A Theoretical Study of the Dynamic Behavior of Alkane Hydroxylation by a Compound I Model of Cytochrome P450

Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction accordin...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 123; no. 40; pp. 9806 - 9816
Main Authors Yoshizawa, Kazunari, Kamachi, Takashi, Shiota, Yoshihito
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.10.2001
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
DOI10.1021/ja010593t

Cover

Abstract Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born−Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps:  the first is the H-atom abstraction from ethane by the iron−oxo species of Compound I and the second is the rebound step in which the resultant iron−hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C−H bond being dissociated and the O−H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C−H distance or the O−H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron−hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C−O bond. The H−O−Fe−C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C−H and O−H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe−O and Fe−S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of ν 3 and ν 4 that explicitly involve Fe−N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.
AbstractList Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.
Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.
Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born−Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps:  the first is the H-atom abstraction from ethane by the iron−oxo species of Compound I and the second is the rebound step in which the resultant iron−hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C−H bond being dissociated and the O−H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C−H distance or the O−H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron−hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C−O bond. The H−O−Fe−C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C−H and O−H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe−O and Fe−S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of ν 3 and ν 4 that explicitly involve Fe−N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.
Author Kamachi, Takashi
Shiota, Yoshihito
Yoshizawa, Kazunari
Author_xml – sequence: 1
  givenname: Kazunari
  surname: Yoshizawa
  fullname: Yoshizawa, Kazunari
– sequence: 2
  givenname: Takashi
  surname: Kamachi
  fullname: Kamachi, Takashi
– sequence: 3
  givenname: Yoshihito
  surname: Shiota
  fullname: Shiota, Yoshihito
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11583542$$D View this record in MEDLINE/PubMed
BookMark eNptkU9vEzEQxS1URNPAgS-AfAGJw1L_ze4eQwptpSAqJUiIi-XYY2VT7zq1vaj77dmQkgPqaTSj33uaeXOBzrrQAUJvKflECaOXO00okTXPL9CESkYKSdnsDE0IIawoqxk_Rxcp7cZWsIq-QueUyopLwSbIz_F6CyFCboz2eJV7O-DgcN4Cvho63TYGf4at_t2EeJjP_b3uAN8MNobHwevchA5vBqzxIrT70HcW3-JvwYI_0IshB7ONoQV8JyR5jV467RO8eapT9OPrl_Xiplh-v75dzJeFFlTmwjlGCRVOcM6I0dxIwrmrmdlQwYR1lbO8NMJuDNWgCUBVWmlAgJgxW9aGT9GHo-8-hoceUlZtkwx4P64e-qRKymhdjxFM0bsnsN-0YNU-Nq2Og_qXzwhcHgETQ0oRnDJN_nt0jrrxihJ1-IA6fWBUfPxPcTJ9hi2ObJMyPJ5AHe_VrOSlVOu7lapXv8jVT3mtliP__shrk9Qu9LEbU3zG9w-TKqA9
CitedBy_id crossref_primary_10_1093_chemle_upad042
crossref_primary_10_1021_cr020436s
crossref_primary_10_1021_acs_inorgchem_3c03748
crossref_primary_10_1021_ja044716w
crossref_primary_10_1039_B109735K
crossref_primary_10_1021_ja030393c
crossref_primary_10_1039_D3NJ02991C
crossref_primary_10_1021_ja052111
crossref_primary_10_1039_c0cs00142b
crossref_primary_10_1246_bcsj_76_721
crossref_primary_10_1016_j_jinorgbio_2007_11_006
crossref_primary_10_1016_S1367_5931_02_00363_0
crossref_primary_10_1007_s00775_007_0277_z
crossref_primary_10_1021_jacs_3c09891
crossref_primary_10_1021_acs_jcim_9b00741
crossref_primary_10_1016_j_jinorgbio_2006_10_012
crossref_primary_10_1021_cr900121s
crossref_primary_10_1039_b925647d
crossref_primary_10_1021_ja039847w
crossref_primary_10_1039_C6DT04250C
crossref_primary_10_1021_acs_chemrestox_1c00350
crossref_primary_10_1016_j_ecoenv_2023_114964
crossref_primary_10_1016_S0003_9861_02_00445_9
crossref_primary_10_1002_chem_202002203
crossref_primary_10_1021_jacs_9b08064
crossref_primary_10_1021_acs_chemrestox_0c00483
crossref_primary_10_1016_j_jinorgbio_2006_01_008
crossref_primary_10_1039_B810767J
crossref_primary_10_1002_chem_202402468
crossref_primary_10_1007_s00775_003_0515_y
crossref_primary_10_1039_B410729B
crossref_primary_10_2133_dmpk_20_1
crossref_primary_10_1021_jp060033m
crossref_primary_10_1021_ic202527u
crossref_primary_10_1021_ja2037645
crossref_primary_10_1021_cr020443g
crossref_primary_10_1021_jp102225e
crossref_primary_10_1074_jbc_M304265200
crossref_primary_10_1016_S1367_5931_02_00310_1
crossref_primary_10_1021_ic402754y
crossref_primary_10_1021_ja051912
crossref_primary_10_1021_jp505662x
crossref_primary_10_1021_acs_est_3c00071
crossref_primary_10_1002_jcc_20302
crossref_primary_10_1021_ci8003946
crossref_primary_10_1021_jacs_3c03773
crossref_primary_10_1016_S0010_8545_01_00464_7
crossref_primary_10_1021_acs_jpcb_1c04088
crossref_primary_10_1021_jp803010f
crossref_primary_10_1021_jp110255u
crossref_primary_10_1002_ange_200300578
crossref_primary_10_1074_jbc_M404216200
crossref_primary_10_1021_ja0208862
crossref_primary_10_1002_ejic_200300448
crossref_primary_10_1016_j_envint_2024_108636
crossref_primary_10_1021_cr030722j
crossref_primary_10_1016_j_theochem_2004_11_054
crossref_primary_10_1016_j_bbrc_2003_10_084
crossref_primary_10_1002_chem_200304768
crossref_primary_10_1002_adsc_200303049
crossref_primary_10_1021_jacs_7b10033
crossref_primary_10_1016_j_jcat_2018_05_017
crossref_primary_10_1016_j_jhazmat_2020_124391
crossref_primary_10_1021_acs_est_9b06897
crossref_primary_10_1021_ic3017497
crossref_primary_10_1021_jacs_3c01196
crossref_primary_10_1002_chem_200802550
crossref_primary_10_1146_annurev_pharmtox_45_120403_100030
crossref_primary_10_3389_fchem_2019_00182
crossref_primary_10_1007_s00894_010_0644_5
crossref_primary_10_1021_jp2120302
crossref_primary_10_1063_1_4907733
crossref_primary_10_1074_jbc_M404217200
crossref_primary_10_1016_j_bmc_2008_03_023
crossref_primary_10_1002_anie_200300578
crossref_primary_10_1021_jp200650q
crossref_primary_10_1021_acscatal_5b02720
crossref_primary_10_1021_jp9028694
crossref_primary_10_1016_j_jinorgbio_2006_01_020
crossref_primary_10_1039_D1CC06391J
Cites_doi 10.1002/1521-3773(20000602)39:11<2003::AID-ANIE2003>3.0.CO;2-M
10.1021/jo9712097
10.1021/ja970574c
10.1021/ja005619f
10.1063/1.464913
10.1039/a802734j
10.1021/ja0017965
10.1021/j100096a001
10.1063/1.442716
10.1002/chem.19970030722
10.1021/ja981157i
10.1103/PhysRevB.37.785
10.1021/ja00099a083
10.1039/a809385g
10.1021/j100021a003
10.1021/bi00531a026
10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-#
10.1103/PhysRev.159.98
10.1016/0006-291X(77)90758-6
10.1021/j100072a027
10.1021/om980067j
10.1021/jp992464t
10.1002/jcc.540080614
10.1021/ja971723u
10.1021/j100364a008
10.1073/pnas.95.7.3555
10.1021/ja994377k
10.1063/1.1750107
10.1021/ed062p928
10.1021/ja981059x
10.1021/ja991878x
10.1007/s007750050043
10.1021/jp001950+
10.1021/ja00374a017
10.1021/ja0055108
10.1021/jp9632955
10.1021/ja994106+
10.1021/ja00523a008
10.1021/ic981332w
10.1021/j100364a007
10.1021/ja991997c
10.1021/cr9500500
10.1021/ja00279a059
10.1016/0009-2614(88)80160-X
10.1103/PhysRevA.38.3098
10.1002/(SICI)1521-3773(19990115)38:1/2<82::AID-ANIE82>3.0.CO;2-W
10.1021/ja00400a075
10.1016/S0162-0134(00)00162-8
10.1021/ja9705250
10.1021/ja980994h
10.1021/ja963939m
10.1126/science.287.5458.1615
10.1016/0006-291X(78)91643-1
10.1246/bcsj.73.815
10.1021/ar990028j
10.1139/p80-159
10.1021/ja9906296
10.1002/hlca.19950780602
10.1002/(SICI)1521-3765(19980210)4:2<193::AID-CHEM193>3.0.CO;2-Q
10.1021/ja991541v
10.1021/ja00154a008
10.1021/ja00383a007
ContentType Journal Article
Copyright Copyright © 2001 American Chemical Society
Copyright_xml – notice: Copyright © 2001 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ja010593t
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9816
ExternalDocumentID 11583542
10_1021_ja010593t
ark_67375_TPS_9SZ0DX5G_L
b075085974
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
186
3EH
3O-
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAYJJ
ABDEX
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFDAS
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MVM
NHB
OHT
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VH1
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZGI
ZHY
ZY4
---
-DZ
-ET
-~X
.DC
.GJ
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ABTAH
ACBEA
ACGFO
ADHLV
ADOJD
AGXLV
AHGAQ
AI.
BSCLL
CUPRZ
GGK
IH2
XOL
XSW
YQT
YYP
ZCA
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
AHDLI
ANPPW
CITATION
YR5
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
7X8
AAYWT
ID FETCH-LOGICAL-a415t-ff21014f43320ca3c5033f92cb1424df8fd37c4dbc1aea0ee87d5ce4e462d79c3
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Thu Sep 04 16:54:57 EDT 2025
Wed Feb 19 02:37:07 EST 2025
Tue Jul 01 02:17:18 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Wed Oct 30 09:31:08 EDT 2024
Thu Aug 27 13:43:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a415t-ff21014f43320ca3c5033f92cb1424df8fd37c4dbc1aea0ee87d5ce4e462d79c3
Notes ark:/67375/TPS-9SZ0DX5G-L
istex:6E202EB5E19562D37C430992C6D378264FB5D74F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 11583542
PQID 71219958
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_71219958
pubmed_primary_11583542
crossref_citationtrail_10_1021_ja010593t
crossref_primary_10_1021_ja010593t
istex_primary_ark_67375_TPS_9SZ0DX5G_L
acs_journals_10_1021_ja010593t
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-10-10
PublicationDateYYYYMMDD 2001-10-10
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-10
  day: 10
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2001
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Schröder D. (ja010593tb00059/ja010593tb00059_1) 2000; 33
Newcomb M. (ja010593tb00014/ja010593tb00014_1) 2000; 122
Verlet L. (ja010593tb00051/ja010593tb00051_1) 1967; 159
Newcomb M. (ja010593tb00010/ja010593tb00010_1) 1995; 117
Groves J. T. (ja010593tb00004/ja010593tb00004_1) 1978; 81
Plattner D. A. (ja010593tb00060/ja010593tb00060_1) 1999; 38
Li X.-Y. (ja010593tb00068/ja010593tb00068_1) 1990; 94
Yoshizawa K. (ja010593tb00056/ja010593tb00056_1) 1998; 17
Ghosh A. (ja010593tb00017/ja010593tb00017_1) 1994; 98
Green M. T. (ja010593tb00030/ja010593tb00030_1) 1998; 120
Vosko S. H. (ja010593tb00044/ja010593tb00044_1) 1980; 58
Stephens P. J. (ja010593tb00042/ja010593tb00042_1) 1994; 98
Harris N. (ja010593tb00025/ja010593tb00025_1) 2000; 39
Kuramochi H. (ja010593tb00018/ja010593tb00018_1) 1997; 119
Harris D. L. (ja010593tb00019/ja010593tb00019_1) 1998; 120
Zakharieva O. (ja010593tb00028/ja010593tb00028_1) 1996; 1
Schlichting I. (ja010593tb00038/ja010593tb00038_1) 2000; 287
Becke A. D. (ja010593tb00041/ja010593tb00041_1) 1993; 98
Yamamoto S. (ja010593tb00016/ja010593tb00016_1) 1988; 145
Wirstam M. (ja010593tb00020/ja010593tb00020_1) 1999; 121
Yoshizawa K. (ja010593tb00037/ja010593tb00037_1) 2000; 104
Ogliaro F. (ja010593tb00034/ja010593tb00034_1) 2000; 122
Manchester J. I. (ja010593tb00035/ja010593tb00035_1) 1997; 119
Shiota Y. (ja010593tb00057/ja010593tb00057_1) 2000; 122
Ohta T. (ja010593tb00033/ja010593tb00033_1) 2000; 82
Yoshizawa K. (ja010593tb00054/ja010593tb00054_1) 1997; 3
Sono M. (ja010593tb00002/ja010593tb00002_1) 1996; 96
Shaik S. (ja010593tb00021/ja010593tb00021_1) 1998; 4
Dobbs K. D. (ja010593tb00048/ja010593tb00048_1) 1987; 8
(ja010593tb00001/ja010593tb00001_1) 1995
Filatov M. (ja010593tb00023/ja010593tb00023_1) 1999; 38
Li X.-Y. (ja010593tb00067/ja010593tb00067_1) 1990; 94
Taketsugu T. (ja010593tb00053/ja010593tb00053_1) 1995; 99
Siegbahn P. E. M. (ja010593tb00062/ja010593tb00062_1) 1997; 119
Binkley J. S. (ja010593tb00046/ja010593tb00046_1) 1980; 102
Wigner E. (ja010593tb00061/ja010593tb00061_1) 1937; 5
Toy P. H. (ja010593tb00012/ja010593tb00012_1) 1998; 120
Bernadou J. (ja010593tb00027/ja010593tb00027_1) 1998
Koch W. (ja010593tb00045/ja010593tb00045_2) 2000
Hjelmeland L. M. (ja010593tb00003/ja010593tb00003_1) 1977; 76
Becke A. D. (ja010593tb00040/ja010593tb00040_1) 1988; 38
Bernadou J. (ja010593tb00026/ja010593tb00026_1) 1994; 116
Gherman B. F. (ja010593tb00066/ja010593tb00066_1) 2001; 123
Swope W. C. (ja010593tb00052/ja010593tb00052_1) 1982; 76
Daly J. (ja010593tb00007/ja010593tb00007_1) 1971; 28
Pietro W. J. (ja010593tb00049/ja010593tb00049_1) 1982; 104
Toy P. H. (ja010593tb00011/ja010593tb00011_1) 1997; 62
Groves J. T. (ja010593tb00009/ja010593tb00009_1) 1985; 62
Antony J. (ja010593tb00029/ja010593tb00029_1) 1997; 101
Lee C. (ja010593tb00043/ja010593tb00043_1) 1988; 37
Yoshizawa K. (ja010593tb00065/ja010593tb00065_1) 2000; 73
Frisch M. J. (ja010593tb00050/ja010593tb00050_1) 1998
Shaik S. (ja010593tb00058/ja010593tb00058_1) 1995; 78
Vaz A. D. N. (ja010593tb00013/ja010593tb00013_1) 1998; 95
Baker J. (ja010593tb00045/ja010593tb00045_1)
Gelb M. H. (ja010593tb00005/ja010593tb00005_1) 1982; 21
Ogliaro F. (ja010593tb00024/ja010593tb00024_1) 2000; 122
Yoshizawa K. (ja010593tb00036/ja010593tb00036_1) 2000; 104
Siegbahn P. E. M. (ja010593tb00063/ja010593tb00063_1) 1999; 38
Filatov M. (ja010593tb00022/ja010593tb00022_1) 1999
Green M. T. (ja010593tb00031/ja010593tb00031_1) 1999; 121
White R. E. (ja010593tb00006/ja010593tb00006_1) 1986; 108
Gordon M. S. (ja010593tb00047/ja010593tb00047_1) 1982; 104
Yoshizawa K. (ja010593tb00055/ja010593tb00055_1) 1998; 120
Green M. T. (ja010593tb00032/ja010593tb00032_1) 2000; 122
Basch H. (ja010593tb00064/ja010593tb00064_1) 1999; 121
Groves J. T. (ja010593tb00008/ja010593tb00008_1) 1981; 103
Strich A. (ja010593tb00015/ja010593tb00015_1) 1983; 7
References_xml – volume: 39
  start-page: 2003
  year: 2000
  ident: ja010593tb00025/ja010593tb00025_1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/1521-3773(20000602)39:11<2003::AID-ANIE2003>3.0.CO;2-M
– volume-title: A Chemist's Guide to Density Functional Theory
  year: 2000
  ident: ja010593tb00045/ja010593tb00045_2
– volume: 62
  start-page: 9114
  year: 1997
  ident: ja010593tb00011/ja010593tb00011_1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo9712097
– volume: 119
  start-page: 11442
  year: 1997
  ident: ja010593tb00018/ja010593tb00018_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970574c
– volume: 122
  start-page: 12892
  year: 2000
  ident: ja010593tb00034/ja010593tb00034_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja005619f
– volume: 98
  start-page: 5648
  year: 1993
  ident: ja010593tb00041/ja010593tb00041_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– start-page: 2167
  year: 1998
  ident: ja010593tb00027/ja010593tb00027_1
  publication-title: Chem. Commun.
  doi: 10.1039/a802734j
– volume: 122
  start-page: 12317
  year: 2000
  ident: ja010593tb00057/ja010593tb00057_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0017965
– volume: 98
  start-page: 11623
  year: 1994
  ident: ja010593tb00042/ja010593tb00042_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 76
  start-page: 637
  year: 1982
  ident: ja010593tb00052/ja010593tb00052_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442716
– volume: 3
  start-page: 1160
  year: 1997
  ident: ja010593tb00054/ja010593tb00054_1
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.19970030722
– volume: 120
  start-page: 7719
  year: 1998
  ident: ja010593tb00012/ja010593tb00012_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981157i
– volume: 37
  start-page: 785
  year: 1988
  ident: ja010593tb00043/ja010593tb00043_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 116
  start-page: 9375
  year: 1994
  ident: ja010593tb00026/ja010593tb00026_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00099a083
– start-page: 399
  year: 1999
  ident: ja010593tb00022/ja010593tb00022_1
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/a809385g
– volume: 28
  start-page: 285
  year: 1971
  ident: ja010593tb00007/ja010593tb00007_1
  publication-title: Handb. Exp. Pharmacol.
– volume: 99
  start-page: 8462
  year: 1995
  ident: ja010593tb00053/ja010593tb00053_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100021a003
– volume: 7
  start-page: 347
  year: 1983
  ident: ja010593tb00015/ja010593tb00015_1
  publication-title: Nouv. J. Chim.
– volume: 21
  start-page: 370
  year: 1982
  ident: ja010593tb00005/ja010593tb00005_1
  publication-title: Biochemistry
  doi: 10.1021/bi00531a026
– volume: 38
  start-page: 3510
  year: 1999
  ident: ja010593tb00023/ja010593tb00023_1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-#
– volume: 159
  start-page: 98
  year: 1967
  ident: ja010593tb00051/ja010593tb00051_1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.98
– volume: 76
  start-page: 541
  year: 1977
  ident: ja010593tb00003/ja010593tb00003_1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(77)90758-6
– volume: 98
  start-page: 5576
  year: 1994
  ident: ja010593tb00017/ja010593tb00017_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100072a027
– volume: 17
  start-page: 2825
  year: 1998
  ident: ja010593tb00056/ja010593tb00056_1
  publication-title: Organometallics
  doi: 10.1021/om980067j
– volume: 104
  start-page: 2552
  year: 2000
  ident: ja010593tb00037/ja010593tb00037_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992464t
– volume: 8
  start-page: 861
  year: 1987
  ident: ja010593tb00048/ja010593tb00048_1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540080614
– volume: 120
  start-page: 564
  year: 1998
  ident: ja010593tb00055/ja010593tb00055_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja971723u
– volume: 94
  start-page: 47
  year: 1990
  ident: ja010593tb00068/ja010593tb00068_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100364a008
– volume-title: Cytochrome P450:  Structure, Mechanism, and Biochemistry
  year: 1995
  ident: ja010593tb00001/ja010593tb00001_1
– volume: 95
  start-page: 3555
  year: 1998
  ident: ja010593tb00013/ja010593tb00013_1
  publication-title: J. Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.7.3555
– volume: 122
  start-page: 9495
  year: 2000
  ident: ja010593tb00032/ja010593tb00032_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja994377k
– volume: 5
  start-page: 720
  year: 1937
  ident: ja010593tb00061/ja010593tb00061_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750107
– volume: 62
  start-page: 928
  year: 1985
  ident: ja010593tb00009/ja010593tb00009_1
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed062p928
– volume: 120
  start-page: 8941
  year: 1998
  ident: ja010593tb00019/ja010593tb00019_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981059x
– volume: 122
  start-page: 8977
  year: 2000
  ident: ja010593tb00024/ja010593tb00024_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991878x
– volume: 1
  start-page: 192
  year: 1996
  ident: ja010593tb00028/ja010593tb00028_1
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s007750050043
– volume: 104
  start-page: 12365
  year: 2000
  ident: ja010593tb00036/ja010593tb00036_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001950+
– volume: 104
  start-page: 2797
  year: 1982
  ident: ja010593tb00047/ja010593tb00047_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00374a017
– volume: 123
  start-page: 3836
  year: 2001
  ident: ja010593tb00066/ja010593tb00066_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0055108
– volume: 101
  start-page: 2692
  year: 1997
  ident: ja010593tb00029/ja010593tb00029_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9632955
– volume: 122
  start-page: 2677
  year: 2000
  ident: ja010593tb00014/ja010593tb00014_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja994106+
– volume: 102
  start-page: 939
  year: 1980
  ident: ja010593tb00046/ja010593tb00046_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00523a008
– volume: 38
  start-page: 2880
  year: 1999
  ident: ja010593tb00063/ja010593tb00063_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic981332w
– volume: 94
  start-page: 31
  year: 1990
  ident: ja010593tb00067/ja010593tb00067_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100364a007
– volume: 121
  start-page: 10178
  year: 1999
  ident: ja010593tb00020/ja010593tb00020_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991997c
– volume: 96
  start-page: 2841
  year: 1996
  ident: ja010593tb00002/ja010593tb00002_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9500500
– volume: 108
  start-page: 6024
  year: 1986
  ident: ja010593tb00006/ja010593tb00006_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00279a059
– volume: 145
  start-page: 111
  year: 1988
  ident: ja010593tb00016/ja010593tb00016_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)80160-X
– volume: 38
  start-page: 3098
  year: 1988
  ident: ja010593tb00040/ja010593tb00040_1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 38
  start-page: 82
  year: 1999
  ident: ja010593tb00060/ja010593tb00060_1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<82::AID-ANIE82>3.0.CO;2-W
– volume: 103
  start-page: 2884
  year: 1981
  ident: ja010593tb00008/ja010593tb00008_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00400a075
– volume: 82
  start-page: 141
  year: 2000
  ident: ja010593tb00033/ja010593tb00033_1
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/S0162-0134(00)00162-8
– volume: 119
  start-page: 5069
  year: 1997
  ident: ja010593tb00035/ja010593tb00035_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9705250
– volume: 120
  start-page: 10772
  year: 1998
  ident: ja010593tb00030/ja010593tb00030_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja980994h
– volume: 119
  start-page: 3103
  year: 1997
  ident: ja010593tb00062/ja010593tb00062_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja963939m
– volume-title: Gaussian 98
  year: 1998
  ident: ja010593tb00050/ja010593tb00050_1
– volume: 287
  start-page: 1615
  year: 2000
  ident: ja010593tb00038/ja010593tb00038_1
  publication-title: Science
  doi: 10.1126/science.287.5458.1615
– volume: 81
  start-page: 154
  year: 1978
  ident: ja010593tb00004/ja010593tb00004_1
  publication-title: J. Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(78)91643-1
– volume: 73
  start-page: 815
  year: 2000
  ident: ja010593tb00065/ja010593tb00065_1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.73.815
– volume: 33
  start-page: 139
  year: 2000
  ident: ja010593tb00059/ja010593tb00059_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar990028j
– volume: 58
  start-page: 1200
  year: 1980
  ident: ja010593tb00044/ja010593tb00044_1
  publication-title: Can. J. Phys.
  doi: 10.1139/p80-159
– volume: 121
  start-page: 7249
  year: 1999
  ident: ja010593tb00064/ja010593tb00064_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9906296
– volume: 78
  start-page: 1393
  year: 1995
  ident: ja010593tb00058/ja010593tb00058_1
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19950780602
– volume: 4
  start-page: 193
  year: 1998
  ident: ja010593tb00021/ja010593tb00021_1
  publication-title: Chem. Eur. J.
  doi: 10.1002/(SICI)1521-3765(19980210)4:2<193::AID-CHEM193>3.0.CO;2-Q
– volume: 121
  start-page: 7939
  year: 1999
  ident: ja010593tb00031/ja010593tb00031_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991541v
– volume-title: Chemical Applications of Density-Functional Theory
  ident: ja010593tb00045/ja010593tb00045_1
– volume: 117
  start-page: 12085
  year: 1995
  ident: ja010593tb00010/ja010593tb00010_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00154a008
– volume: 104
  start-page: 5039
  year: 1982
  ident: ja010593tb00049/ja010593tb00049_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00383a007
SSID ssj0004281
Score 2.0210955
Snippet Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9806
SubjectTerms Computer Simulation
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - metabolism
Ethane - chemistry
Ethane - metabolism
Hydroxylation
Models, Chemical
Models, Molecular
Title A Theoretical Study of the Dynamic Behavior of Alkane Hydroxylation by a Compound I Model of Cytochrome P450
URI http://dx.doi.org/10.1021/ja010593t
https://api.istex.fr/ark:/67375/TPS-9SZ0DX5G-L/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/11583542
https://www.proquest.com/docview/71219958
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB5ROJRLCxRoWqArWqFejOz1er0-Rgk0IEBICVLUi7VPVUqUVIkjNf313fGDgHj0aGssr2fGnvHOzPcBfIsUjy1Pw0AnqQmYUjKQsWIByyLBlT8UGuedr294745dDpPhGnx9oYJPER8ISRyzuHgDG5T7-IL5T6e_Gn6kImpy3FTwuIEPengphh49fxR6NlCLf17OK8v4cv4eus2UTtVWMjpdFOpU_30K2vja0rfgXZ1fknblENuwZic78LbT0Lp9gHGbDFbDiwT7CJdk6ohPBEm3oqcnNWjiDM-3xyM5saS3NLiyqnOOqCWRBD8lSMpELggyqo1RurMspvoXQiCQW5aEu3B3fjbo9IKaciGQPpIXgXMUyXsdopqFWsYaq5wuoxr3iphxwpk41cwoHUkrQ2tFahJtmWWcmjTT8R6sT6YT-xFIJFQWZob6JMAw5kJpFedGICC8tdyZFhx5m-T1KzPPy2o49X8jjdJa8L0xV65rwHLkzRg_J3p8L_q7Qul4TuiktPm9hJyNsK0tTfLBbT_P-j_D7jD5kV-14EvjFLk3DlZQvKKni3meRhRH2kUL9itfWd0tSnALjX7631N9hs2yjQ2bYsIDWC9mC3vo85pCHZV-_Q-sQO_6
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEB7a5CF9adMrcZtjCaH0RUHHarV6NM7htE4I2AHTl2VPAjZ2sWSo--u7oyNuQ0L6KDGSdmdHmtHOzPcBHEeKJZZlYaDTzARUKRnIRNGA5hFnyh9yjf3OV9esf0u_jdNxA5ODvTB-EIW_U1El8dfoAggThFyOeVK-hM2UUYY0Dd3ecN0DGfOoDXUzzpIWRejvS9ED6eIfD7SJyvz1dHhZuZnzNzVfUTXAqrpkcrIs1Yn-_QC78f9msA2vm2iTdGvzeAsv7OwdbPVakrf3MO2S0bqVkWBV4YrMHfFhITmtyepJA6G4wPPd6UTOLOmvDA6wrqMjakUkwQ8LUjSRS4L8alOU7q3Kub5DQARyQ9PwA9yen416_aAhYAik9-tl4FyMVL4OMc5CLRONOU-Xxxp3jqhx3Jkk09QoHUkrQ2t5ZlJtqaUsNlmuk4-wMZvP7C6QiKs8zE3sQwJDqQulVYwZjvDw1jJnOnDgdSaaF6gQVW489v8mrdI68LVdNaEb-HJk0Zg-Jnp0L_qzxux4TOhLtfT3EnIxwSK3LBWjm6HIhz_C03F6IQYdOGxtQ_jFwXyKV_R8WYgsirHBnXdgpzaZ9dOiFDfU4k_PzeoQtvqjq4EYXF5__wyvqgI3LJcJ92CjXCztvo94SnVQmfofFUr4XA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEvG98rG5uFEOIlUz4cx3ms2pUOxqjUTqp4sfwppFbt1KQS5a_Hl48W0BA8Jrok9vkcn313vx_A20ixxLIsDHSamYAqJQOZKBrQPOJM-Uuusd758zUb3tCP03TabBSxFsY3ovBvKqogPs7qW-MahAGECkI-xzwp78O-d0QipGro9sa7OsiYR627m3GWtEhCvz6Kq5AufluF9lGh3__uYlZLzeAQvmwbWWWYzM7XpTrXP_7Ab_z_XjyGg8brJN3aTJ7APbt4Cg97LdnbM5h3yWRX0kgwu3BDlo5495D0a9J60kAprvB-dz6TC0uGG4ONrPPpiNoQSfAHg1RN5JIgz9ocpXubcqm_ITACGdE0fA43g4tJbxg0RAyB9Ot7GTgXI6WvQ6yzUMtEY-zT5bHGEyRqHHcmyTQ1SkfSytBanplUW2opi02W6-QF7C2WC3sEJOIqD3MTe9fAUOpCaRVjhiNMvLXMmQ6cer2JZiIVooqRx36P0iqtA-_bkRO6gTFHNo35XaJvtqK3NXbHXULvquHfSsjVDJPdslRMRmORj7-G_Wn6QVx14Ky1D-EHB-MqXtHLdSGyKMZCd96Bl7XZ7L4WpXiwFr_6V6_O4MGoPxBXl9efjuFRleeGWTPhCeyVq7V97R2fUp1W1v4TJy761g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theoretical+Study+of+the+Dynamic+Behavior+of+Alkane+Hydroxylation+by+a+Compound+I+Model+of+Cytochrome+P450&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=YOSHIZAWA%2C+Kazunari&rft.au=KAMACHI%2C+Takashi&rft.au=SHIOTA%2C+Yoshihito&rft.date=2001-10-10&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=123&rft.issue=40&rft.spage=9806&rft.epage=9816&rft_id=info:doi/10.1021%2Fja010593t&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_9SZ0DX5G_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon