Insights into Intrastrand Cross-Link Lesions of DNA from QM/MM Molecular Dynamics Simulations

DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of t...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 134; no. 4; pp. 2111 - 2119
Main Authors Garrec, Julian, Patel, Chandan, Rothlisberger, Ursula, Dumont, Elise
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.02.2012
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/ja2084042

Cover

Abstract DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G­[8,5-Me]­T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car–Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C–C covalent-bond is estimated to be ∼10 kcal/mol. We observe that the G­[8,5-Me]­T tandem lesion is accommodated with almost no perturbation of the Watson–Crick hydrogen-bond network and induces bend and unwinding angles of ∼20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.
AbstractList DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G[8,5-Me]T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C-C covalent-bond is estimated to be ~10 kcal/mol. We observe that the G[8,5-Me]T tandem lesion is accommodated with almost no perturbation of the Watson-Crick hydrogen-bond network and induces bend and unwinding angles of ~20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G[8,5-Me]T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C-C covalent-bond is estimated to be ~10 kcal/mol. We observe that the G[8,5-Me]T tandem lesion is accommodated with almost no perturbation of the Watson-Crick hydrogen-bond network and induces bend and unwinding angles of ~20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.
DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G[8,5-Me]T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car–Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C–C covalent-bond is estimated to be ∼10 kcal/mol. We observe that the G[8,5-Me]T tandem lesion is accommodated with almost no perturbation of the Watson–Crick hydrogen-bond network and induces bend and unwinding angles of ∼20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.
DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G­[8,5-Me]­T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car–Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C–C covalent-bond is estimated to be ∼10 kcal/mol. We observe that the G­[8,5-Me]­T tandem lesion is accommodated with almost no perturbation of the Watson–Crick hydrogen-bond network and induces bend and unwinding angles of ∼20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.
DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G[8,5-Me]T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C-C covalent-bond is estimated to be ~10 kcal/mol. We observe that the G[8,5-Me]T tandem lesion is accommodated with almost no perturbation of the Watson-Crick hydrogen-bond network and induces bend and unwinding angles of ~20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.
Author Garrec, Julian
Rothlisberger, Ursula
Dumont, Elise
Patel, Chandan
AuthorAffiliation École Polytechnique Fédérale de Lausanne
Université de Lyon
AuthorAffiliation_xml – name: École Polytechnique Fédérale de Lausanne
– name: Université de Lyon
Author_xml – sequence: 1
  givenname: Julian
  surname: Garrec
  fullname: Garrec, Julian
– sequence: 2
  givenname: Chandan
  surname: Patel
  fullname: Patel, Chandan
– sequence: 3
  givenname: Ursula
  surname: Rothlisberger
  fullname: Rothlisberger, Ursula
– sequence: 4
  givenname: Elise
  surname: Dumont
  fullname: Dumont, Elise
  email: elise.dumont@ens-lyon.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22200321$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01115345$$DView record in HAL
BookMark eNp9kU1P4zAQQC3ECsrHgT-w8gUtHEJtx06cY1XYpVIKQsARWY5rLy6JzdoJEv8el0L3gjiMRjN6M7Lf7IFt550G4AijM4wIHi8lQZwiSrbACDOCMoZJsQ1GCCGSlbzId8FejMtUUsLxDtglhCCUEzwCDzMX7d_HPkLreg9nrg8ypnALOA0-xqy27gnWOlrvIvQGnl9NoAm-gzfz8XwO577VamhlgOevTnZWRXhru9ToVwMH4IeRbdSHH3kf3P--uJteZvX1n9l0UmeS4qLPeMMXiuWEs7I0qjBIUckKahaMNtzQRueVqUqki4JVXLHGGJyopiEk1Y0k-T44Xe99lK14DraT4VV4acXlpBarHsIYs5yyF5zYX2v2Ofh_g4696GxUum2l036IosJVxQrGykSefEsmhyjPMeVVQn9-oEPT6cXmDZ-iEzBeA2plNWgjlO3fJSXZthUYidUpxeaU__-0mfhc-hV7vGalimLph-CS7S-4N9n7ps4
CitedBy_id crossref_primary_10_1039_c3cc42593b
crossref_primary_10_1039_c3ob40280k
crossref_primary_10_4161_15592294_2014_988043
crossref_primary_10_1016_j_ymeth_2013_05_025
crossref_primary_10_1039_C8OB02882F
crossref_primary_10_1021_acs_jcim_1c00430
crossref_primary_10_1016_j_cplett_2013_12_016
crossref_primary_10_1021_acs_jpca_9b03598
crossref_primary_10_1021_tx4004616
crossref_primary_10_1007_s00214_019_2483_5
crossref_primary_10_1021_tx300411d
crossref_primary_10_1039_c2cp44066k
crossref_primary_10_1016_j_cbi_2015_11_002
crossref_primary_10_1002_jcc_24513
crossref_primary_10_3389_fchem_2015_00013
crossref_primary_10_1021_bi301198h
crossref_primary_10_1016_j_sbi_2015_11_011
crossref_primary_10_1021_jacs_8b07875
crossref_primary_10_1039_C3CP54518K
crossref_primary_10_1039_C7CP06452G
crossref_primary_10_1016_j_desal_2014_12_046
crossref_primary_10_1021_jp4017882
crossref_primary_10_1021_jz502696t
crossref_primary_10_1007_s00894_014_2401_7
crossref_primary_10_1021_ar500148c
crossref_primary_10_1007_s00214_015_1724_5
crossref_primary_10_1016_j_bbagen_2014_10_021
crossref_primary_10_1039_C7CP02725G
crossref_primary_10_1039_C7RA12713H
crossref_primary_10_1002_cmdc_202100046
crossref_primary_10_1007_s00214_015_1631_9
crossref_primary_10_1021_bi501157v
crossref_primary_10_1016_j_dyepig_2017_04_011
crossref_primary_10_1093_nar_gkv1364
crossref_primary_10_1007_s00214_019_2423_4
crossref_primary_10_1021_acs_jcim_2c00460
crossref_primary_10_1039_c3cp53313a
crossref_primary_10_1016_j_omtn_2018_10_014
crossref_primary_10_1002_chem_201601287
crossref_primary_10_1039_C7CP01034F
crossref_primary_10_1021_acs_jctc_7b00978
crossref_primary_10_1039_c3cp50791b
crossref_primary_10_1039_C6CP07966K
crossref_primary_10_1039_D0OB00302F
crossref_primary_10_1007_s00214_015_1640_8
crossref_primary_10_1002_aic_16824
crossref_primary_10_1039_c3ra22408b
crossref_primary_10_1039_C5CP02481A
crossref_primary_10_1039_D0CP02255A
crossref_primary_10_1515_ntrev_2022_0455
crossref_primary_10_1021_acs_jpca_9b06216
crossref_primary_10_1021_jp408947u
crossref_primary_10_1021_acs_jctc_6b00706
crossref_primary_10_1002_jcc_23716
crossref_primary_10_1039_c2ra22389a
crossref_primary_10_1039_C4CP05806B
crossref_primary_10_1002_wcms_1153
crossref_primary_10_1021_acs_jctc_7b00139
Cites_doi 10.1063/1.447334
10.1021/tx2003239
10.1021/ja00070a002
10.1016/j.jmb.2004.07.048
10.1021/bi700431q
10.1093/nar/gkl892
10.1002/cphc.200900253
10.1093/nar/gkp234
10.1063/1.1462041
10.1021/jp984217f
10.1016/j.bbabio.2004.04.006
10.1002/jcc.20739
10.1128/jb.172.6.3037-3039.1990
10.1021/ja805032r
10.1073/pnas.0706044104
10.1073/pnas.0800977105
10.1002/chem.200501566
10.1039/b718594d
10.1103/PhysRevA.31.1695
10.1080/095530097144003
10.1002/(SICI)1096-987X(19971115)18:14<1720::AID-JCC2>3.0.CO;2-M
10.1016/0021-9991(77)90098-5
10.1096/fj.02-0752rev
10.1186/1477-3163-5-14
10.1021/bi901861w
10.1039/b805589k
10.1126/science.1135428
10.1016/j.jasms.2008.11.020
10.1021/jp0496405
10.1002/jcc.540130805
10.1021/tx050147+
10.1002/chem.201100177
10.1103/PhysRevA.38.3098
10.1038/nrc2342
10.1111/j.1751-1097.1995.tb05236.x
10.1021/ja076081h
10.1021/jp209074q
10.1016/0022-2836(76)90311-9
10.1039/b609134b
10.1021/ja0692276
10.1093/nar/25.7.1432
10.1073/pnas.1000193107
10.1002/jcc.20625
10.1073/pnas.95.17.9738
10.1093/nar/gkm851
10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
10.1038/nprot.2008.104
10.1021/bi060423z
10.1016/j.str.2009.09.001
10.1103/PhysRevLett.55.2471
10.1021/jp063155n
10.1063/1.1332996
10.1021/ja903404v
10.1021/ja111304f
10.1021/ja052542s
10.1021/ar900175a
10.1103/PhysRevB.37.785
10.1016/j.cplett.2009.05.041
10.1021/tx015594d
10.1093/nar/gkf405
10.1021/ja800194a
10.1103/PhysRevLett.93.153004
10.1063/1.448118
10.1063/1.477419
10.1021/ja00119a045
10.1063/1.1829051
10.1063/1.463940
10.1016/j.mrfmmm.2003.09.001
10.1002/9780470120828.ch8
10.1063/1.445869
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2011 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2011 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
1XC
DOI 10.1021/ja2084042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 2119
ExternalDocumentID oai_HAL_hal_01115345v1
22200321
10_1021_ja2084042
c100139796
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7S9
AAYWT
L.6
7X8
.GJ
.HR
186
1WB
1XC
3EH
3O-
41~
6TJ
AAUPJ
AAYJJ
ABHMW
ABWLT
ACBNA
ACKIV
ACRPL
ADNMO
ADXHL
AEYZD
AFFNX
AGQPQ
AI.
AIDAL
ANPPW
ANTXH
D0S
IHE
MVM
NHB
OHT
P-O
RNS
UBC
UBX
UQL
VH1
X7L
YR5
YXA
YXE
YYP
ZCG
ZE2
ZGI
ZY4
ID FETCH-LOGICAL-a416t-8b8dc5328577fc6f0c4a564fd54b8f4be39f970e66598c5bff1c6fbb22598ba23
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Sep 25 06:50:52 EDT 2025
Thu Sep 04 20:58:07 EDT 2025
Tue Aug 05 09:51:25 EDT 2025
Thu Apr 03 07:08:46 EDT 2025
Thu Apr 24 22:54:38 EDT 2025
Tue Jul 01 02:08:18 EDT 2025
Thu Aug 27 13:42:21 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2011 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-8b8dc5328577fc6f0c4a564fd54b8f4be39f970e66598c5bff1c6fbb22598ba23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2359-111X
0000-0002-1704-8591
0000-0002-3631-2933
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/79512
PMID 22200321
PQID 2000331489
PQPubID 24069
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01115345v1
proquest_miscellaneous_919956557
proquest_miscellaneous_2000331489
pubmed_primary_22200321
crossref_citationtrail_10_1021_ja2084042
crossref_primary_10_1021_ja2084042
acs_journals_10_1021_ja2084042
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120201
2012-02-01
2012-Feb-01
2012-02
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 20120201
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lin G. (ref13/cit13) 2010; 49
Laio A. (ref31/cit31) 2002; 116
Lin I.-C. (ref49/cit49) 2008; 10
Bergeron F. (ref67/cit67) 2010; 107
Cao H. (ref18/cit18) 2009; 20
Laio A. (ref32/cit32) 2004; 108
Wang J. M. (ref41/cit41) 2000; 21
Curuksu J. (ref70/cit70) 2009; 37
Lee E. H. (ref22/cit22) 2009; 17
Ryckaert J. P. (ref44/cit44) 1977; 23
Miyamoto S. (ref45/cit45) 1992; 13
Nosé S. (ref60/cit60) 1984; 81
Begusova M. (ref36/cit36) 2001; 19
Berendsen H. J. C. (ref47/cit47) 1984; 81
von Lilienfeld O. A. (ref59/cit59) 2005; 122
Cheng X. (ref24/cit24) 2005; 127
Balasubramanian B. (ref37/cit37) 1998; 343
Wang W. (ref9/cit9) 1997; 71
ref48/cit48
Labet V. (ref34/cit34) 2008; 6
Barone V. (ref42/cit42) 1997; 18
Noy A. (ref65/cit65) 2004; 343
Lee C. (ref57/cit57) 1988; 37
Cooney M. G. (ref68/cit68) 1997; 25
ref53/cit53
Cheatham T. E. (ref43/cit43) 1995; 117
Izaguirre J. A. (ref46/cit46) 2001; 114
Wozniak A. K. (ref71/cit71) 2008; 105
Sprik M. (ref63/cit63) 1998; 109
Zeng Y. (ref10/cit10) 2006; 34
Zeng Y. (ref11/cit11) 2007; 46
Xerri B. (ref33/cit33) 2006; 4
Prevost C. (ref64/cit64) 2009; 10
Lu X.-J. (ref74/cit74) 2008; 3
Schreier W. J. (ref3/cit3) 2007; 315
Vargiu A. V. (ref27/cit27) 2006; 110
ref38/cit38
Robertazzi A. (ref26/cit26) 2006; 12
Yang Z. (ref15/cit15) 2006; 18
Kim J. K. (ref72/cit72) 1995; 62
Gu C. (ref16/cit16) 2006; 45
Scott W. R. P. (ref54/cit54) 1999; 103
Sczepanski J. T. (ref23/cit23) 2009; 131
Loos P.-F. (ref30/cit30) 2009; 475
Jorgensen W. L. (ref40/cit40) 1983; 79
Munzel M. (ref2/cit2) 2011; 133
Kanvah S. (ref1/cit1) 2010; 43
Ferentz A. E. (ref39/cit39) 1993; 115
Spiegel K. (ref55/cit55) 2008; 29
Churchill C. D. M. (ref73/cit73) 2011; 24
Gates K. S. (ref17/cit17) 2007; 8
Cadet J. (ref7/cit7) 2003; 531
Bellon S. (ref35/cit35) 2002; 15
von Lilienfeld O. A. (ref58/cit58) 2004; 93
Cooke M. S. (ref6/cit6) 2003; 17
Hong I. S. (ref20/cit20) 2007; 129
Gossens C. (ref28/cit28) 2008; 130
Martyna G. J. (ref62/cit62) 1992; 97
Mantel C. (ref4/cit4) 2008; 130
Stehlikova K. (ref69/cit69) 2002; 30
Kriker M. C. (ref14/cit14) 1990; 172
Helleday T. (ref21/cit21) 2008; 8
Heil K. (ref5/cit5) 2011; 17
Becke A. D. (ref56/cit56) 1988; 38
Hoover W. G. (ref61/cit61) 1985; 31
Waris G. (ref8/cit8) 2006; 5
Hong H. (ref12/cit12) 2007; 35
Masson F. (ref29/cit29) 2008; 130
Dupont C. (ref50/cit50) 2011; 115
Warshel A. (ref51/cit51) 1976; 103
Song K. (ref25/cit25) 2008; 29
Himo F. (ref66/cit66) 2005; 1
Regulus P. (ref19/cit19) 2007; 104
Car R. (ref52/cit52) 1985; 55
References_xml – volume: 81
  start-page: 511
  year: 1984
  ident: ref60/cit60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 24
  start-page: 2189
  year: 2011
  ident: ref73/cit73
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx2003239
– volume: 115
  start-page: 7569
  year: 1993
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00070a002
– volume: 343
  start-page: 627
  year: 2004
  ident: ref65/cit65
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.07.048
– volume: 46
  start-page: 8189
  year: 2007
  ident: ref11/cit11
  publication-title: Biochemistry
  doi: 10.1021/bi700431q
– volume: 34
  start-page: 6521
  year: 2006
  ident: ref10/cit10
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl892
– volume: 10
  start-page: 1399
  year: 2009
  ident: ref64/cit64
  publication-title: Chem. Phys. Chem
  doi: 10.1002/cphc.200900253
– volume: 37
  start-page: 3766
  year: 2009
  ident: ref70/cit70
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp234
– volume: 116
  start-page: 6941
  year: 2002
  ident: ref31/cit31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1462041
– volume: 103
  start-page: 3596
  year: 1999
  ident: ref54/cit54
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp984217f
– volume: 1
  start-page: 24
  year: 2005
  ident: ref66/cit66
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2004.04.006
– volume: 29
  start-page: 38
  year: 2008
  ident: ref55/cit55
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20739
– volume: 172
  start-page: 3037
  year: 1990
  ident: ref14/cit14
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.6.3037-3039.1990
– volume: 130
  start-page: 16978
  year: 2008
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805032r
– volume: 104
  start-page: 14032
  year: 2007
  ident: ref19/cit19
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0706044104
– volume: 105
  start-page: 18337
  year: 2008
  ident: ref71/cit71
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0800977105
– volume: 12
  start-page: 5747
  year: 2006
  ident: ref26/cit26
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200501566
– volume: 10
  start-page: 2730
  year: 2008
  ident: ref49/cit49
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b718594d
– volume: 31
  start-page: 1695
  year: 1985
  ident: ref61/cit61
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 71
  start-page: 387
  year: 1997
  ident: ref9/cit9
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/095530097144003
– volume: 19
  start-page: 141
  year: 2001
  ident: ref36/cit36
  publication-title: Proc. Conversation Biomol. Stereodyn., 11th
– volume: 18
  start-page: 1720
  year: 1997
  ident: ref42/cit42
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19971115)18:14<1720::AID-JCC2>3.0.CO;2-M
– volume: 23
  start-page: 327
  year: 1977
  ident: ref44/cit44
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 17
  start-page: 1195
  year: 2003
  ident: ref6/cit6
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0752rev
– volume: 5
  start-page: 14
  year: 2006
  ident: ref8/cit8
  publication-title: J. Carcinog.
  doi: 10.1186/1477-3163-5-14
– volume: 49
  start-page: 2346
  year: 2010
  ident: ref13/cit13
  publication-title: Biochemistry
  doi: 10.1021/bi901861w
– volume: 6
  start-page: 3300
  year: 2008
  ident: ref34/cit34
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b805589k
– volume: 315
  start-page: 625
  year: 2007
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.1135428
– volume: 20
  start-page: 611
  year: 2009
  ident: ref18/cit18
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2008.11.020
– volume: 108
  start-page: 7963
  year: 2004
  ident: ref32/cit32
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0496405
– volume: 13
  start-page: 952
  year: 1992
  ident: ref45/cit45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130805
– volume: 18
  start-page: 1339
  year: 2006
  ident: ref15/cit15
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx050147+
– volume: 17
  start-page: 9651
  year: 2011
  ident: ref5/cit5
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201100177
– ident: ref53/cit53
– volume: 38
  start-page: 3098
  year: 1988
  ident: ref56/cit56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 8
  start-page: 193
  year: 2008
  ident: ref21/cit21
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2342
– ident: ref38/cit38
– volume: 62
  start-page: 44
  year: 1995
  ident: ref72/cit72
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1995.tb05236.x
– volume: 130
  start-page: 3443
  year: 2008
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076081h
– ident: ref48/cit48
– volume: 115
  start-page: 15138
  year: 2011
  ident: ref50/cit50
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp209074q
– volume: 103
  start-page: 227
  year: 1976
  ident: ref51/cit51
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(76)90311-9
– volume: 4
  start-page: 3986
  year: 2006
  ident: ref33/cit33
  publication-title: Org. Biomol. Mol.
  doi: 10.1039/b609134b
– volume: 129
  start-page: 4089
  year: 2007
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0692276
– volume: 25
  start-page: 1432
  year: 1997
  ident: ref68/cit68
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.7.1432
– volume: 107
  start-page: 5528
  year: 2010
  ident: ref67/cit67
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1000193107
– volume: 29
  start-page: 17
  year: 2008
  ident: ref25/cit25
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20625
– volume: 343
  start-page: 9738
  year: 1998
  ident: ref37/cit37
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.17.9738
– volume: 35
  start-page: 7118
  year: 2007
  ident: ref12/cit12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm851
– volume: 21
  start-page: 1049
  year: 2000
  ident: ref41/cit41
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
– volume: 3
  start-page: 1213
  year: 2008
  ident: ref74/cit74
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.104
– volume: 45
  start-page: 10739
  year: 2006
  ident: ref16/cit16
  publication-title: Biochemistry
  doi: 10.1021/bi060423z
– volume: 17
  start-page: 1295
  year: 2009
  ident: ref22/cit22
  publication-title: Structure
  doi: 10.1016/j.str.2009.09.001
– volume: 55
  start-page: 2471
  year: 1985
  ident: ref52/cit52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2471
– volume: 110
  start-page: 24687
  year: 2006
  ident: ref27/cit27
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063155n
– volume: 114
  start-page: 2090
  year: 2001
  ident: ref46/cit46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1332996
– volume: 131
  start-page: 11132
  year: 2009
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903404v
– volume: 133
  start-page: 5186
  year: 2011
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111304f
– volume: 127
  start-page: 13906
  year: 2005
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052542s
– volume: 43
  start-page: 280
  year: 2010
  ident: ref1/cit1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900175a
– volume: 37
  start-page: 785
  year: 1988
  ident: ref57/cit57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 475
  start-page: 120
  year: 2009
  ident: ref30/cit30
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.05.041
– volume: 15
  start-page: 598
  year: 2002
  ident: ref35/cit35
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx015594d
– volume: 30
  start-page: 2894
  year: 2002
  ident: ref69/cit69
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf405
– volume: 130
  start-page: 10921
  year: 2008
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800194a
– volume: 93
  start-page: 153004.1
  year: 2004
  ident: ref58/cit58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.153004
– volume: 81
  start-page: 3684
  year: 1984
  ident: ref47/cit47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 109
  start-page: 7737
  year: 1998
  ident: ref63/cit63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477419
– volume: 117
  start-page: 4193
  year: 1995
  ident: ref43/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00119a045
– volume: 122
  start-page: 014113.1
  year: 2005
  ident: ref59/cit59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1829051
– volume: 97
  start-page: 2635
  year: 1992
  ident: ref62/cit62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463940
– volume: 531
  start-page: 5
  year: 2003
  ident: ref7/cit7
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2003.09.001
– volume: 8
  start-page: 333
  year: 2007
  ident: ref17/cit17
  publication-title: Rev. React. Intermed. Chem.
  doi: 10.1002/9780470120828.ch8
– volume: 79
  start-page: 926
  year: 1983
  ident: ref40/cit40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
SSID ssj0004281
Score 2.3134396
Snippet DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2111
SubjectTerms Chemical Sciences
crosslinking
DNA
DNA - chemistry
DNA damage
Gibbs free energy
hydrogen bonding
Models, Molecular
molecular dynamics
Molecular Dynamics Simulation
or physical chemistry
pyrimidines
quantum mechanics
standard operating procedures
Theoretical and
Title Insights into Intrastrand Cross-Link Lesions of DNA from QM/MM Molecular Dynamics Simulations
URI http://dx.doi.org/10.1021/ja2084042
https://www.ncbi.nlm.nih.gov/pubmed/22200321
https://www.proquest.com/docview/2000331489
https://www.proquest.com/docview/919956557
https://hal.science/hal-01115345
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoHNoLhT5gC0Xu49BLaOJX7ONqF7QgglRRJC5VZHttFdFmqybbQ389M5tk26osXJOx4mQmM9_YnvkIeW9THqSyLElDYImY5iyxzNmEO2-5z0IWFkVhxbmaXIrTK3m1Rt6t2MFn2B-IpZCFCPCzG0xBfEH8M7r4U_zIdNZj3Fwr3rcP-nsohh5f_xN6Hn3Fg4-rUOUiuhw_JeO-Rqc9VHJzOG_cof_9f8vG-ya-RTY7dEmHrTlsk7VQPSOPRz2p23Py5aSqMR2v6XXVzOgJLu3iYkc1pSOcdIK5KT0LuIZW01mk4_MhxRIU-qn4WBS06Nl06bilsq_pxfX3jgKsfkEuj48-jyZJx7CQWABiTaKdnnrJmZZ5Hr2KqRdWKhGnUjgdhQvcRJOnQSlptJcuxgyknAMnYLSzjL8k69WsCruEmtRHIYzNg1BCK8jRjY3WZ84FDILZgByACsruD6nLxeY3g-Sj_0oD8qHXTum7_uRIk_HtLtG3S9EfbVOOO4VAxcv72EZ7Mjwr8Rr4NHD0Qv6CWb3pLaAETeBmia3CbF4jPWfKOSSLZkDoChmD9e1KynxAdlrrWT4OYBeMZ9mrh157jzwBDMbag-D7ZL35OQ-vAec07mBh57dfWfMl
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqF8mZ5FIM4cEmbOLZjH1dbql3YrITaSr2gyPbaogKyCGd76K_vTB5bQK3gmoyTiT0Zz9ie7yPknUlzL6RhSeo9S_iyYIlh1iS5dSZ3mc98WxRWLuT0hH88Fac9TA7WwoASEZ4U2038K3QBhAliKSQjHNztHSG5RJqG8eToqgaSqWwIdQsl8wFF6PemOAO5-McMdPsrnn-8KbhsJ5nDnY6tqFWvPVvybW_d2D138Rdy4__pf5_c62NNOu6M4wG55euHZHsyULw9Il9mdcTkPNKzulnRGS704tJHvaQT1D3BTJXOPa6oRboK9GAxpliQQj-X-2VJy4Fblx50xPaRHp396AnB4mNycvjheDJNer6FxEBY1iTKqqUTOVOiKIKTIXXcQFeHpeBWBW59roMuUi-l0MoJG0IGUtaCS9DKGpY_IVv1qvbPCNWpC5xrU3guuZKQsWsTjMus9TglZiOyC51U9f9LrNqtcAapyNBLI_J-GKTK9WjlSJrx_TrRtxvRnx1Ex7VCMNKb-wiqPR3PK7wGHg7cPhfnoNWbwRAqGAncOjG1X60jknWmeQ6pox4ReoOMxmp3KUQxIk87I9q8DoIwaM-y5__67Ndke3pczqv5bPHpBbkL0Rnrjoi_JFvNr7V_BRFQY3db078EP4v7hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSMCFN-3yKAZx4JKS-JXkuNpltQubBVQq9YIi27HVCshWdZYDv56ZPJaHWsE1GSdjezwP2zMfIS91zJ1UmkWxcywSVcoizYyOuLGa28Qlrk0KK1ZqfiTeHsvjPlDEXBhgIsCXQnuIj6v6rPJ9hQEsFcRiCEgEqNxr4IgkCNUwnhz-yoNkWTK4u2mm-FBJ6PemaIVs-MMKXT3BO5CXOZitoZndJu-3LLb3S74cbBpzYH_8Vb3x__twh9zqfU467oTkLrni6nvkxmSAertPPi_qgEF6oKd1s6YL3PDFLZC6ohPkP8KIlS4d7qwFuvZ0uhpTTEyhH4vXRUGLAWOXTjuA-0APT7_1wGDhATmavfk0mUc97kKkwT1rosxklZWcZTJNvVU-tkJLJXwlhcm8MI7nPk9jp5TMMyuN9wlQGQOqIc-MZvwh2anXtdsjNI-tFyLXqRNKZAoi91x7bRNjHJrGZET2YaDKft2Esj0SZxCSDKM0Iq-GiSptX7UcwTO-XkT6Ykt61pXquJAIZnv7Hotrz8fLEp-BpgP1L-R34Or5IAwlzAQeoejarTcBQTtjziGEzEeEXkKTY9a7kjIdkd1OkLa_A2cM2rPk0b-6_Yxc_zCdlcvF6t1jchOcNNbdFH9CdprzjXsKjlBj9lvp_wl30f4B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+intrastrand+cross-link+lesions+of+DNA+from+QM%2FMM+molecular+dynamics+simulations&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Garrec%2C+Julian&rft.au=Patel%2C+Chandan&rft.au=Rothlisberger%2C+Ursula&rft.au=Dumont%2C+Elise&rft.date=2012-02-01&rft.eissn=1520-5126&rft.volume=134&rft.issue=4&rft.spage=2111&rft_id=info:doi/10.1021%2Fja2084042&rft_id=info%3Apmid%2F22200321&rft.externalDocID=22200321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon