10.3934/math.20231163-15
  doi: 10.3390/e23050563
– ident: key-10.3934/math.20231163-13
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.20231163-26
  doi: 10.1016/j.engappai.2016.10.018
– ident: key-10.3934/math.20231163-8
  doi: 10.1038/s41598-023-28722-w
– ident: key-10.3934/math.20231163-31
  doi: 10.1016/j.ins.2021.04.016
– ident: key-10.3934/math.20231163-32
  doi: 10.1016/j.ins.2006.06.003
– ident: key-10.3934/math.20231163-49
  doi: 10.1002/int.22187
– ident: key-10.3934/math.20231163-57
– ident: key-10.3934/math.20231163-47
  doi: 10.3390/sym14050979
– ident: key-10.3934/math.20231163-2
  doi: 10.3390/app122211594
SSID ssj0002124274
Score 2.23692
Snippet Environmental science and pollution research has benefits around the globe. Human activity produces more garbage throughout the day as the world's population...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 22830
SubjectTerms decision making
einstein aggregation operators
garbage disposal site selection
sensitivity analysis
the $ q $-rung orthopair hesitant fuzzy rough sets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF-CAeIrxkg8ILlSkS9qkR0AghAQnkLhVSZOMSVUZYwPBX-HPYrfdNA7AhWvlNFXs2p_j5DNjB8IJE1Ijo4JriwmKSiNjnYsKpYSLPRfW0EXhm9v06l5ePyQPM62-6ExYQw_cLNyJwwArTeyCMUFq7kyRBIeOPeaZ45mtEx-us5lkinwwOmSJ4xpSTZEJeYL4j2oPCGfiVHwLQjVX_xJbGFcD8_5mynImwFyusOUWGcJp80WrbM5Xa2zpZkqr-rLOPk-henr1Jbi2Mw7UjWyANlPhoo9Iz_crMD3MoXv1isOEMhwQm0KPags9D65PZ7VwrkGJ6wpUP4aXuh8ODaFbZUN4joboBoCqOphW94fwSA0ESDyMPz7eoe7uAy3tKo3bYPeXF3fnV1HbXSEyCMJGkQ-ZljZVPMRFlnqLwEEabpz2mVVZt8AfXdmuxmCWairmSSe9CrJQ2kvpjRKbbL56qvwWAy6DptzEKgQEGN9s4kUSKLOSsUu6aYcdT5Y7L1rqceqAUeaYgpB2ctJOPtFOhx1OxQcN58ZPgmeku6kQUWXXD9CA8taA8r8MqMOOppr_fbrt_5huhy3S-5pdnF02PxqO_R7impHdr034C0mg-70
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel decision model with Einstein aggregation approach for garbage disposal plant site selection under $ q $-rung orthopair hesitant fuzzy rough information
URI https://doi.org/10.3934/math.20231163
https://doaj.org/article/d7274a1dfaaf480dac5fdeed109d09b1
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: AMVHM
  dateStart: 20220701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5Be4A9sDxFWajmUMGFLEnjxM6xrLaqkLriQNFyiuzYLhVRtnRb0PbP8Fd3JkmrBcTjFkUzsuWxPd947G8ABrGNtU-1CIpQGQpQZBpoY21QSBnbyIWx0fxQeHqWTmbi3Xly3l6i4bcwN_L3cRaLNwTbOGVAKISAw23opglB7g50Z2fvR5-4cJyQcZBmSjX8mb_r_ORvalr-A7izqZb66rsuyxu-ZHwI410vmiskX443a3NcbH8haPxnN-_DvRZN4qgx_wO45aqHcDDdU7FePoIfI6wuvrkSbVtNB-viN8gHsHi6IHToFhXqOcXd89pKuKMZR8KzOOd8xNyhXfD9LmprWZItkHPOeFnX0GEVfom2wgF-xUGwou0DORtE4fhihZ-58ACr-M12e4V1VSBs6VpZ9zHMxqcfTiZBW5Uh0ATe1oHzmRImlaGPiix1hgCH0KG2ymVGZsOCNghphoqcYKo4CSiscNKLQionhNMyfgKd6qJyTwFD4RXHNEYSkCC_aBIXJ54jMhHZZJj24PXOdnnRUpZz5Ywyp9CFxz3ncc93496Dl3vxZcPV8SfBtzwR9kJMsV3_IJPm7YrNLSE7oSPrtfZChVYXibeEKKIws2Fmoh682k-jvzf37L8lj-AufzZHPM-hs15t3AsCPWvTh-5o-nEy7deHBv12AVwDplYDvg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5B9wB7GL9FN0D3UMELGUntxM5jQasmpE08UGk8RXZsl4ooK13LtP4z-1d3l6TVAPHjLYp8suVzfN_l7O8DGAgnTMiMjMpYW0pQVBYZ61xUKiVc4mNhDV8UPjnNjify41l61h2i4bswt-r3IhfyHcE2LhkQCiHgcBd2spQgdw92JqefRl9YOE4qEWW51i1_5u82P8WbhpZ_F-6t6rm5ujRVdSuWjB_AeDOK9gjJt8PV0h6W618IGv85zIew16FJHLXufwR3fP0Ydk-2VKwXT-B6hPX5D1-h69R0sBG_Qf4Bi0czQod-VqOZUt49bbyEG5pxJDyLU65HTD26GZ_vor7mFfkCueaMF42GDpvwTbQFDvA7DqIFbR_I1SBKx2cL_MrCA2wSVuv1FTaqQNjRtbLtU5iMjz5_OI46VYbIEHhbRj7kWtpMxSEp88xbAhzSxMZpn1uVD0vaIJQdagqCmeYioHTSqyBLpb2U3ijxDHr1ee2fA8YyaM5prCIgQXHRpl6kgTMymbh0mPXh7cZ3RdlRlrNyRlVQ6sLzXvC8F5t578PrbfN5y9Xxp4bveSFsGzHFdvOCXFp0X2zhCNlJk7hgTJA6dqZMgyNEkcS5i3Ob9OHNdhn9vbv9_255APf5sf3F8wJ6y8XKvyTQs7SvuiV_A4d_AS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+decision+model+with+Einstein+aggregation+approach+for+garbage+disposal+plant+site+selection+under+%24+q+%24-rung+orthopair+hesitant+fuzzy+rough+information&rft.jtitle=AIMS+mathematics&rft.au=Attaullah&rft.au=Khan%2C+Asghar&rft.au=Rehman%2C+Noor&rft.au=Al-Duais%2C+Fuad+S.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=10&rft.spage=22830&rft.epage=22874&rft_id=info:doi/10.3934%2Fmath.20231163&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon