Solving bi-objective bi-item solid transportation problem with fuzzy stochastic constraints involving normal distribution
In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be transported from various origins to destinations through various types of conveyances. Real-world dec...
Saved in:
| Published in | AIMS mathematics Vol. 8; no. 9; pp. 21700 - 21731 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.20231107 |
Cover
| Abstract | In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be transported from various origins to destinations through various types of conveyances. Real-world decision-making problems are typically phrased as multi-objective optimization problems because they may be effectively described with numerous competing objectives. Many real-life problems have uncertain objective functions and constraints due to incomplete or uncertain information. Such uncertainties are dealt with in fuzzy/interval/stochastic programming. This study explored a novel integrated model bi-objective bi-item solid transportation problem with fuzzy stochastic inequality constraints following a normal distribution. The entrepreneur's objectives are minimizing the transportation cost and duration of transit while maximizing the profit subject to constraints. The chance-constrained technique is applied to transform the uncertainty problem into its equivalent deterministic problem. The deterministic problem is then solved with the proposed method, namely, the global weighted sum method (GWSM), to find the optimal compromise solution. A numerical example is provided to test the efficacy of the method and then is solved using the Lingo 18.0 software. To highlight the proposed method, comparisons of the solution with the existing solution methods are performed. Finally, to understand the sensitivity of parameters in the proposed model, sensitivity analysis (SA) is conducted. |
|---|---|
| AbstractList | In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be transported from various origins to destinations through various types of conveyances. Real-world decision-making problems are typically phrased as multi-objective optimization problems because they may be effectively described with numerous competing objectives. Many real-life problems have uncertain objective functions and constraints due to incomplete or uncertain information. Such uncertainties are dealt with in fuzzy/interval/stochastic programming. This study explored a novel integrated model bi-objective bi-item solid transportation problem with fuzzy stochastic inequality constraints following a normal distribution. The entrepreneur's objectives are minimizing the transportation cost and duration of transit while maximizing the profit subject to constraints. The chance-constrained technique is applied to transform the uncertainty problem into its equivalent deterministic problem. The deterministic problem is then solved with the proposed method, namely, the global weighted sum method (GWSM), to find the optimal compromise solution. A numerical example is provided to test the efficacy of the method and then is solved using the Lingo 18.0 software. To highlight the proposed method, comparisons of the solution with the existing solution methods are performed. Finally, to understand the sensitivity of parameters in the proposed model, sensitivity analysis (SA) is conducted. |
| Author | Anuradha, D. Buvaneshwari, T. K. |
| Author_xml | – sequence: 1 givenname: T. K. surname: Buvaneshwari fullname: Buvaneshwari, T. K. – sequence: 2 givenname: D. surname: Anuradha fullname: Anuradha, D. |
| BookMark | eNqFkUtrGzEUhUVJoW7qZff6A-PoMTOaWQaTpAFDF0nXw9XLlpElI8kOzq_vTO2EUghdSbr3no-rc76iqxCDQeg7JQve8_pmB2WzYIRxSon4hGasFrxq-667-uv-Bc1z3hJCGGU1E_UMnZ6iP7qwxtJVUW6NKu5opocrZodz9E7jkiDkfUwFiosB71OUfmy-uLLB9vD6esK5RLWBXJzCKoY8ClwoGbtwvNBDTDvwWLux5-Rh4nxDny34bOaX8xr9ur97Xv6oVj8fHpe3qwpq2paK9oI1tiVGcNb30ohGAKG9tKRpqdRUEa47AXb8T1ubTpqu0bKDTkkpRMMsv0aPZ66OsB32ye0gnYYIbvhTiGk9QBo392YA4NzUoBm0rO6s6oWSynKpWqqJ1mRkLc6sQ9jD6QW8fwdSMkw5DFMOw1sOo6A6C1SKOSdj_zvP_5lX7mz75Kn_QPUb5Mah-Q |
| CitedBy_id | crossref_primary_10_1007_s12597_024_00799_5 |
| Cites_doi | 10.1088/1757-899X/912/6/062047 10.1504/IJMOR.2019.102997 10.1007/s12046-019-1094-0 10.11121/ijocta.2022.1166 10.35940/ijeat.b3054.129219 10.1515/jisys-2020-0095 10.1504/ijfcm.2014.067129 10.1016/0165-0114(92)90256-4 10.1080/16168658.2019.1612605 10.1287/opre.10.4.448 10.1016/j.asoc.2021.107368 10.1287/opre.11.5.759 10.3390/SYM12081208 10.1007/s12597-016-0264-7 10.1007/s12597-017-0307-8 10.1007/s10700-007-9024-8 10.1287/mnsc.11.1.33 10.1016/j.apm.2012.04.026 10.4314/jasem.v24i3.8 10.1016/j.apm.2012.04.024 10.32604/cmc.2022.023126 10.1007/s10100-022-00811-7 10.1016/S0019-9958(65)90241-X 10.2307/1910956 10.1007/s12046-016-0491-x 10.1007/s12597-020-00458-5 10.1504/IJOR.2014.064021 10.3233/JIFS-171717 10.1155/2022/3997396 10.1016/0020-0255(79)90020-3 10.1287/mnsc.6.1.73 10.3390/math9151757 10.1155/2015/787050 10.11121/ijocta.01.2014.00154 10.3926/jiem.1562 10.1016/j.cie.2014.03.001 10.1016/0165-0114(78)90031-3 10.1007/s12198-013-0108-0 10.1007/s101070050050 10.3233/JIFS-202373 10.1016/0305-0548(74)90064-1 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.20231107 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 21731 |
| ExternalDocumentID | oai_doaj_org_article_aa33e4ad2a6248fc97cbcf3bc61d0dd0 10.3934/math.20231107 10_3934_math_20231107 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a416t-19725f60e73299be757a019bf0561bd1c03d87af24264e8be85db8a8cbb7752f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:38 EDT 2025 Mon Sep 15 08:19:16 EDT 2025 Tue Jul 01 03:57:04 EDT 2025 Thu Apr 24 23:14:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a416t-19725f60e73299be757a019bf0561bd1c03d87af24264e8be85db8a8cbb7752f3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.20231107 |
| PageCount | 32 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aa33e4ad2a6248fc97cbcf3bc61d0dd0 unpaywall_primary_10_3934_math_20231107 crossref_primary_10_3934_math_20231107 crossref_citationtrail_10_3934_math_20231107 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20231107-19 key-10.3934/math.20231107-30 key-10.3934/math.20231107-31 key-10.3934/math.20231107-10 key-10.3934/math.20231107-32 key-10.3934/math.20231107-11 key-10.3934/math.20231107-33 key-10.3934/math.20231107-12 key-10.3934/math.20231107-34 key-10.3934/math.20231107-13 key-10.3934/math.20231107-35 key-10.3934/math.20231107-14 key-10.3934/math.20231107-36 key-10.3934/math.20231107-15 key-10.3934/math.20231107-37 key-10.3934/math.20231107-16 key-10.3934/math.20231107-38 key-10.3934/math.20231107-17 key-10.3934/math.20231107-39 key-10.3934/math.20231107-18 key-10.3934/math.20231107-8 key-10.3934/math.20231107-9 key-10.3934/math.20231107-40 key-10.3934/math.20231107-41 key-10.3934/math.20231107-20 key-10.3934/math.20231107-42 key-10.3934/math.20231107-21 key-10.3934/math.20231107-43 key-10.3934/math.20231107-2 key-10.3934/math.20231107-22 key-10.3934/math.20231107-44 key-10.3934/math.20231107-3 key-10.3934/math.20231107-23 key-10.3934/math.20231107-45 key-10.3934/math.20231107-24 key-10.3934/math.20231107-46 key-10.3934/math.20231107-1 key-10.3934/math.20231107-25 key-10.3934/math.20231107-47 key-10.3934/math.20231107-6 key-10.3934/math.20231107-26 key-10.3934/math.20231107-7 key-10.3934/math.20231107-27 key-10.3934/math.20231107-4 key-10.3934/math.20231107-28 key-10.3934/math.20231107-5 key-10.3934/math.20231107-29 |
| References_xml | – ident: key-10.3934/math.20231107-4 doi: 10.1088/1757-899X/912/6/062047 – ident: key-10.3934/math.20231107-8 doi: 10.1504/IJMOR.2019.102997 – ident: key-10.3934/math.20231107-17 doi: 10.1007/s12046-019-1094-0 – ident: key-10.3934/math.20231107-35 doi: 10.11121/ijocta.2022.1166 – ident: key-10.3934/math.20231107-36 doi: 10.35940/ijeat.b3054.129219 – ident: key-10.3934/math.20231107-5 doi: 10.1515/jisys-2020-0095 – ident: key-10.3934/math.20231107-44 doi: 10.1504/ijfcm.2014.067129 – ident: key-10.3934/math.20231107-24 – ident: key-10.3934/math.20231107-43 doi: 10.1016/0165-0114(92)90256-4 – ident: key-10.3934/math.20231107-3 – ident: key-10.3934/math.20231107-1 – ident: key-10.3934/math.20231107-29 doi: 10.1080/16168658.2019.1612605 – ident: key-10.3934/math.20231107-2 doi: 10.1287/opre.10.4.448 – ident: key-10.3934/math.20231107-6 doi: 10.1016/j.asoc.2021.107368 – ident: key-10.3934/math.20231107-18 doi: 10.1287/opre.11.5.759 – ident: key-10.3934/math.20231107-27 doi: 10.3390/SYM12081208 – ident: key-10.3934/math.20231107-31 doi: 10.1007/s12597-016-0264-7 – ident: key-10.3934/math.20231107-40 doi: 10.1007/s12597-017-0307-8 – ident: key-10.3934/math.20231107-45 doi: 10.1007/s10700-007-9024-8 – ident: key-10.3934/math.20231107-16 doi: 10.1287/mnsc.11.1.33 – ident: key-10.3934/math.20231107-14 doi: 10.1016/j.apm.2012.04.026 – ident: key-10.3934/math.20231107-33 doi: 10.4314/jasem.v24i3.8 – ident: key-10.3934/math.20231107-22 doi: 10.1016/j.apm.2012.04.024 – ident: key-10.3934/math.20231107-25 doi: 10.32604/cmc.2022.023126 – ident: key-10.3934/math.20231107-9 doi: 10.1007/s10100-022-00811-7 – ident: key-10.3934/math.20231107-42 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.20231107-15 doi: 10.2307/1910956 – ident: key-10.3934/math.20231107-21 – ident: key-10.3934/math.20231107-12 doi: 10.1007/s12046-016-0491-x – ident: key-10.3934/math.20231107-23 – ident: key-10.3934/math.20231107-32 doi: 10.1007/s12597-020-00458-5 – ident: key-10.3934/math.20231107-37 doi: 10.1504/IJOR.2014.064021 – ident: key-10.3934/math.20231107-11 doi: 10.3233/JIFS-171717 – ident: key-10.3934/math.20231107-28 doi: 10.1155/2022/3997396 – ident: key-10.3934/math.20231107-26 doi: 10.1016/0020-0255(79)90020-3 – ident: key-10.3934/math.20231107-20 doi: 10.1287/mnsc.6.1.73 – ident: key-10.3934/math.20231107-39 doi: 10.3390/math9151757 – ident: key-10.3934/math.20231107-13 doi: 10.1155/2015/787050 – ident: key-10.3934/math.20231107-38 doi: 10.11121/ijocta.01.2014.00154 – ident: key-10.3934/math.20231107-34 doi: 10.3926/jiem.1562 – ident: key-10.3934/math.20231107-41 doi: 10.1016/j.cie.2014.03.001 – ident: key-10.3934/math.20231107-47 doi: 10.1016/0165-0114(78)90031-3 – ident: key-10.3934/math.20231107-10 doi: 10.1007/s12198-013-0108-0 – ident: key-10.3934/math.20231107-19 doi: 10.1007/s101070050050 – ident: key-10.3934/math.20231107-30 doi: 10.1504/ijfcm.2014.067129 – ident: key-10.3934/math.20231107-7 doi: 10.3233/JIFS-202373 – ident: key-10.3934/math.20231107-46 doi: 10.1016/0305-0548(74)90064-1 |
| SSID | ssj0002124274 |
| Score | 2.2299519 |
| Snippet | In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 21700 |
| SubjectTerms | fuzzy random variables global weighted sum method normal distribution solid transportation problem stochastic programming |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6yi-4gfuL8IgfRi2XdkjbpUcUxhHnRwW4lnzgp3XCdsv1686Zd6UW9eGwJSXjzNnmeN-V5ELrimnryE6iIE0dQrAm4YCKgljnAnAjDvQLf6DkejunTJJo0rL7gn7BSHrgMXFcIQgwVui_iPuVWJUxJZYlUcU-HWnu2HvKkQaZgD3YbMnV8qxTVJAmhXYf_4O7BwZkeWMc2DiGv1d9G28t8LlZfIssaB8xgD-1WyBDflTPaR1smP0DtUS2rujhEq5dZBgUALKfBTL6XexU8QAUWuyyaalxs1Mp9yHFlGIOh3ortcr1eYQf31JsAfWasAB2CSUSxwNP8s-o9BxybYQ2aupUd1hEaDx5fH4ZB5Z0QCAexigDcxCIbh4YRd-BIwyImHJqTFhiD1D0VEs2ZsB4RGS4Nj7TkgispGYv6lhyjVj7LzQnCiiXGfdWWyVBQB5gEl6pHqOaUa6kj1kG3m2CmqhIWh6lnqSMYEPsUYp9uYt9B13Xzeamo8VPDe1iZuhEIYfsXLj3SKj3Sv9Kjg27qdf19uNP_GO4M7UB_ZY3mHLWKj6W5cKilkJc-Qb8BQG7wDg priority: 102 providerName: Directory of Open Access Journals |
| Title | Solving bi-objective bi-item solid transportation problem with fuzzy stochastic constraints involving normal distribution |
| URI | https://doi.org/10.3934/math.20231107 https://doaj.org/article/aa33e4ad2a6248fc97cbcf3bc61d0dd0 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: AMVHM dateStart: 20220701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N7cPYAzA2RLdR-WGCFzLS2omdxw5RVZM6TYKi8RT5U-uI0oqlm9q_Hl_iVgO0j7ckOifWneP73dn-HcCxMKwOfiKdCOoDFGcjIbmMmOMeMGfSipqBb3yejibs7DK5DJto8CzMvfV7mlH22cM2XDLwKKSHZ8bbaeIhdwvak_OLwU8sHMc4jdJMiIY_8_82f_mbmpZ_B7YX5Vwu72RR3PMlw1cwXPei2ULy62RRqRO9-oeg8cluvoaXAU2SQWP-Xdiy5RvYGW-oWG_2YPltVmDSgKhpNFPXzfyGN5i1JX7kTQ2p1gzntZlIKDJDMEdL3GK1WhIPEfWVRE5nohFRYmGJ6oZMy9vw9hKxb0EM8vCGElr7MBl-_f5lFIV6C5H0sKyKsAJZ4tLYcuqdlLI84dIjQOUwylCmp2NqBJeuRlFWKCsSo4QUWinOk76jb6FVzkr7DojmmfUzgeMqlsyDLCmU7lFmBBNGmYR34NPaKrkOZOTY9SL3QQlqNEeN5muNduDDRnzesHA8JHiKJt4IIXl2_cAbKw__Yi4lpZZJ05dpnwmnM66VdlTptGdiY-IOfNwMkMc_d_BsyUN4gZdN8uYIWtXvhX3v4UylutAejH-Mxt06HdANQ_sPIc_3fg |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N7cPoA7ABouNDfpi2F1LS2omdx4KoqkmtkKBS9xT5UxSidKIpU_vX40vcqmwC9pZE58S6c3y_O9u_AzgXhtXBT6QTQX2A4mwkJJcRc9wD5kxaUTPwTabpeMau5sk8bKLBszAH6_c0o-y9h224ZOBRSB_PjLfTxEPuFrRn08_DaywcxziN0kyIhj_zfps__E1Ny9-B43V5Ize3sigOfMnoCYx2vWi2kPzorSvV09s7BI3_7eZTeBzQJBk25j-BI1ueQmeyp2JdPYPNl2WBSQOiFtFSfW_mN7zBrC3xI29hSLVjOK_NREKRGYI5WuLW2-2GeIiov0nkdCYaESUWlqhWZFH-Cm8vEfsWxCAPbyih9Rxmo09fP46jUG8hkh6WVRFWIEtcGltOvZNSlidcegSoHEYZyvR1TI3g0tUoygplRWKUkEIrxXkycPQFtMplaV8C0TyzfiZwXMWSeZAlhdJ9yoxgwiiT8C6821kl14GMHLte5D4oQY3mqNF8p9EuXOzFbxoWjr8JfkAT74WQPLt-4I2Vh38xl5JSy6QZyHTAhNMZ10o7qnTaN7ExcRcu9wPk3587e7DkK3iEl03y5jW0qp9r-8bDmUq9DYP5N62m9O0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+bi-objective+bi-item+solid+transportation+problem+with+fuzzy+stochastic+constraints+involving+normal+distribution&rft.jtitle=AIMS+mathematics&rft.au=Buvaneshwari%2C+T.+K.&rft.au=Anuradha%2C+D.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=9&rft.spage=21700&rft.epage=21731&rft_id=info:doi/10.3934%2Fmath.20231107&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |