Solving bi-objective bi-item solid transportation problem with fuzzy stochastic constraints involving normal distribution

In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be transported from various origins to destinations through various types of conveyances. Real-world dec...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 9; pp. 21700 - 21731
Main Authors Buvaneshwari, T. K., Anuradha, D.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.20231107

Cover

Abstract In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be transported from various origins to destinations through various types of conveyances. Real-world decision-making problems are typically phrased as multi-objective optimization problems because they may be effectively described with numerous competing objectives. Many real-life problems have uncertain objective functions and constraints due to incomplete or uncertain information. Such uncertainties are dealt with in fuzzy/interval/stochastic programming. This study explored a novel integrated model bi-objective bi-item solid transportation problem with fuzzy stochastic inequality constraints following a normal distribution. The entrepreneur's objectives are minimizing the transportation cost and duration of transit while maximizing the profit subject to constraints. The chance-constrained technique is applied to transform the uncertainty problem into its equivalent deterministic problem. The deterministic problem is then solved with the proposed method, namely, the global weighted sum method (GWSM), to find the optimal compromise solution. A numerical example is provided to test the efficacy of the method and then is solved using the Lingo 18.0 software. To highlight the proposed method, comparisons of the solution with the existing solution methods are performed. Finally, to understand the sensitivity of parameters in the proposed model, sensitivity analysis (SA) is conducted.
AbstractList In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be transported from various origins to destinations through various types of conveyances. Real-world decision-making problems are typically phrased as multi-objective optimization problems because they may be effectively described with numerous competing objectives. Many real-life problems have uncertain objective functions and constraints due to incomplete or uncertain information. Such uncertainties are dealt with in fuzzy/interval/stochastic programming. This study explored a novel integrated model bi-objective bi-item solid transportation problem with fuzzy stochastic inequality constraints following a normal distribution. The entrepreneur's objectives are minimizing the transportation cost and duration of transit while maximizing the profit subject to constraints. The chance-constrained technique is applied to transform the uncertainty problem into its equivalent deterministic problem. The deterministic problem is then solved with the proposed method, namely, the global weighted sum method (GWSM), to find the optimal compromise solution. A numerical example is provided to test the efficacy of the method and then is solved using the Lingo 18.0 software. To highlight the proposed method, comparisons of the solution with the existing solution methods are performed. Finally, to understand the sensitivity of parameters in the proposed model, sensitivity analysis (SA) is conducted.
Author Anuradha, D.
Buvaneshwari, T. K.
Author_xml – sequence: 1
  givenname: T. K.
  surname: Buvaneshwari
  fullname: Buvaneshwari, T. K.
– sequence: 2
  givenname: D.
  surname: Anuradha
  fullname: Anuradha, D.
BookMark eNqFkUtrGzEUhUVJoW7qZff6A-PoMTOaWQaTpAFDF0nXw9XLlpElI8kOzq_vTO2EUghdSbr3no-rc76iqxCDQeg7JQve8_pmB2WzYIRxSon4hGasFrxq-667-uv-Bc1z3hJCGGU1E_UMnZ6iP7qwxtJVUW6NKu5opocrZodz9E7jkiDkfUwFiosB71OUfmy-uLLB9vD6esK5RLWBXJzCKoY8ClwoGbtwvNBDTDvwWLux5-Rh4nxDny34bOaX8xr9ur97Xv6oVj8fHpe3qwpq2paK9oI1tiVGcNb30ohGAKG9tKRpqdRUEa47AXb8T1ubTpqu0bKDTkkpRMMsv0aPZ66OsB32ye0gnYYIbvhTiGk9QBo392YA4NzUoBm0rO6s6oWSynKpWqqJ1mRkLc6sQ9jD6QW8fwdSMkw5DFMOw1sOo6A6C1SKOSdj_zvP_5lX7mz75Kn_QPUb5Mah-Q
CitedBy_id crossref_primary_10_1007_s12597_024_00799_5
Cites_doi 10.1088/1757-899X/912/6/062047
10.1504/IJMOR.2019.102997
10.1007/s12046-019-1094-0
10.11121/ijocta.2022.1166
10.35940/ijeat.b3054.129219
10.1515/jisys-2020-0095
10.1504/ijfcm.2014.067129
10.1016/0165-0114(92)90256-4
10.1080/16168658.2019.1612605
10.1287/opre.10.4.448
10.1016/j.asoc.2021.107368
10.1287/opre.11.5.759
10.3390/SYM12081208
10.1007/s12597-016-0264-7
10.1007/s12597-017-0307-8
10.1007/s10700-007-9024-8
10.1287/mnsc.11.1.33
10.1016/j.apm.2012.04.026
10.4314/jasem.v24i3.8
10.1016/j.apm.2012.04.024
10.32604/cmc.2022.023126
10.1007/s10100-022-00811-7
10.1016/S0019-9958(65)90241-X
10.2307/1910956
10.1007/s12046-016-0491-x
10.1007/s12597-020-00458-5
10.1504/IJOR.2014.064021
10.3233/JIFS-171717
10.1155/2022/3997396
10.1016/0020-0255(79)90020-3
10.1287/mnsc.6.1.73
10.3390/math9151757
10.1155/2015/787050
10.11121/ijocta.01.2014.00154
10.3926/jiem.1562
10.1016/j.cie.2014.03.001
10.1016/0165-0114(78)90031-3
10.1007/s12198-013-0108-0
10.1007/s101070050050
10.3233/JIFS-202373
10.1016/0305-0548(74)90064-1
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.20231107
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 21731
ExternalDocumentID oai_doaj_org_article_aa33e4ad2a6248fc97cbcf3bc61d0dd0
10.3934/math.20231107
10_3934_math_20231107
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a416t-19725f60e73299be757a019bf0561bd1c03d87af24264e8be85db8a8cbb7752f3
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:38 EDT 2025
Mon Sep 15 08:19:16 EDT 2025
Tue Jul 01 03:57:04 EDT 2025
Thu Apr 24 23:14:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-19725f60e73299be757a019bf0561bd1c03d87af24264e8be85db8a8cbb7752f3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.20231107
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_aa33e4ad2a6248fc97cbcf3bc61d0dd0
unpaywall_primary_10_3934_math_20231107
crossref_primary_10_3934_math_20231107
crossref_citationtrail_10_3934_math_20231107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231107-19
key-10.3934/math.20231107-30
key-10.3934/math.20231107-31
key-10.3934/math.20231107-10
key-10.3934/math.20231107-32
key-10.3934/math.20231107-11
key-10.3934/math.20231107-33
key-10.3934/math.20231107-12
key-10.3934/math.20231107-34
key-10.3934/math.20231107-13
key-10.3934/math.20231107-35
key-10.3934/math.20231107-14
key-10.3934/math.20231107-36
key-10.3934/math.20231107-15
key-10.3934/math.20231107-37
key-10.3934/math.20231107-16
key-10.3934/math.20231107-38
key-10.3934/math.20231107-17
key-10.3934/math.20231107-39
key-10.3934/math.20231107-18
key-10.3934/math.20231107-8
key-10.3934/math.20231107-9
key-10.3934/math.20231107-40
key-10.3934/math.20231107-41
key-10.3934/math.20231107-20
key-10.3934/math.20231107-42
key-10.3934/math.20231107-21
key-10.3934/math.20231107-43
key-10.3934/math.20231107-2
key-10.3934/math.20231107-22
key-10.3934/math.20231107-44
key-10.3934/math.20231107-3
key-10.3934/math.20231107-23
key-10.3934/math.20231107-45
key-10.3934/math.20231107-24
key-10.3934/math.20231107-46
key-10.3934/math.20231107-1
key-10.3934/math.20231107-25
key-10.3934/math.20231107-47
key-10.3934/math.20231107-6
key-10.3934/math.20231107-26
key-10.3934/math.20231107-7
key-10.3934/math.20231107-27
key-10.3934/math.20231107-4
key-10.3934/math.20231107-28
key-10.3934/math.20231107-5
key-10.3934/math.20231107-29
References_xml – ident: key-10.3934/math.20231107-4
  doi: 10.1088/1757-899X/912/6/062047
– ident: key-10.3934/math.20231107-8
  doi: 10.1504/IJMOR.2019.102997
– ident: key-10.3934/math.20231107-17
  doi: 10.1007/s12046-019-1094-0
– ident: key-10.3934/math.20231107-35
  doi: 10.11121/ijocta.2022.1166
– ident: key-10.3934/math.20231107-36
  doi: 10.35940/ijeat.b3054.129219
– ident: key-10.3934/math.20231107-5
  doi: 10.1515/jisys-2020-0095
– ident: key-10.3934/math.20231107-44
  doi: 10.1504/ijfcm.2014.067129
– ident: key-10.3934/math.20231107-24
– ident: key-10.3934/math.20231107-43
  doi: 10.1016/0165-0114(92)90256-4
– ident: key-10.3934/math.20231107-3
– ident: key-10.3934/math.20231107-1
– ident: key-10.3934/math.20231107-29
  doi: 10.1080/16168658.2019.1612605
– ident: key-10.3934/math.20231107-2
  doi: 10.1287/opre.10.4.448
– ident: key-10.3934/math.20231107-6
  doi: 10.1016/j.asoc.2021.107368
– ident: key-10.3934/math.20231107-18
  doi: 10.1287/opre.11.5.759
– ident: key-10.3934/math.20231107-27
  doi: 10.3390/SYM12081208
– ident: key-10.3934/math.20231107-31
  doi: 10.1007/s12597-016-0264-7
– ident: key-10.3934/math.20231107-40
  doi: 10.1007/s12597-017-0307-8
– ident: key-10.3934/math.20231107-45
  doi: 10.1007/s10700-007-9024-8
– ident: key-10.3934/math.20231107-16
  doi: 10.1287/mnsc.11.1.33
– ident: key-10.3934/math.20231107-14
  doi: 10.1016/j.apm.2012.04.026
– ident: key-10.3934/math.20231107-33
  doi: 10.4314/jasem.v24i3.8
– ident: key-10.3934/math.20231107-22
  doi: 10.1016/j.apm.2012.04.024
– ident: key-10.3934/math.20231107-25
  doi: 10.32604/cmc.2022.023126
– ident: key-10.3934/math.20231107-9
  doi: 10.1007/s10100-022-00811-7
– ident: key-10.3934/math.20231107-42
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.20231107-15
  doi: 10.2307/1910956
– ident: key-10.3934/math.20231107-21
– ident: key-10.3934/math.20231107-12
  doi: 10.1007/s12046-016-0491-x
– ident: key-10.3934/math.20231107-23
– ident: key-10.3934/math.20231107-32
  doi: 10.1007/s12597-020-00458-5
– ident: key-10.3934/math.20231107-37
  doi: 10.1504/IJOR.2014.064021
– ident: key-10.3934/math.20231107-11
  doi: 10.3233/JIFS-171717
– ident: key-10.3934/math.20231107-28
  doi: 10.1155/2022/3997396
– ident: key-10.3934/math.20231107-26
  doi: 10.1016/0020-0255(79)90020-3
– ident: key-10.3934/math.20231107-20
  doi: 10.1287/mnsc.6.1.73
– ident: key-10.3934/math.20231107-39
  doi: 10.3390/math9151757
– ident: key-10.3934/math.20231107-13
  doi: 10.1155/2015/787050
– ident: key-10.3934/math.20231107-38
  doi: 10.11121/ijocta.01.2014.00154
– ident: key-10.3934/math.20231107-34
  doi: 10.3926/jiem.1562
– ident: key-10.3934/math.20231107-41
  doi: 10.1016/j.cie.2014.03.001
– ident: key-10.3934/math.20231107-47
  doi: 10.1016/0165-0114(78)90031-3
– ident: key-10.3934/math.20231107-10
  doi: 10.1007/s12198-013-0108-0
– ident: key-10.3934/math.20231107-19
  doi: 10.1007/s101070050050
– ident: key-10.3934/math.20231107-30
  doi: 10.1504/ijfcm.2014.067129
– ident: key-10.3934/math.20231107-7
  doi: 10.3233/JIFS-202373
– ident: key-10.3934/math.20231107-46
  doi: 10.1016/0305-0548(74)90064-1
SSID ssj0002124274
Score 2.2299519
Snippet In today's competitive world, entrepreneurs cannot argue for transporting a single product. It does not provide much profit to the entrepreneur. Due to this...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 21700
SubjectTerms fuzzy random variables
global weighted sum method
normal distribution
solid transportation problem
stochastic programming
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6yi-4gfuL8IgfRi2XdkjbpUcUxhHnRwW4lnzgp3XCdsv1686Zd6UW9eGwJSXjzNnmeN-V5ELrimnryE6iIE0dQrAm4YCKgljnAnAjDvQLf6DkejunTJJo0rL7gn7BSHrgMXFcIQgwVui_iPuVWJUxJZYlUcU-HWnu2HvKkQaZgD3YbMnV8qxTVJAmhXYf_4O7BwZkeWMc2DiGv1d9G28t8LlZfIssaB8xgD-1WyBDflTPaR1smP0DtUS2rujhEq5dZBgUALKfBTL6XexU8QAUWuyyaalxs1Mp9yHFlGIOh3ortcr1eYQf31JsAfWasAB2CSUSxwNP8s-o9BxybYQ2aupUd1hEaDx5fH4ZB5Z0QCAexigDcxCIbh4YRd-BIwyImHJqTFhiD1D0VEs2ZsB4RGS4Nj7TkgispGYv6lhyjVj7LzQnCiiXGfdWWyVBQB5gEl6pHqOaUa6kj1kG3m2CmqhIWh6lnqSMYEPsUYp9uYt9B13Xzeamo8VPDe1iZuhEIYfsXLj3SKj3Sv9Kjg27qdf19uNP_GO4M7UB_ZY3mHLWKj6W5cKilkJc-Qb8BQG7wDg
  priority: 102
  providerName: Directory of Open Access Journals
Title Solving bi-objective bi-item solid transportation problem with fuzzy stochastic constraints involving normal distribution
URI https://doi.org/10.3934/math.20231107
https://doaj.org/article/aa33e4ad2a6248fc97cbcf3bc61d0dd0
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: AMVHM
  dateStart: 20220701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N7cPYAzA2RLdR-WGCFzLS2omdxw5RVZM6TYKi8RT5U-uI0oqlm9q_Hl_iVgO0j7ckOifWneP73dn-HcCxMKwOfiKdCOoDFGcjIbmMmOMeMGfSipqBb3yejibs7DK5DJto8CzMvfV7mlH22cM2XDLwKKSHZ8bbaeIhdwvak_OLwU8sHMc4jdJMiIY_8_82f_mbmpZ_B7YX5Vwu72RR3PMlw1cwXPei2ULy62RRqRO9-oeg8cluvoaXAU2SQWP-Xdiy5RvYGW-oWG_2YPltVmDSgKhpNFPXzfyGN5i1JX7kTQ2p1gzntZlIKDJDMEdL3GK1WhIPEfWVRE5nohFRYmGJ6oZMy9vw9hKxb0EM8vCGElr7MBl-_f5lFIV6C5H0sKyKsAJZ4tLYcuqdlLI84dIjQOUwylCmp2NqBJeuRlFWKCsSo4QUWinOk76jb6FVzkr7DojmmfUzgeMqlsyDLCmU7lFmBBNGmYR34NPaKrkOZOTY9SL3QQlqNEeN5muNduDDRnzesHA8JHiKJt4IIXl2_cAbKw__Yi4lpZZJ05dpnwmnM66VdlTptGdiY-IOfNwMkMc_d_BsyUN4gZdN8uYIWtXvhX3v4UylutAejH-Mxt06HdANQ_sPIc_3fg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N7cPoA7ABouNDfpi2F1LS2omdx4KoqkmtkKBS9xT5UxSidKIpU_vX40vcqmwC9pZE58S6c3y_O9u_AzgXhtXBT6QTQX2A4mwkJJcRc9wD5kxaUTPwTabpeMau5sk8bKLBszAH6_c0o-y9h224ZOBRSB_PjLfTxEPuFrRn08_DaywcxziN0kyIhj_zfps__E1Ny9-B43V5Ize3sigOfMnoCYx2vWi2kPzorSvV09s7BI3_7eZTeBzQJBk25j-BI1ueQmeyp2JdPYPNl2WBSQOiFtFSfW_mN7zBrC3xI29hSLVjOK_NREKRGYI5WuLW2-2GeIiov0nkdCYaESUWlqhWZFH-Cm8vEfsWxCAPbyih9Rxmo09fP46jUG8hkh6WVRFWIEtcGltOvZNSlidcegSoHEYZyvR1TI3g0tUoygplRWKUkEIrxXkycPQFtMplaV8C0TyzfiZwXMWSeZAlhdJ9yoxgwiiT8C6821kl14GMHLte5D4oQY3mqNF8p9EuXOzFbxoWjr8JfkAT74WQPLt-4I2Vh38xl5JSy6QZyHTAhNMZ10o7qnTaN7ExcRcu9wPk3587e7DkK3iEl03y5jW0qp9r-8bDmUq9DYP5N62m9O0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+bi-objective+bi-item+solid+transportation+problem+with+fuzzy+stochastic+constraints+involving+normal+distribution&rft.jtitle=AIMS+mathematics&rft.au=Buvaneshwari%2C+T.+K.&rft.au=Anuradha%2C+D.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=9&rft.spage=21700&rft.epage=21731&rft_id=info:doi/10.3934%2Fmath.20231107&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon