A Theoretical Study of the Dynamic Behavior of Alkane Hydroxylation by a Compound I Model of Cytochrome P450
Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction accordin...
Saved in:
Published in | Journal of the American Chemical Society Vol. 123; no. 40; pp. 9806 - 9816 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.10.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 |
DOI | 10.1021/ja010593t |
Cover
Abstract | Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born−Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron−oxo species of Compound I and the second is the rebound step in which the resultant iron−hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C−H bond being dissociated and the O−H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C−H distance or the O−H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron−hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C−O bond. The H−O−Fe−C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C−H and O−H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe−O and Fe−S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of ν 3 and ν 4 that explicitly involve Fe−N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process. |
---|---|
AbstractList | Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process. Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process. Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born−Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron−oxo species of Compound I and the second is the rebound step in which the resultant iron−hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C−H bond being dissociated and the O−H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C−H distance or the O−H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron−hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C−O bond. The H−O−Fe−C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C−H and O−H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe−O and Fe−S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of ν 3 and ν 4 that explicitly involve Fe−N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process. |
Author | Kamachi, Takashi Shiota, Yoshihito Yoshizawa, Kazunari |
Author_xml | – sequence: 1 givenname: Kazunari surname: Yoshizawa fullname: Yoshizawa, Kazunari – sequence: 2 givenname: Takashi surname: Kamachi fullname: Kamachi, Takashi – sequence: 3 givenname: Yoshihito surname: Shiota fullname: Shiota, Yoshihito |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11583542$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9vEzEQxS1URNPAgS-AfAGJw1L_ze4eQwptpSAqJUiIi-XYY2VT7zq1vaj77dmQkgPqaTSj33uaeXOBzrrQAUJvKflECaOXO00okTXPL9CESkYKSdnsDE0IIawoqxk_Rxcp7cZWsIq-QueUyopLwSbIz_F6CyFCboz2eJV7O-DgcN4Cvho63TYGf4at_t2EeJjP_b3uAN8MNobHwevchA5vBqzxIrT70HcW3-JvwYI_0IshB7ONoQV8JyR5jV467RO8eapT9OPrl_Xiplh-v75dzJeFFlTmwjlGCRVOcM6I0dxIwrmrmdlQwYR1lbO8NMJuDNWgCUBVWmlAgJgxW9aGT9GHo-8-hoceUlZtkwx4P64e-qRKymhdjxFM0bsnsN-0YNU-Nq2Og_qXzwhcHgETQ0oRnDJN_nt0jrrxihJ1-IA6fWBUfPxPcTJ9hi2ObJMyPJ5AHe_VrOSlVOu7lapXv8jVT3mtliP__shrk9Qu9LEbU3zG9w-TKqA9 |
CitedBy_id | crossref_primary_10_1093_chemle_upad042 crossref_primary_10_1021_cr020436s crossref_primary_10_1021_acs_inorgchem_3c03748 crossref_primary_10_1021_ja044716w crossref_primary_10_1039_B109735K crossref_primary_10_1021_ja030393c crossref_primary_10_1039_D3NJ02991C crossref_primary_10_1021_ja052111 crossref_primary_10_1039_c0cs00142b crossref_primary_10_1246_bcsj_76_721 crossref_primary_10_1016_j_jinorgbio_2007_11_006 crossref_primary_10_1016_S1367_5931_02_00363_0 crossref_primary_10_1007_s00775_007_0277_z crossref_primary_10_1021_jacs_3c09891 crossref_primary_10_1021_acs_jcim_9b00741 crossref_primary_10_1016_j_jinorgbio_2006_10_012 crossref_primary_10_1021_cr900121s crossref_primary_10_1039_b925647d crossref_primary_10_1021_ja039847w crossref_primary_10_1039_C6DT04250C crossref_primary_10_1021_acs_chemrestox_1c00350 crossref_primary_10_1016_j_ecoenv_2023_114964 crossref_primary_10_1016_S0003_9861_02_00445_9 crossref_primary_10_1002_chem_202002203 crossref_primary_10_1021_jacs_9b08064 crossref_primary_10_1021_acs_chemrestox_0c00483 crossref_primary_10_1016_j_jinorgbio_2006_01_008 crossref_primary_10_1039_B810767J crossref_primary_10_1002_chem_202402468 crossref_primary_10_1007_s00775_003_0515_y crossref_primary_10_1039_B410729B crossref_primary_10_2133_dmpk_20_1 crossref_primary_10_1021_jp060033m crossref_primary_10_1021_ic202527u crossref_primary_10_1021_ja2037645 crossref_primary_10_1021_cr020443g crossref_primary_10_1021_jp102225e crossref_primary_10_1074_jbc_M304265200 crossref_primary_10_1016_S1367_5931_02_00310_1 crossref_primary_10_1021_ic402754y crossref_primary_10_1021_ja051912 crossref_primary_10_1021_jp505662x crossref_primary_10_1021_acs_est_3c00071 crossref_primary_10_1002_jcc_20302 crossref_primary_10_1021_ci8003946 crossref_primary_10_1021_jacs_3c03773 crossref_primary_10_1016_S0010_8545_01_00464_7 crossref_primary_10_1021_acs_jpcb_1c04088 crossref_primary_10_1021_jp803010f crossref_primary_10_1021_jp110255u crossref_primary_10_1002_ange_200300578 crossref_primary_10_1074_jbc_M404216200 crossref_primary_10_1021_ja0208862 crossref_primary_10_1002_ejic_200300448 crossref_primary_10_1016_j_envint_2024_108636 crossref_primary_10_1021_cr030722j crossref_primary_10_1016_j_theochem_2004_11_054 crossref_primary_10_1016_j_bbrc_2003_10_084 crossref_primary_10_1002_chem_200304768 crossref_primary_10_1002_adsc_200303049 crossref_primary_10_1021_jacs_7b10033 crossref_primary_10_1016_j_jcat_2018_05_017 crossref_primary_10_1016_j_jhazmat_2020_124391 crossref_primary_10_1021_acs_est_9b06897 crossref_primary_10_1021_ic3017497 crossref_primary_10_1021_jacs_3c01196 crossref_primary_10_1002_chem_200802550 crossref_primary_10_1146_annurev_pharmtox_45_120403_100030 crossref_primary_10_3389_fchem_2019_00182 crossref_primary_10_1007_s00894_010_0644_5 crossref_primary_10_1021_jp2120302 crossref_primary_10_1063_1_4907733 crossref_primary_10_1074_jbc_M404217200 crossref_primary_10_1016_j_bmc_2008_03_023 crossref_primary_10_1002_anie_200300578 crossref_primary_10_1021_jp200650q crossref_primary_10_1021_acscatal_5b02720 crossref_primary_10_1021_jp9028694 crossref_primary_10_1016_j_jinorgbio_2006_01_020 crossref_primary_10_1039_D1CC06391J |
Cites_doi | 10.1002/1521-3773(20000602)39:11<2003::AID-ANIE2003>3.0.CO;2-M 10.1021/jo9712097 10.1021/ja970574c 10.1021/ja005619f 10.1063/1.464913 10.1039/a802734j 10.1021/ja0017965 10.1021/j100096a001 10.1063/1.442716 10.1002/chem.19970030722 10.1021/ja981157i 10.1103/PhysRevB.37.785 10.1021/ja00099a083 10.1039/a809385g 10.1021/j100021a003 10.1021/bi00531a026 10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-# 10.1103/PhysRev.159.98 10.1016/0006-291X(77)90758-6 10.1021/j100072a027 10.1021/om980067j 10.1021/jp992464t 10.1002/jcc.540080614 10.1021/ja971723u 10.1021/j100364a008 10.1073/pnas.95.7.3555 10.1021/ja994377k 10.1063/1.1750107 10.1021/ed062p928 10.1021/ja981059x 10.1021/ja991878x 10.1007/s007750050043 10.1021/jp001950+ 10.1021/ja00374a017 10.1021/ja0055108 10.1021/jp9632955 10.1021/ja994106+ 10.1021/ja00523a008 10.1021/ic981332w 10.1021/j100364a007 10.1021/ja991997c 10.1021/cr9500500 10.1021/ja00279a059 10.1016/0009-2614(88)80160-X 10.1103/PhysRevA.38.3098 10.1002/(SICI)1521-3773(19990115)38:1/2<82::AID-ANIE82>3.0.CO;2-W 10.1021/ja00400a075 10.1016/S0162-0134(00)00162-8 10.1021/ja9705250 10.1021/ja980994h 10.1021/ja963939m 10.1126/science.287.5458.1615 10.1016/0006-291X(78)91643-1 10.1246/bcsj.73.815 10.1021/ar990028j 10.1139/p80-159 10.1021/ja9906296 10.1002/hlca.19950780602 10.1002/(SICI)1521-3765(19980210)4:2<193::AID-CHEM193>3.0.CO;2-Q 10.1021/ja991541v 10.1021/ja00154a008 10.1021/ja00383a007 |
ContentType | Journal Article |
Copyright | Copyright © 2001 American Chemical Society |
Copyright_xml | – notice: Copyright © 2001 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ja010593t |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9816 |
ExternalDocumentID | 11583542 10_1021_ja010593t ark_67375_TPS_9SZ0DX5G_L b075085974 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 186 3EH 3O- 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAYJJ ABDEX ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFDAS AFEFF AFFDN AFFNX AFMIJ AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 DZ EBS ED ED~ EJD ET F20 F5P GJ GNL IH9 IHE JG JG~ K2 K78 LG6 MVM NHB OHT P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UPT UQL VF5 VG9 VH1 VQA W1F WH7 X XFK YZZ ZCG ZGI ZHY ZY4 --- -DZ -ET -~X .DC .GJ 6TJ AAHBH AAYOK ABJNI ABQRX ABTAH ACBEA ACGFO ADHLV ADOJD AGXLV AHGAQ AI. BSCLL CUPRZ GGK IH2 XOL XSW YQT YYP ZCA ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ AHDLI ANPPW CITATION YR5 CGR CUY CVF ECM EIF NPM VXZ YIN 7X8 AAYWT |
ID | FETCH-LOGICAL-a415t-ff21014f43320ca3c5033f92cb1424df8fd37c4dbc1aea0ee87d5ce4e462d79c3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Thu Sep 04 16:54:57 EDT 2025 Wed Feb 19 02:37:07 EST 2025 Tue Jul 01 02:17:18 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Wed Oct 30 09:31:08 EDT 2024 Thu Aug 27 13:43:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a415t-ff21014f43320ca3c5033f92cb1424df8fd37c4dbc1aea0ee87d5ce4e462d79c3 |
Notes | ark:/67375/TPS-9SZ0DX5G-L istex:6E202EB5E19562D37C430992C6D378264FB5D74F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 11583542 |
PQID | 71219958 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_71219958 pubmed_primary_11583542 crossref_citationtrail_10_1021_ja010593t crossref_primary_10_1021_ja010593t istex_primary_ark_67375_TPS_9SZ0DX5G_L acs_journals_10_1021_ja010593t |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-10-10 |
PublicationDateYYYYMMDD | 2001-10-10 |
PublicationDate_xml | – month: 10 year: 2001 text: 2001-10-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2001 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Schröder D. (ja010593tb00059/ja010593tb00059_1) 2000; 33 Newcomb M. (ja010593tb00014/ja010593tb00014_1) 2000; 122 Verlet L. (ja010593tb00051/ja010593tb00051_1) 1967; 159 Newcomb M. (ja010593tb00010/ja010593tb00010_1) 1995; 117 Groves J. T. (ja010593tb00004/ja010593tb00004_1) 1978; 81 Plattner D. A. (ja010593tb00060/ja010593tb00060_1) 1999; 38 Li X.-Y. (ja010593tb00068/ja010593tb00068_1) 1990; 94 Yoshizawa K. (ja010593tb00056/ja010593tb00056_1) 1998; 17 Ghosh A. (ja010593tb00017/ja010593tb00017_1) 1994; 98 Green M. T. (ja010593tb00030/ja010593tb00030_1) 1998; 120 Vosko S. H. (ja010593tb00044/ja010593tb00044_1) 1980; 58 Stephens P. J. (ja010593tb00042/ja010593tb00042_1) 1994; 98 Harris N. (ja010593tb00025/ja010593tb00025_1) 2000; 39 Kuramochi H. (ja010593tb00018/ja010593tb00018_1) 1997; 119 Harris D. L. (ja010593tb00019/ja010593tb00019_1) 1998; 120 Zakharieva O. (ja010593tb00028/ja010593tb00028_1) 1996; 1 Schlichting I. (ja010593tb00038/ja010593tb00038_1) 2000; 287 Becke A. D. (ja010593tb00041/ja010593tb00041_1) 1993; 98 Yamamoto S. (ja010593tb00016/ja010593tb00016_1) 1988; 145 Wirstam M. (ja010593tb00020/ja010593tb00020_1) 1999; 121 Yoshizawa K. (ja010593tb00037/ja010593tb00037_1) 2000; 104 Ogliaro F. (ja010593tb00034/ja010593tb00034_1) 2000; 122 Manchester J. I. (ja010593tb00035/ja010593tb00035_1) 1997; 119 Shiota Y. (ja010593tb00057/ja010593tb00057_1) 2000; 122 Ohta T. (ja010593tb00033/ja010593tb00033_1) 2000; 82 Yoshizawa K. (ja010593tb00054/ja010593tb00054_1) 1997; 3 Sono M. (ja010593tb00002/ja010593tb00002_1) 1996; 96 Shaik S. (ja010593tb00021/ja010593tb00021_1) 1998; 4 Dobbs K. D. (ja010593tb00048/ja010593tb00048_1) 1987; 8 (ja010593tb00001/ja010593tb00001_1) 1995 Filatov M. (ja010593tb00023/ja010593tb00023_1) 1999; 38 Li X.-Y. (ja010593tb00067/ja010593tb00067_1) 1990; 94 Taketsugu T. (ja010593tb00053/ja010593tb00053_1) 1995; 99 Siegbahn P. E. M. (ja010593tb00062/ja010593tb00062_1) 1997; 119 Binkley J. S. (ja010593tb00046/ja010593tb00046_1) 1980; 102 Wigner E. (ja010593tb00061/ja010593tb00061_1) 1937; 5 Toy P. H. (ja010593tb00012/ja010593tb00012_1) 1998; 120 Bernadou J. (ja010593tb00027/ja010593tb00027_1) 1998 Koch W. (ja010593tb00045/ja010593tb00045_2) 2000 Hjelmeland L. M. (ja010593tb00003/ja010593tb00003_1) 1977; 76 Becke A. D. (ja010593tb00040/ja010593tb00040_1) 1988; 38 Bernadou J. (ja010593tb00026/ja010593tb00026_1) 1994; 116 Gherman B. F. (ja010593tb00066/ja010593tb00066_1) 2001; 123 Swope W. C. (ja010593tb00052/ja010593tb00052_1) 1982; 76 Daly J. (ja010593tb00007/ja010593tb00007_1) 1971; 28 Pietro W. J. (ja010593tb00049/ja010593tb00049_1) 1982; 104 Toy P. H. (ja010593tb00011/ja010593tb00011_1) 1997; 62 Groves J. T. (ja010593tb00009/ja010593tb00009_1) 1985; 62 Antony J. (ja010593tb00029/ja010593tb00029_1) 1997; 101 Lee C. (ja010593tb00043/ja010593tb00043_1) 1988; 37 Yoshizawa K. (ja010593tb00065/ja010593tb00065_1) 2000; 73 Frisch M. J. (ja010593tb00050/ja010593tb00050_1) 1998 Shaik S. (ja010593tb00058/ja010593tb00058_1) 1995; 78 Vaz A. D. N. (ja010593tb00013/ja010593tb00013_1) 1998; 95 Baker J. (ja010593tb00045/ja010593tb00045_1) Gelb M. H. (ja010593tb00005/ja010593tb00005_1) 1982; 21 Ogliaro F. (ja010593tb00024/ja010593tb00024_1) 2000; 122 Yoshizawa K. (ja010593tb00036/ja010593tb00036_1) 2000; 104 Siegbahn P. E. M. (ja010593tb00063/ja010593tb00063_1) 1999; 38 Filatov M. (ja010593tb00022/ja010593tb00022_1) 1999 Green M. T. (ja010593tb00031/ja010593tb00031_1) 1999; 121 White R. E. (ja010593tb00006/ja010593tb00006_1) 1986; 108 Gordon M. S. (ja010593tb00047/ja010593tb00047_1) 1982; 104 Yoshizawa K. (ja010593tb00055/ja010593tb00055_1) 1998; 120 Green M. T. (ja010593tb00032/ja010593tb00032_1) 2000; 122 Basch H. (ja010593tb00064/ja010593tb00064_1) 1999; 121 Groves J. T. (ja010593tb00008/ja010593tb00008_1) 1981; 103 Strich A. (ja010593tb00015/ja010593tb00015_1) 1983; 7 |
References_xml | – volume: 39 start-page: 2003 year: 2000 ident: ja010593tb00025/ja010593tb00025_1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/1521-3773(20000602)39:11<2003::AID-ANIE2003>3.0.CO;2-M – volume-title: A Chemist's Guide to Density Functional Theory year: 2000 ident: ja010593tb00045/ja010593tb00045_2 – volume: 62 start-page: 9114 year: 1997 ident: ja010593tb00011/ja010593tb00011_1 publication-title: J. Org. Chem. doi: 10.1021/jo9712097 – volume: 119 start-page: 11442 year: 1997 ident: ja010593tb00018/ja010593tb00018_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970574c – volume: 122 start-page: 12892 year: 2000 ident: ja010593tb00034/ja010593tb00034_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja005619f – volume: 98 start-page: 5648 year: 1993 ident: ja010593tb00041/ja010593tb00041_1 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – start-page: 2167 year: 1998 ident: ja010593tb00027/ja010593tb00027_1 publication-title: Chem. Commun. doi: 10.1039/a802734j – volume: 122 start-page: 12317 year: 2000 ident: ja010593tb00057/ja010593tb00057_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0017965 – volume: 98 start-page: 11623 year: 1994 ident: ja010593tb00042/ja010593tb00042_1 publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 76 start-page: 637 year: 1982 ident: ja010593tb00052/ja010593tb00052_1 publication-title: J. Chem. Phys. doi: 10.1063/1.442716 – volume: 3 start-page: 1160 year: 1997 ident: ja010593tb00054/ja010593tb00054_1 publication-title: Chem. Eur. J. doi: 10.1002/chem.19970030722 – volume: 120 start-page: 7719 year: 1998 ident: ja010593tb00012/ja010593tb00012_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981157i – volume: 37 start-page: 785 year: 1988 ident: ja010593tb00043/ja010593tb00043_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 116 start-page: 9375 year: 1994 ident: ja010593tb00026/ja010593tb00026_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00099a083 – start-page: 399 year: 1999 ident: ja010593tb00022/ja010593tb00022_1 publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/a809385g – volume: 28 start-page: 285 year: 1971 ident: ja010593tb00007/ja010593tb00007_1 publication-title: Handb. Exp. Pharmacol. – volume: 99 start-page: 8462 year: 1995 ident: ja010593tb00053/ja010593tb00053_1 publication-title: J. Phys. Chem. doi: 10.1021/j100021a003 – volume: 7 start-page: 347 year: 1983 ident: ja010593tb00015/ja010593tb00015_1 publication-title: Nouv. J. Chim. – volume: 21 start-page: 370 year: 1982 ident: ja010593tb00005/ja010593tb00005_1 publication-title: Biochemistry doi: 10.1021/bi00531a026 – volume: 38 start-page: 3510 year: 1999 ident: ja010593tb00023/ja010593tb00023_1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-# – volume: 159 start-page: 98 year: 1967 ident: ja010593tb00051/ja010593tb00051_1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.98 – volume: 76 start-page: 541 year: 1977 ident: ja010593tb00003/ja010593tb00003_1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(77)90758-6 – volume: 98 start-page: 5576 year: 1994 ident: ja010593tb00017/ja010593tb00017_1 publication-title: J. Phys. Chem. doi: 10.1021/j100072a027 – volume: 17 start-page: 2825 year: 1998 ident: ja010593tb00056/ja010593tb00056_1 publication-title: Organometallics doi: 10.1021/om980067j – volume: 104 start-page: 2552 year: 2000 ident: ja010593tb00037/ja010593tb00037_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp992464t – volume: 8 start-page: 861 year: 1987 ident: ja010593tb00048/ja010593tb00048_1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540080614 – volume: 120 start-page: 564 year: 1998 ident: ja010593tb00055/ja010593tb00055_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja971723u – volume: 94 start-page: 47 year: 1990 ident: ja010593tb00068/ja010593tb00068_1 publication-title: J. Phys. Chem. doi: 10.1021/j100364a008 – volume-title: Cytochrome P450: Structure, Mechanism, and Biochemistry year: 1995 ident: ja010593tb00001/ja010593tb00001_1 – volume: 95 start-page: 3555 year: 1998 ident: ja010593tb00013/ja010593tb00013_1 publication-title: J. Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.7.3555 – volume: 122 start-page: 9495 year: 2000 ident: ja010593tb00032/ja010593tb00032_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja994377k – volume: 5 start-page: 720 year: 1937 ident: ja010593tb00061/ja010593tb00061_1 publication-title: J. Chem. Phys. doi: 10.1063/1.1750107 – volume: 62 start-page: 928 year: 1985 ident: ja010593tb00009/ja010593tb00009_1 publication-title: J. Chem. Educ. doi: 10.1021/ed062p928 – volume: 120 start-page: 8941 year: 1998 ident: ja010593tb00019/ja010593tb00019_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981059x – volume: 122 start-page: 8977 year: 2000 ident: ja010593tb00024/ja010593tb00024_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991878x – volume: 1 start-page: 192 year: 1996 ident: ja010593tb00028/ja010593tb00028_1 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s007750050043 – volume: 104 start-page: 12365 year: 2000 ident: ja010593tb00036/ja010593tb00036_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp001950+ – volume: 104 start-page: 2797 year: 1982 ident: ja010593tb00047/ja010593tb00047_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00374a017 – volume: 123 start-page: 3836 year: 2001 ident: ja010593tb00066/ja010593tb00066_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0055108 – volume: 101 start-page: 2692 year: 1997 ident: ja010593tb00029/ja010593tb00029_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp9632955 – volume: 122 start-page: 2677 year: 2000 ident: ja010593tb00014/ja010593tb00014_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja994106+ – volume: 102 start-page: 939 year: 1980 ident: ja010593tb00046/ja010593tb00046_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00523a008 – volume: 38 start-page: 2880 year: 1999 ident: ja010593tb00063/ja010593tb00063_1 publication-title: Inorg. Chem. doi: 10.1021/ic981332w – volume: 94 start-page: 31 year: 1990 ident: ja010593tb00067/ja010593tb00067_1 publication-title: J. Phys. Chem. doi: 10.1021/j100364a007 – volume: 121 start-page: 10178 year: 1999 ident: ja010593tb00020/ja010593tb00020_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991997c – volume: 96 start-page: 2841 year: 1996 ident: ja010593tb00002/ja010593tb00002_1 publication-title: Chem. Rev. doi: 10.1021/cr9500500 – volume: 108 start-page: 6024 year: 1986 ident: ja010593tb00006/ja010593tb00006_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00279a059 – volume: 145 start-page: 111 year: 1988 ident: ja010593tb00016/ja010593tb00016_1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(88)80160-X – volume: 38 start-page: 3098 year: 1988 ident: ja010593tb00040/ja010593tb00040_1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 38 start-page: 82 year: 1999 ident: ja010593tb00060/ja010593tb00060_1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<82::AID-ANIE82>3.0.CO;2-W – volume: 103 start-page: 2884 year: 1981 ident: ja010593tb00008/ja010593tb00008_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00400a075 – volume: 82 start-page: 141 year: 2000 ident: ja010593tb00033/ja010593tb00033_1 publication-title: J. Inorg. Biochem. doi: 10.1016/S0162-0134(00)00162-8 – volume: 119 start-page: 5069 year: 1997 ident: ja010593tb00035/ja010593tb00035_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9705250 – volume: 120 start-page: 10772 year: 1998 ident: ja010593tb00030/ja010593tb00030_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja980994h – volume: 119 start-page: 3103 year: 1997 ident: ja010593tb00062/ja010593tb00062_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja963939m – volume-title: Gaussian 98 year: 1998 ident: ja010593tb00050/ja010593tb00050_1 – volume: 287 start-page: 1615 year: 2000 ident: ja010593tb00038/ja010593tb00038_1 publication-title: Science doi: 10.1126/science.287.5458.1615 – volume: 81 start-page: 154 year: 1978 ident: ja010593tb00004/ja010593tb00004_1 publication-title: J. Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(78)91643-1 – volume: 73 start-page: 815 year: 2000 ident: ja010593tb00065/ja010593tb00065_1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.73.815 – volume: 33 start-page: 139 year: 2000 ident: ja010593tb00059/ja010593tb00059_1 publication-title: Acc. Chem. Res. doi: 10.1021/ar990028j – volume: 58 start-page: 1200 year: 1980 ident: ja010593tb00044/ja010593tb00044_1 publication-title: Can. J. Phys. doi: 10.1139/p80-159 – volume: 121 start-page: 7249 year: 1999 ident: ja010593tb00064/ja010593tb00064_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9906296 – volume: 78 start-page: 1393 year: 1995 ident: ja010593tb00058/ja010593tb00058_1 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19950780602 – volume: 4 start-page: 193 year: 1998 ident: ja010593tb00021/ja010593tb00021_1 publication-title: Chem. Eur. J. doi: 10.1002/(SICI)1521-3765(19980210)4:2<193::AID-CHEM193>3.0.CO;2-Q – volume: 121 start-page: 7939 year: 1999 ident: ja010593tb00031/ja010593tb00031_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991541v – volume-title: Chemical Applications of Density-Functional Theory ident: ja010593tb00045/ja010593tb00045_1 – volume: 117 start-page: 12085 year: 1995 ident: ja010593tb00010/ja010593tb00010_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00154a008 – volume: 104 start-page: 5039 year: 1982 ident: ja010593tb00049/ja010593tb00049_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00383a007 |
SSID | ssj0004281 |
Score | 2.0210955 |
Snippet | Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9806 |
SubjectTerms | Computer Simulation Cytochrome P-450 Enzyme System - chemistry Cytochrome P-450 Enzyme System - metabolism Ethane - chemistry Ethane - metabolism Hydroxylation Models, Chemical Models, Molecular |
Title | A Theoretical Study of the Dynamic Behavior of Alkane Hydroxylation by a Compound I Model of Cytochrome P450 |
URI | http://dx.doi.org/10.1021/ja010593t https://api.istex.fr/ark:/67375/TPS-9SZ0DX5G-L/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/11583542 https://www.proquest.com/docview/71219958 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB5ROJRLCxRoWqArWqFejOz1er0-Rgk0IEBICVLUi7VPVUqUVIkjNf313fGDgHj0aGssr2fGnvHOzPcBfIsUjy1Pw0AnqQmYUjKQsWIByyLBlT8UGuedr294745dDpPhGnx9oYJPER8ISRyzuHgDG5T7-IL5T6e_Gn6kImpy3FTwuIEPengphh49fxR6NlCLf17OK8v4cv4eus2UTtVWMjpdFOpU_30K2vja0rfgXZ1fknblENuwZic78LbT0Lp9gHGbDFbDiwT7CJdk6ohPBEm3oqcnNWjiDM-3xyM5saS3NLiyqnOOqCWRBD8lSMpELggyqo1RurMspvoXQiCQW5aEu3B3fjbo9IKaciGQPpIXgXMUyXsdopqFWsYaq5wuoxr3iphxwpk41cwoHUkrQ2tFahJtmWWcmjTT8R6sT6YT-xFIJFQWZob6JMAw5kJpFedGICC8tdyZFhx5m-T1KzPPy2o49X8jjdJa8L0xV65rwHLkzRg_J3p8L_q7Qul4TuiktPm9hJyNsK0tTfLBbT_P-j_D7jD5kV-14EvjFLk3DlZQvKKni3meRhRH2kUL9itfWd0tSnALjX7631N9hs2yjQ2bYsIDWC9mC3vo85pCHZV-_Q-sQO_6 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEB7a5CF9adMrcZtjCaH0RUHHarV6NM7htE4I2AHTl2VPAjZ2sWSo--u7oyNuQ0L6KDGSdmdHmtHOzPcBHEeKJZZlYaDTzARUKRnIRNGA5hFnyh9yjf3OV9esf0u_jdNxA5ODvTB-EIW_U1El8dfoAggThFyOeVK-hM2UUYY0Dd3ecN0DGfOoDXUzzpIWRejvS9ED6eIfD7SJyvz1dHhZuZnzNzVfUTXAqrpkcrIs1Yn-_QC78f9msA2vm2iTdGvzeAsv7OwdbPVakrf3MO2S0bqVkWBV4YrMHfFhITmtyepJA6G4wPPd6UTOLOmvDA6wrqMjakUkwQ8LUjSRS4L8alOU7q3Kub5DQARyQ9PwA9yen416_aAhYAik9-tl4FyMVL4OMc5CLRONOU-Xxxp3jqhx3Jkk09QoHUkrQ2t5ZlJtqaUsNlmuk4-wMZvP7C6QiKs8zE3sQwJDqQulVYwZjvDw1jJnOnDgdSaaF6gQVW489v8mrdI68LVdNaEb-HJk0Zg-Jnp0L_qzxux4TOhLtfT3EnIxwSK3LBWjm6HIhz_C03F6IQYdOGxtQ_jFwXyKV_R8WYgsirHBnXdgpzaZ9dOiFDfU4k_PzeoQtvqjq4EYXF5__wyvqgI3LJcJ92CjXCztvo94SnVQmfofFUr4XA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEvG98rG5uFEOIlUz4cx3ms2pUOxqjUTqp4sfwppFbt1KQS5a_Hl48W0BA8Jrok9vkcn313vx_A20ixxLIsDHSamYAqJQOZKBrQPOJM-Uuusd758zUb3tCP03TabBSxFsY3ovBvKqogPs7qW-MahAGECkI-xzwp78O-d0QipGro9sa7OsiYR627m3GWtEhCvz6Kq5AufluF9lGh3__uYlZLzeAQvmwbWWWYzM7XpTrXP_7Ab_z_XjyGg8brJN3aTJ7APbt4Cg97LdnbM5h3yWRX0kgwu3BDlo5495D0a9J60kAprvB-dz6TC0uGG4ONrPPpiNoQSfAHg1RN5JIgz9ocpXubcqm_ITACGdE0fA43g4tJbxg0RAyB9Ot7GTgXI6WvQ6yzUMtEY-zT5bHGEyRqHHcmyTQ1SkfSytBanplUW2opi02W6-QF7C2WC3sEJOIqD3MTe9fAUOpCaRVjhiNMvLXMmQ6cer2JZiIVooqRx36P0iqtA-_bkRO6gTFHNo35XaJvtqK3NXbHXULvquHfSsjVDJPdslRMRmORj7-G_Wn6QVx14Ky1D-EHB-MqXtHLdSGyKMZCd96Bl7XZ7L4WpXiwFr_6V6_O4MGoPxBXl9efjuFRleeGWTPhCeyVq7V97R2fUp1W1v4TJy761g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theoretical+Study+of+the+Dynamic+Behavior+of+Alkane+Hydroxylation+by+a+Compound+I+Model+of+Cytochrome+P450&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=YOSHIZAWA%2C+Kazunari&rft.au=KAMACHI%2C+Takashi&rft.au=SHIOTA%2C+Yoshihito&rft.date=2001-10-10&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=123&rft.issue=40&rft.spage=9806&rft.epage=9816&rft_id=info:doi/10.1021%2Fja010593t&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_9SZ0DX5G_L |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |