In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities
Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried...
Saved in:
Published in | Journal of the American Chemical Society Vol. 134; no. 28; pp. 11726 - 11733 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.07.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/ja3036493 |
Cover
Abstract | Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried interface” problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)–derived self-assembled monolayers (SAMs) on Si/SiO2 gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules. |
---|---|
AbstractList | Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules. Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules. Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried interface” problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)–derived self-assembled monolayers (SAMs) on Si/SiO2 gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules. Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried interface” problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)–derived self-assembled monolayers (SAMs) on Si/SiO₂ gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules. |
Author | Bedzyk, Michael J Geiger, Franz M Marks, Tobin J Kewalramani, Sumit Hennek, Jonathan W Emery, Jonathan D Youn, Jangdae Walter, Stephanie R Facchetti, Antonio |
AuthorAffiliation | Northwestern University |
AuthorAffiliation_xml | – name: Northwestern University |
Author_xml | – sequence: 1 givenname: Stephanie R surname: Walter fullname: Walter, Stephanie R – sequence: 2 givenname: Jangdae surname: Youn fullname: Youn, Jangdae – sequence: 3 givenname: Jonathan D surname: Emery fullname: Emery, Jonathan D – sequence: 4 givenname: Sumit surname: Kewalramani fullname: Kewalramani, Sumit – sequence: 5 givenname: Jonathan W surname: Hennek fullname: Hennek, Jonathan W – sequence: 6 givenname: Michael J surname: Bedzyk fullname: Bedzyk, Michael J email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu – sequence: 7 givenname: Antonio surname: Facchetti fullname: Facchetti, Antonio email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu – sequence: 8 givenname: Tobin J surname: Marks fullname: Marks, Tobin J email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu – sequence: 9 givenname: Franz M surname: Geiger fullname: Geiger, Franz M email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22708575$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUh4NU7LZ64QtIbgS9GJu_kxnvZNW6sNDC1uvhTObMkmUmqUlG8CV8ZrNs64UUvAjJSb7zQX7ngpz54JGQ15x94EzwqwNIJmvVymdkxbVgleaiPiMrxpioTFPLc3KR0qGUSjT8BTkXwrBGG70ivze-2rm80NsYeqRhpNeQkX52OKHN0dlqh7OzwQ-LzSHSjc8YR7AOJnoTB4zU-XLYg3eW3kXwyaXCpY_l0u3LG_iBroPPMUxH-xbiHultcYQ4g7dId1h6svtZFqaX5PkIU8JXD_sl-f71y936W7W9ud6sP20rUFzlauwZKz-Qsh5UqwyX0KOSLWAzMmtBGI2iBqN6EG1fCxw41xoYH0RjmgaUvCTvTt77GH4smHI3u2RxmsBjWFInSlZSN7pl_0XLBAxTzIi2oG8e0KWfcejuo5sh_uoe4y7A1QmwMaQUceysy5DdMR9wU3Eddbz7O9DS8f6fjkfpU-zbEws2dYewRF8ifIL7AxhNq3g |
CitedBy_id | crossref_primary_10_1088_1674_4926_43_4_041101 crossref_primary_10_1016_j_apsusc_2013_05_158 crossref_primary_10_1016_j_polymer_2013_04_019 crossref_primary_10_1016_j_bios_2024_116603 crossref_primary_10_1021_acs_langmuir_7b03098 crossref_primary_10_1364_OE_24_019863 crossref_primary_10_1021_am400996q crossref_primary_10_1039_C3TC32581D crossref_primary_10_3390_ma14133756 crossref_primary_10_1039_c3ra42067a crossref_primary_10_1021_ma4018907 crossref_primary_10_1039_C5RA22970G crossref_primary_10_1002_adma_201402822 crossref_primary_10_1021_acs_jpcc_8b01760 crossref_primary_10_1021_am506609s crossref_primary_10_1088_1361_6463_ac17b5 crossref_primary_10_1126_sciadv_abf8555 crossref_primary_10_1021_jp305606k crossref_primary_10_1063_1_5081726 crossref_primary_10_1002_ange_201306709 crossref_primary_10_1021_acs_jpcb_0c11158 crossref_primary_10_1038_s41467_020_19330_7 crossref_primary_10_1063_1_4904924 crossref_primary_10_1016_j_cej_2022_137291 crossref_primary_10_1039_C5PY00891C crossref_primary_10_1021_jp307677b crossref_primary_10_1021_acsami_2c20925 crossref_primary_10_1039_c3cp43899f crossref_primary_10_1021_jp311144b crossref_primary_10_1039_c3tc30134f crossref_primary_10_1021_acs_langmuir_6b03479 crossref_primary_10_1021_acs_langmuir_8b00972 crossref_primary_10_1021_jp5047547 crossref_primary_10_1021_acsami_2c21464 crossref_primary_10_1021_acs_jpclett_5b01958 crossref_primary_10_1016_j_matlet_2016_12_011 crossref_primary_10_1016_j_physe_2017_05_017 crossref_primary_10_1039_C7CP03115G crossref_primary_10_3390_ijms14022303 crossref_primary_10_1021_jp404846r crossref_primary_10_1007_s40843_024_3102_y crossref_primary_10_1021_acs_jpclett_9b00498 crossref_primary_10_1021_acs_accounts_5b00022 crossref_primary_10_1063_5_0242748 crossref_primary_10_1021_acs_jpcc_8b00866 crossref_primary_10_1016_j_orgel_2013_03_027 crossref_primary_10_1021_acsami_1c04198 crossref_primary_10_1039_C5CP06320E crossref_primary_10_1002_adfm_202211742 crossref_primary_10_1038_s41578_019_0127_y crossref_primary_10_1021_acs_jpclett_6b00792 crossref_primary_10_1021_jacs_6b10651 crossref_primary_10_1002_aenm_202003877 crossref_primary_10_1021_acsami_6b03886 crossref_primary_10_1002_adma_201505118 crossref_primary_10_1021_la5048722 crossref_primary_10_1021_acs_langmuir_8b01813 crossref_primary_10_1021_acs_joc_6b02214 crossref_primary_10_1039_C6RA07389A crossref_primary_10_1002_adfm_201503245 crossref_primary_10_1016_j_orgel_2017_07_012 crossref_primary_10_1021_acs_langmuir_3c01378 crossref_primary_10_1016_j_dyepig_2021_109159 crossref_primary_10_1063_1_4874263 crossref_primary_10_1002_admi_202202453 crossref_primary_10_1021_acs_jpclett_5b02633 crossref_primary_10_1021_acs_langmuir_5b02761 crossref_primary_10_1038_s41528_023_00273_0 crossref_primary_10_1021_acsomega_8b00043 crossref_primary_10_1021_jacs_5b09784 crossref_primary_10_1002_adfm_201502151 crossref_primary_10_1021_acs_jpcc_5b01527 crossref_primary_10_1021_acsami_3c02010 crossref_primary_10_1021_cm301095x crossref_primary_10_1088_0022_3727_48_10_105103 crossref_primary_10_1021_acs_analchem_6b04320 crossref_primary_10_1039_D0RA08220A crossref_primary_10_1002_anie_201306709 crossref_primary_10_1016_j_orgel_2020_105928 crossref_primary_10_1039_C6CP04155H crossref_primary_10_1021_acsanm_8b01846 crossref_primary_10_1088_1674_4926_35_10_104004 crossref_primary_10_1039_D0CP06407F crossref_primary_10_1002_nano_202100051 crossref_primary_10_1039_D2TC00100D crossref_primary_10_1021_acs_chemrev_9b00532 |
Cites_doi | 10.1038/nmat1612 10.1021/cm101435s 10.1002/adma.201001760 10.1038/nature03376 10.1021/cr0501386 10.1002/adma.201002682 10.1002/adma.200802032 10.1039/b924415h 10.1021/ja962277y 10.1021/ja052478e 10.1021/ar2001233 10.1016/0039-6028(94)90681-5 10.1002/adma.201001502 10.1021/ja801475h 10.1126/science.268.5208.270 10.1021/ja039772w 10.1038/nphoton.2007.172 10.1002/adma.201001697 10.1002/adma.200903712 10.1002/adma.201001310 10.1002/adfm.201001031 10.1103/PhysRevE.55.3164 10.1002/adfm.200801727 10.1002/adfm.201001530 10.1002/adma.201001865 10.1021/ja00135a032 10.1039/b816386c 10.1002/adma.201101493 10.1002/adma.200902857 10.1021/la00031a035 10.1021/ja800142t 10.1103/PhysRevB.78.121302 10.1021/ja060442w 10.1021/cm102419z 10.1002/adma.200901454 10.1103/PhysRevLett.59.1597 10.1039/C0SC00502A 10.1002/adma.200903420 10.1063/1.2943659 10.1038/nmat1774 10.1021/ja9029957 10.1002/adma.200903559 10.1002/adma.201002912 10.1002/adma.200903628 10.1063/1.3493190 10.1002/adma.201003135 10.1021/ar9000873 10.1038/nature10683 10.1038/nmat1105 10.1103/PhysRevE.58.7686 10.1021/ja066824j 10.1103/PhysRevB.59.12632 10.1021/la010123c 10.1021/cr1001904 10.1021/jp103636s 10.1021/ja071989t 10.1021/jp101768w 10.1063/1.1602058 10.1002/adma.200903193 10.1021/cr900150b 10.1016/S1369-7021(06)71445-6 10.1021/jp2035339 10.1557/mrs2010.707 10.1103/RevModPhys.78.973 10.1021/cm049598q 10.1002/adfm.200900298 10.1021/jp072767k 10.1038/nmat2570 10.1002/adma.200902740 10.1002/adma.200803267 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja3036493 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 11733 |
ExternalDocumentID | 22708575 10_1021_ja3036493 b383399359 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a414t-fb00708336d494713abe439ae8f0cca275e26a74ba29b62ed1155a01d28788a43 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 09:29:32 EDT 2025 Fri Sep 05 03:16:45 EDT 2025 Mon Jul 21 05:51:02 EDT 2025 Tue Jul 01 02:08:27 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-fb00708336d494713abe439ae8f0cca275e26a74ba29b62ed1155a01d28788a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22708575 |
PQID | 1027040729 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000358590 proquest_miscellaneous_1027040729 pubmed_primary_22708575 crossref_citationtrail_10_1021_ja3036493 crossref_primary_10_1021_ja3036493 acs_journals_10_1021_ja3036493 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-18 |
PublicationDateYYYYMMDD | 2012-07-18 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ye H. (ref17/cit17a) 2007; 111 Veres J. (ref11/cit11c) 2004; 16 Irimia-Vladu M. (ref6/cit6a) 2010; 20 Ono S. (ref8/cit8e) 2010; 97 Tsao H. N. (ref7/cit7f) 2009; 21 Ong B. S. (ref12/cit12b) 2004; 126 Liao K. C. (ref8/cit8a) 2010; 22 Lee H. S. (ref13/cit13a) 2008; 130 McCulloch I. (ref28/cit28) 2006; 5 Matsubara R. (ref27/cit27) 2008; 92 ref12/cit12e Mannsfeld S. C. B. (ref9/cit9d) 2011; 23 Dhagat P. (ref11/cit11a) 2009; 19 Shen Y. R. (ref15/cit15b) 1994; 299 Di C.-A. (ref8/cit8d) 2009; 42 Facchetti A. (ref1/cit1c) 2011; 23 Messmer M. C. (ref16/cit16b) 1995; 117 Anthony J. E. (ref1/cit1a) 2010; 22 Tang M. L. (ref12/cit12a) 2006; 128 Ito Y. (ref14/cit14) 2009; 131 Osaka I. (ref7/cit7d) 2009; 131 Mathijssen S. G. J. (ref9/cit9e) 2010; 22 Chua L.-L. (ref11/cit11d) 2005; 434 Hulea I. N. (ref8/cit8g) 2006; 5 Manaka T. (ref9/cit9b) 2007; 1 Gragson D. E. (ref15/cit15a) 1997; 119 Gershenson M. E. (ref8/cit8f) 2006; 78 Eigner A. A. (ref10/cit10b) 2010; 114 Ocko B. M. (ref21/cit21) 1997; 55 Marks T. J. (ref2/cit2c) 2010; 35 Liu C. A. (ref2/cit2b) 2011; 23 Liu Y. (ref16/cit16a) 2001; 17 Salleo A. (ref9/cit9g) 2010; 22 Ji N. (ref16/cit16d) 2007; 129 Roberts M. E. (ref6/cit6b) 2009; 19 Lee W. H. (ref7/cit7c) 2010; 20 Virkar A. (ref13/cit13b) 2009; 19 DeLongchamp D. M. (ref9/cit9a) 2011; 23 Spijkman M. J. (ref1/cit1e) 2011; 23 Youn J. (ref18/cit18) 2010; 22 Cho S. (ref1/cit1b) 2010; 22 Arias A. C. (ref2/cit2a) 2010; 110 Bao Z. (ref12/cit12d) 2007 Wen Y. G. (ref1/cit1h) 2011; 111 Sun J. (ref5/cit5b) 2011; 21 Warren B. E. (ref25/cit25) 1969 Kjellander B. K. C. (ref5/cit5a) 2010; 22 Anglin T. C. (ref23/cit23) 2011; 115 Zschieschang U. (ref8/cit8b) 2010; 22 Marchl M. (ref8/cit8c) 2010; 22 Ong T. H. (ref22/cit22) 1993; 9 Dodabalapur A. (ref29/cit29) 1995; 268 Sze S. M. (ref19/cit19) 1985 Zschieschang U. (ref3/cit3c) 2010; 22 Durbin M. K. (ref24/cit24) 1998; 58 Wen Y. G. (ref1/cit1g) 2010; 22 Anglin T. C. (ref10/cit10a) 2010; 114 Rivnay J. (ref9/cit9f) 2009; 8 Zhuang X. (ref15/cit15c) 1999; 59 Sokolov A. N. (ref6/cit6c) 2012; 45 Giri G. (ref7/cit7b) 2011; 480 Guyotsionnest P. (ref16/cit16c) 1987; 59 Shao W. (ref7/cit7e) 2011; 2 Virkar A. A. (ref1/cit1f) 2010; 22 Gelinck G. (ref3/cit3a) 2010; 22 DiBenedetto S. A. (ref7/cit7a) 2009; 21 Murphy A. R. (ref4/cit4) 2007; 107 Fukuto M. (ref20/cit20) 2003; 119 Sirringhaus H. (ref1/cit1d) 2010; 22 Street R. A. (ref3/cit3b) 2006; 9 Ye H. (ref17/cit17b) 2006; 128 Manaka T. (ref9/cit9c) 2008; 78 Yang H. C. (ref11/cit11b) 2005; 127 Kobayashi S. (ref12/cit12c) 2004; 3 |
References_xml | – volume-title: Organic Field Effect Transistors year: 2007 ident: ref12/cit12d – volume: 5 start-page: 328 year: 2006 ident: ref28/cit28 publication-title: Nat. Mater. doi: 10.1038/nmat1612 – volume: 22 start-page: 5031 year: 2010 ident: ref18/cit18 publication-title: Chem. Mater. doi: 10.1021/cm101435s – volume: 23 start-page: 319 year: 2011 ident: ref9/cit9a publication-title: Adv. Mater. doi: 10.1002/adma.201001760 – volume: 434 start-page: 194 year: 2005 ident: ref11/cit11d publication-title: Nature doi: 10.1038/nature03376 – volume: 107 start-page: 1066 year: 2007 ident: ref4/cit4 publication-title: Chem. Rev. doi: 10.1021/cr0501386 – volume: 23 start-page: 523 year: 2011 ident: ref2/cit2b publication-title: Adv. Mater. doi: 10.1002/adma.201002682 – volume: 21 start-page: 209 year: 2009 ident: ref7/cit7f publication-title: Adv. Mater. doi: 10.1002/adma.200802032 – volume: 20 start-page: 2549 year: 2010 ident: ref7/cit7c publication-title: J. Mater. Chem. doi: 10.1039/b924415h – volume: 119 start-page: 6144 year: 1997 ident: ref15/cit15a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja962277y – volume-title: Semiconductor Devices: Physics and Technology year: 1985 ident: ref19/cit19 – volume: 127 start-page: 11542 year: 2005 ident: ref11/cit11b publication-title: Am. Chem. Soc. doi: 10.1021/ja052478e – volume: 45 start-page: 361 year: 2012 ident: ref6/cit6c publication-title: Acc. Chem. Res. doi: 10.1021/ar2001233 – volume: 299 start-page: 551 year: 1994 ident: ref15/cit15b publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)90681-5 – volume: 22 start-page: 4489 year: 2010 ident: ref8/cit8b publication-title: Adv. Mater. doi: 10.1002/adma.201001502 – volume: 131 start-page: 2521 year: 2009 ident: ref7/cit7d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801475h – volume: 268 start-page: 270 year: 1995 ident: ref29/cit29 publication-title: Science doi: 10.1126/science.268.5208.270 – volume: 126 start-page: 3378 year: 2004 ident: ref12/cit12b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039772w – volume: 1 start-page: 581 year: 2007 ident: ref9/cit9b publication-title: Nat Photon doi: 10.1038/nphoton.2007.172 – volume: 22 start-page: 4612 year: 2010 ident: ref5/cit5a publication-title: Adv. Mater. doi: 10.1002/adma.201001697 – volume: 22 start-page: 3812 year: 2010 ident: ref9/cit9g publication-title: Adv. Mater. doi: 10.1002/adma.200903712 – volume: 22 start-page: 3081 year: 2010 ident: ref8/cit8a publication-title: Adv. Mater. doi: 10.1002/adma.201001310 – volume: 20 start-page: 4069 year: 2010 ident: ref6/cit6a publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201001031 – volume: 55 start-page: 3164 year: 1997 ident: ref21/cit21 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.55.3164 – volume: 19 start-page: 1962 year: 2009 ident: ref13/cit13b publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801727 – volume: 21 start-page: 29 year: 2011 ident: ref5/cit5b publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201001530 – volume: 22 start-page: 5105 year: 2010 ident: ref9/cit9e publication-title: Adv. Mater. doi: 10.1002/adma.201001865 – volume: 117 start-page: 8039 year: 1995 ident: ref16/cit16b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00135a032 – volume: 19 start-page: 3351 year: 2009 ident: ref6/cit6b publication-title: J. Mater. Chem. doi: 10.1039/b816386c – volume: 23 start-page: 3231 year: 2011 ident: ref1/cit1e publication-title: Adv. Mater. doi: 10.1002/adma.201101493 – volume: 22 start-page: 3893 year: 2010 ident: ref1/cit1d publication-title: Adv. Mater. doi: 10.1002/adma.200902857 – ident: ref12/cit12e – volume: 9 start-page: 1836 year: 1993 ident: ref22/cit22 publication-title: Langmuir doi: 10.1021/la00031a035 – volume: 130 start-page: 10556 year: 2008 ident: ref13/cit13a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800142t – volume: 78 start-page: 121302 year: 2008 ident: ref9/cit9c publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.121302 – volume: 128 start-page: 6528 year: 2006 ident: ref17/cit17b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja060442w – volume: 23 start-page: 733 year: 2011 ident: ref1/cit1c publication-title: Chem. Mater. doi: 10.1021/cm102419z – volume: 22 start-page: 1331 year: 2010 ident: ref1/cit1g publication-title: Adv. Mater. doi: 10.1002/adma.200901454 – volume: 59 start-page: 1597 year: 1987 ident: ref16/cit16c publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.1597 – volume: 2 start-page: 590 year: 2011 ident: ref7/cit7e publication-title: Chem Sci doi: 10.1039/C0SC00502A – volume: 22 start-page: 1253 year: 2010 ident: ref1/cit1b publication-title: Adv. Mater. doi: 10.1002/adma.200903420 – volume: 92 start-page: 242108 year: 2008 ident: ref27/cit27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2943659 – volume: 5 start-page: 982 year: 2006 ident: ref8/cit8g publication-title: Nat. Mater. doi: 10.1038/nmat1774 – volume: 131 start-page: 9396 year: 2009 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9029957 – volume: 22 start-page: 3778 year: 2010 ident: ref3/cit3a publication-title: Adv. Mater. doi: 10.1002/adma.200903559 – volume: 22 start-page: 5361 year: 2010 ident: ref8/cit8c publication-title: Adv. Mater. doi: 10.1002/adma.201002912 – volume-title: X-Ray Diffraction year: 1969 ident: ref25/cit25 – volume: 22 start-page: 3876 year: 2010 ident: ref1/cit1a publication-title: Adv. Mater. doi: 10.1002/adma.200903628 – volume: 97 start-page: 143307 year: 2010 ident: ref8/cit8e publication-title: Appl. Phys. Lett. doi: 10.1063/1.3493190 – volume: 23 start-page: 127 year: 2011 ident: ref9/cit9d publication-title: Adv. Mater. doi: 10.1002/adma.201003135 – volume: 42 start-page: 1573 year: 2009 ident: ref8/cit8d publication-title: Acc. Chem. Res. doi: 10.1021/ar9000873 – volume: 480 start-page: 504 year: 2011 ident: ref7/cit7b publication-title: Nature doi: 10.1038/nature10683 – volume: 3 start-page: 317 year: 2004 ident: ref12/cit12c publication-title: Nat. Mater. doi: 10.1038/nmat1105 – volume: 58 start-page: 7686 year: 1998 ident: ref24/cit24 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.7686 – volume: 128 start-page: 16002 year: 2006 ident: ref12/cit12a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066824j – volume: 59 start-page: 12632 year: 1999 ident: ref15/cit15c publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.12632 – volume: 17 start-page: 4329 year: 2001 ident: ref16/cit16a publication-title: Langmuir doi: 10.1021/la010123c – volume: 111 start-page: 3358 year: 2011 ident: ref1/cit1h publication-title: Chem. Rev. doi: 10.1021/cr1001904 – volume: 114 start-page: 17629 year: 2010 ident: ref10/cit10a publication-title: J. Phys. Chem. C doi: 10.1021/jp103636s – volume: 129 start-page: 10056 year: 2007 ident: ref16/cit16d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071989t – volume: 114 start-page: 12308 year: 2010 ident: ref10/cit10b publication-title: J. Phys. Chem. C doi: 10.1021/jp101768w – volume: 119 start-page: 6253 year: 2003 ident: ref20/cit20 publication-title: J. Chem. Phys. doi: 10.1063/1.1602058 – volume: 22 start-page: 3857 year: 2010 ident: ref1/cit1f publication-title: Adv. Mater. doi: 10.1002/adma.200903193 – volume: 110 start-page: 3 year: 2010 ident: ref2/cit2a publication-title: Chem. Rev. doi: 10.1021/cr900150b – volume: 9 start-page: 32 year: 2006 ident: ref3/cit3b publication-title: Mater. Today doi: 10.1016/S1369-7021(06)71445-6 – volume: 115 start-page: 16027 year: 2011 ident: ref23/cit23 publication-title: J. Phys. Chem. C doi: 10.1021/jp2035339 – volume: 35 start-page: 1018 year: 2010 ident: ref2/cit2c publication-title: MRS Bull. doi: 10.1557/mrs2010.707 – volume: 78 start-page: 973 year: 2006 ident: ref8/cit8f publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.973 – volume: 16 start-page: 4543 year: 2004 ident: ref11/cit11c publication-title: Chem. Mater. doi: 10.1021/cm049598q – volume: 19 start-page: 2365 year: 2009 ident: ref11/cit11a publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900298 – volume: 111 start-page: 13250 year: 2007 ident: ref17/cit17a publication-title: J. Phys. Chem. C doi: 10.1021/jp072767k – volume: 8 start-page: 952 year: 2009 ident: ref9/cit9f publication-title: Nat. Mater. doi: 10.1038/nmat2570 – volume: 22 start-page: 982 year: 2010 ident: ref3/cit3c publication-title: Adv. Mater. doi: 10.1002/adma.200902740 – volume: 21 start-page: 1407 year: 2009 ident: ref7/cit7a publication-title: Adv. Mater. doi: 10.1002/adma.200803267 |
SSID | ssj0004281 |
Score | 2.392848 |
Snippet | Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11726 |
SubjectTerms | atomic force microscopy crystal structure reflectance semiconductors spectroscopy X-radiation |
Title | In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities |
URI | http://dx.doi.org/10.1021/ja3036493 https://www.ncbi.nlm.nih.gov/pubmed/22708575 https://www.proquest.com/docview/1027040729 https://www.proquest.com/docview/2000358590 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 0002-7863 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOMCl5d1tKTKFAxej2HESpze0gABBi7QgcVvZjiOtQEnFZi_9EfxmZpwNtCpbrtE4TuKJ5_M8vgHYR1CBZqQQPDYu4cpZzU1hLE9UbBOE9zq35Ie8-pGe3aqLu-RuDvZmRPAl8QPRLqvyeB4WZaoFnbCO-oPX4kepRYdxM53GHX3Qn0PJ9Ljx36ZnBp4MduX0Ixx31TltOsn94aSxh-73v2SN_3vkFfgwxZXsqFWEVZjz1Ros9bt2buvwdF7xwaiZsGsqAGJ1ychxxo5HbSOckeMDypOvKyKArR9ZcBWWhjzq7Cfxc7JRxdrKTceChQsEI-PveJF6azFTFazfJr7T3S8pxZxdv9YlsAHlyodmFXg634Db05Ob_hmfNmPgRgnV8NISM5CO47RQOVq02FiPYMZ4XUaoBTJLvExNpqyRuU2lLxBqJiYSBR7JtDYq3oSFqq78J2BR5ESZuhThg1VJ5nPcdSPhccsuciFL04MdXK3h9GcaD0OcXOI5pfusPTjoFnLoplTm1FHj4S3Rby-iv1r-jreEdjttGOKqUMjEVL6e0NQyi4hDLp8tI0M4Vid51IOtVpVeppI4nHqgfn7vlb7AMkKxkAgs9DYsNI8T_xXhTmN3gro_A38_9vM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoHOgFaGlhoYBBHLgYJY6TONyqpWiX7gLSgsQtsh1HWrVKEMle-BH8ZmachAUEaq_R-CP22PNsz7wh5BBABZiRzGeBMiETRkumMqVZKAIdAryXicZ7yPFFNLgR57fhbUuTg7Ew0IkKaqrcI_6cXQBpgnCzFUnwiSw5BhSEQf3JPAaSS7-DurGMgo5F6GVRtECmem2BPoCVzrycrTZ5ilzHnFfJn-NZrY_NwxvOxv_r-RpZaVEm_dmoxReyYIuvZLnfJXdbJ4_Dgk2m9YxeYTgQLXOK12j0dNqkxZkaNkGv-bJAOtjynrqLw1zh_Tq9RLZOOi1oE8dpqLN3jm6kOoGPmGmLqiKj_cYNHmsfocM5vZpHKdAJes671BVwVv9Gbs5-XfcHrE3NwJTwRc1yjTxBMgiiTCRg3wKlLUAbZWXugU7wOLQ8UrHQiic64jYD4Bkqz8_ggCalEsF3sliUhd0k1POMn0cmAjChRRjbBPZgz7ewgWeJz3PVI7swqmm7tKrUvZpzOLV0w9ojR918pqYlNsf8Gn_fEz14Fr1r2DzeE9rvlCKFWcEHFFXYcoZN89hDRrnkYxnuHmdlmHg9stFo1HNTHIpjRtStf_3SHlkeXI9H6Wh48XubfAaQ5lyEffmDLNb3M7sDQKjWu24FPAHNlf9e |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAX3tDlUQziwMVV4tiJw63asmqhtCstlXqLbMeRVqCkarIXfkR_c2ecZEtRK7hG40fsseezPfMNwEcEFWhGypgnxikundXclMZyJROrEN7r3NI95PejdP9Efj1Vp8NBkWJhsBMt1tSGR3xa1WdlNTAMEFUQbbgyT-7CPUXUbwSFpourOEih4xHuZjpNRiahP4uSFXLtdSt0C7QMJmb2CI7XnQueJT93Vp3dcb__4m38_94_hocD2mS7vXo8gTu-fgoPpmOSt2dwcVDzxbJbsTmFBbGmYnSdxvaWfXqcpeML8p5vaqKFbc5ZuECsDN2zs2Ni7WTLmvXxnI4FuxdoR9rP-JEybjFTl2zau8NT7YfkeM7mV9EKbEEe9CGFBZ7Zn8PJ7MuP6T4fUjRwI2PZ8coSX5BOkrSUOdq5xFiPEMd4XUWoGyJTXqQmk9aI3KbClwhAlYniEg9qWhuZvICNuqn9FrAocnGVuhRBhZUq8znuxVHscSMv81hUZgLbOLLFsMTaIryeCzy9jMM6gU_jnBZuIDinPBu_bhL9sBY961k9bhJ6PypGgbNCDymm9s2KmhZZRMxy-e0yIjzSapVHE3jZa9W6KYHFKTPqq3_90ju4P9-bFYcHR99ewyZiteApHOs3sNGdr_xbxEOd3Q6L4BIU_AHn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Situ+Probe+of+Gate+Dielectric-Semiconductor+Interfacial+Order+in+Organic+Transistors%3A+Origin+and+Control+of+Large+Performance+Sensitivities&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Walter%2C+Stephanie+R&rft.au=Youn%2C+Jangdae&rft.au=Emery%2C+Jonathan+D&rft.au=Kewalramani%2C+Sumit&rft.date=2012-07-18&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=134&rft.issue=28&rft.spage=11726&rft.epage=11733&rft_id=info:doi/10.1021%2Fja3036493&rft.externalDocID=b383399359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |