In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities

Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 134; no. 28; pp. 11726 - 11733
Main Authors Walter, Stephanie R, Youn, Jangdae, Emery, Jonathan D, Kewalramani, Sumit, Hennek, Jonathan W, Bedzyk, Michael J, Facchetti, Antonio, Marks, Tobin J, Geiger, Franz M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.07.2012
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/ja3036493

Cover

Abstract Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried interface” problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)–derived self-assembled monolayers (SAMs) on Si/SiO2 gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.
AbstractList Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.
Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.
Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried interface” problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)–derived self-assembled monolayers (SAMs) on Si/SiO2 gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.
Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic “buried interface” problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)–derived self-assembled monolayers (SAMs) on Si/SiO₂ gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.
Author Bedzyk, Michael J
Geiger, Franz M
Marks, Tobin J
Kewalramani, Sumit
Hennek, Jonathan W
Emery, Jonathan D
Youn, Jangdae
Walter, Stephanie R
Facchetti, Antonio
AuthorAffiliation Northwestern University
AuthorAffiliation_xml – name: Northwestern University
Author_xml – sequence: 1
  givenname: Stephanie R
  surname: Walter
  fullname: Walter, Stephanie R
– sequence: 2
  givenname: Jangdae
  surname: Youn
  fullname: Youn, Jangdae
– sequence: 3
  givenname: Jonathan D
  surname: Emery
  fullname: Emery, Jonathan D
– sequence: 4
  givenname: Sumit
  surname: Kewalramani
  fullname: Kewalramani, Sumit
– sequence: 5
  givenname: Jonathan W
  surname: Hennek
  fullname: Hennek, Jonathan W
– sequence: 6
  givenname: Michael J
  surname: Bedzyk
  fullname: Bedzyk, Michael J
  email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu
– sequence: 7
  givenname: Antonio
  surname: Facchetti
  fullname: Facchetti, Antonio
  email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu
– sequence: 8
  givenname: Tobin J
  surname: Marks
  fullname: Marks, Tobin J
  email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu
– sequence: 9
  givenname: Franz M
  surname: Geiger
  fullname: Geiger, Franz M
  email: geigerf@chem.northwestern.edu, a-facchetti@northwestern.edu, bedzyk@northwestern.edu, t-marks@northwestern.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22708575$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUh4NU7LZ64QtIbgS9GJu_kxnvZNW6sNDC1uvhTObMkmUmqUlG8CV8ZrNs64UUvAjJSb7zQX7ngpz54JGQ15x94EzwqwNIJmvVymdkxbVgleaiPiMrxpioTFPLc3KR0qGUSjT8BTkXwrBGG70ivze-2rm80NsYeqRhpNeQkX52OKHN0dlqh7OzwQ-LzSHSjc8YR7AOJnoTB4zU-XLYg3eW3kXwyaXCpY_l0u3LG_iBroPPMUxH-xbiHultcYQ4g7dId1h6svtZFqaX5PkIU8JXD_sl-f71y936W7W9ud6sP20rUFzlauwZKz-Qsh5UqwyX0KOSLWAzMmtBGI2iBqN6EG1fCxw41xoYH0RjmgaUvCTvTt77GH4smHI3u2RxmsBjWFInSlZSN7pl_0XLBAxTzIi2oG8e0KWfcejuo5sh_uoe4y7A1QmwMaQUceysy5DdMR9wU3Eddbz7O9DS8f6fjkfpU-zbEws2dYewRF8ifIL7AxhNq3g
CitedBy_id crossref_primary_10_1088_1674_4926_43_4_041101
crossref_primary_10_1016_j_apsusc_2013_05_158
crossref_primary_10_1016_j_polymer_2013_04_019
crossref_primary_10_1016_j_bios_2024_116603
crossref_primary_10_1021_acs_langmuir_7b03098
crossref_primary_10_1364_OE_24_019863
crossref_primary_10_1021_am400996q
crossref_primary_10_1039_C3TC32581D
crossref_primary_10_3390_ma14133756
crossref_primary_10_1039_c3ra42067a
crossref_primary_10_1021_ma4018907
crossref_primary_10_1039_C5RA22970G
crossref_primary_10_1002_adma_201402822
crossref_primary_10_1021_acs_jpcc_8b01760
crossref_primary_10_1021_am506609s
crossref_primary_10_1088_1361_6463_ac17b5
crossref_primary_10_1126_sciadv_abf8555
crossref_primary_10_1021_jp305606k
crossref_primary_10_1063_1_5081726
crossref_primary_10_1002_ange_201306709
crossref_primary_10_1021_acs_jpcb_0c11158
crossref_primary_10_1038_s41467_020_19330_7
crossref_primary_10_1063_1_4904924
crossref_primary_10_1016_j_cej_2022_137291
crossref_primary_10_1039_C5PY00891C
crossref_primary_10_1021_jp307677b
crossref_primary_10_1021_acsami_2c20925
crossref_primary_10_1039_c3cp43899f
crossref_primary_10_1021_jp311144b
crossref_primary_10_1039_c3tc30134f
crossref_primary_10_1021_acs_langmuir_6b03479
crossref_primary_10_1021_acs_langmuir_8b00972
crossref_primary_10_1021_jp5047547
crossref_primary_10_1021_acsami_2c21464
crossref_primary_10_1021_acs_jpclett_5b01958
crossref_primary_10_1016_j_matlet_2016_12_011
crossref_primary_10_1016_j_physe_2017_05_017
crossref_primary_10_1039_C7CP03115G
crossref_primary_10_3390_ijms14022303
crossref_primary_10_1021_jp404846r
crossref_primary_10_1007_s40843_024_3102_y
crossref_primary_10_1021_acs_jpclett_9b00498
crossref_primary_10_1021_acs_accounts_5b00022
crossref_primary_10_1063_5_0242748
crossref_primary_10_1021_acs_jpcc_8b00866
crossref_primary_10_1016_j_orgel_2013_03_027
crossref_primary_10_1021_acsami_1c04198
crossref_primary_10_1039_C5CP06320E
crossref_primary_10_1002_adfm_202211742
crossref_primary_10_1038_s41578_019_0127_y
crossref_primary_10_1021_acs_jpclett_6b00792
crossref_primary_10_1021_jacs_6b10651
crossref_primary_10_1002_aenm_202003877
crossref_primary_10_1021_acsami_6b03886
crossref_primary_10_1002_adma_201505118
crossref_primary_10_1021_la5048722
crossref_primary_10_1021_acs_langmuir_8b01813
crossref_primary_10_1021_acs_joc_6b02214
crossref_primary_10_1039_C6RA07389A
crossref_primary_10_1002_adfm_201503245
crossref_primary_10_1016_j_orgel_2017_07_012
crossref_primary_10_1021_acs_langmuir_3c01378
crossref_primary_10_1016_j_dyepig_2021_109159
crossref_primary_10_1063_1_4874263
crossref_primary_10_1002_admi_202202453
crossref_primary_10_1021_acs_jpclett_5b02633
crossref_primary_10_1021_acs_langmuir_5b02761
crossref_primary_10_1038_s41528_023_00273_0
crossref_primary_10_1021_acsomega_8b00043
crossref_primary_10_1021_jacs_5b09784
crossref_primary_10_1002_adfm_201502151
crossref_primary_10_1021_acs_jpcc_5b01527
crossref_primary_10_1021_acsami_3c02010
crossref_primary_10_1021_cm301095x
crossref_primary_10_1088_0022_3727_48_10_105103
crossref_primary_10_1021_acs_analchem_6b04320
crossref_primary_10_1039_D0RA08220A
crossref_primary_10_1002_anie_201306709
crossref_primary_10_1016_j_orgel_2020_105928
crossref_primary_10_1039_C6CP04155H
crossref_primary_10_1021_acsanm_8b01846
crossref_primary_10_1088_1674_4926_35_10_104004
crossref_primary_10_1039_D0CP06407F
crossref_primary_10_1002_nano_202100051
crossref_primary_10_1039_D2TC00100D
crossref_primary_10_1021_acs_chemrev_9b00532
Cites_doi 10.1038/nmat1612
10.1021/cm101435s
10.1002/adma.201001760
10.1038/nature03376
10.1021/cr0501386
10.1002/adma.201002682
10.1002/adma.200802032
10.1039/b924415h
10.1021/ja962277y
10.1021/ja052478e
10.1021/ar2001233
10.1016/0039-6028(94)90681-5
10.1002/adma.201001502
10.1021/ja801475h
10.1126/science.268.5208.270
10.1021/ja039772w
10.1038/nphoton.2007.172
10.1002/adma.201001697
10.1002/adma.200903712
10.1002/adma.201001310
10.1002/adfm.201001031
10.1103/PhysRevE.55.3164
10.1002/adfm.200801727
10.1002/adfm.201001530
10.1002/adma.201001865
10.1021/ja00135a032
10.1039/b816386c
10.1002/adma.201101493
10.1002/adma.200902857
10.1021/la00031a035
10.1021/ja800142t
10.1103/PhysRevB.78.121302
10.1021/ja060442w
10.1021/cm102419z
10.1002/adma.200901454
10.1103/PhysRevLett.59.1597
10.1039/C0SC00502A
10.1002/adma.200903420
10.1063/1.2943659
10.1038/nmat1774
10.1021/ja9029957
10.1002/adma.200903559
10.1002/adma.201002912
10.1002/adma.200903628
10.1063/1.3493190
10.1002/adma.201003135
10.1021/ar9000873
10.1038/nature10683
10.1038/nmat1105
10.1103/PhysRevE.58.7686
10.1021/ja066824j
10.1103/PhysRevB.59.12632
10.1021/la010123c
10.1021/cr1001904
10.1021/jp103636s
10.1021/ja071989t
10.1021/jp101768w
10.1063/1.1602058
10.1002/adma.200903193
10.1021/cr900150b
10.1016/S1369-7021(06)71445-6
10.1021/jp2035339
10.1557/mrs2010.707
10.1103/RevModPhys.78.973
10.1021/cm049598q
10.1002/adfm.200900298
10.1021/jp072767k
10.1038/nmat2570
10.1002/adma.200902740
10.1002/adma.200803267
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/ja3036493
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 11733
ExternalDocumentID 22708575
10_1021_ja3036493
b383399359
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a414t-fb00708336d494713abe439ae8f0cca275e26a74ba29b62ed1155a01d28788a43
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 09:29:32 EDT 2025
Fri Sep 05 03:16:45 EDT 2025
Mon Jul 21 05:51:02 EDT 2025
Tue Jul 01 02:08:27 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-fb00708336d494713abe439ae8f0cca275e26a74ba29b62ed1155a01d28788a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22708575
PQID 1027040729
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000358590
proquest_miscellaneous_1027040729
pubmed_primary_22708575
crossref_citationtrail_10_1021_ja3036493
crossref_primary_10_1021_ja3036493
acs_journals_10_1021_ja3036493
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-18
PublicationDateYYYYMMDD 2012-07-18
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ye H. (ref17/cit17a) 2007; 111
Veres J. (ref11/cit11c) 2004; 16
Irimia-Vladu M. (ref6/cit6a) 2010; 20
Ono S. (ref8/cit8e) 2010; 97
Tsao H. N. (ref7/cit7f) 2009; 21
Ong B. S. (ref12/cit12b) 2004; 126
Liao K. C. (ref8/cit8a) 2010; 22
Lee H. S. (ref13/cit13a) 2008; 130
McCulloch I. (ref28/cit28) 2006; 5
Matsubara R. (ref27/cit27) 2008; 92
ref12/cit12e
Mannsfeld S. C. B. (ref9/cit9d) 2011; 23
Dhagat P. (ref11/cit11a) 2009; 19
Shen Y. R. (ref15/cit15b) 1994; 299
Di C.-A. (ref8/cit8d) 2009; 42
Facchetti A. (ref1/cit1c) 2011; 23
Messmer M. C. (ref16/cit16b) 1995; 117
Anthony J. E. (ref1/cit1a) 2010; 22
Tang M. L. (ref12/cit12a) 2006; 128
Ito Y. (ref14/cit14) 2009; 131
Osaka I. (ref7/cit7d) 2009; 131
Mathijssen S. G. J. (ref9/cit9e) 2010; 22
Chua L.-L. (ref11/cit11d) 2005; 434
Hulea I. N. (ref8/cit8g) 2006; 5
Manaka T. (ref9/cit9b) 2007; 1
Gragson D. E. (ref15/cit15a) 1997; 119
Gershenson M. E. (ref8/cit8f) 2006; 78
Eigner A. A. (ref10/cit10b) 2010; 114
Ocko B. M. (ref21/cit21) 1997; 55
Marks T. J. (ref2/cit2c) 2010; 35
Liu C. A. (ref2/cit2b) 2011; 23
Liu Y. (ref16/cit16a) 2001; 17
Salleo A. (ref9/cit9g) 2010; 22
Ji N. (ref16/cit16d) 2007; 129
Roberts M. E. (ref6/cit6b) 2009; 19
Lee W. H. (ref7/cit7c) 2010; 20
Virkar A. (ref13/cit13b) 2009; 19
DeLongchamp D. M. (ref9/cit9a) 2011; 23
Spijkman M. J. (ref1/cit1e) 2011; 23
Youn J. (ref18/cit18) 2010; 22
Cho S. (ref1/cit1b) 2010; 22
Arias A. C. (ref2/cit2a) 2010; 110
Bao Z. (ref12/cit12d) 2007
Wen Y. G. (ref1/cit1h) 2011; 111
Sun J. (ref5/cit5b) 2011; 21
Warren B. E. (ref25/cit25) 1969
Kjellander B. K. C. (ref5/cit5a) 2010; 22
Anglin T. C. (ref23/cit23) 2011; 115
Zschieschang U. (ref8/cit8b) 2010; 22
Marchl M. (ref8/cit8c) 2010; 22
Ong T. H. (ref22/cit22) 1993; 9
Dodabalapur A. (ref29/cit29) 1995; 268
Sze S. M. (ref19/cit19) 1985
Zschieschang U. (ref3/cit3c) 2010; 22
Durbin M. K. (ref24/cit24) 1998; 58
Wen Y. G. (ref1/cit1g) 2010; 22
Anglin T. C. (ref10/cit10a) 2010; 114
Rivnay J. (ref9/cit9f) 2009; 8
Zhuang X. (ref15/cit15c) 1999; 59
Sokolov A. N. (ref6/cit6c) 2012; 45
Giri G. (ref7/cit7b) 2011; 480
Guyotsionnest P. (ref16/cit16c) 1987; 59
Shao W. (ref7/cit7e) 2011; 2
Virkar A. A. (ref1/cit1f) 2010; 22
Gelinck G. (ref3/cit3a) 2010; 22
DiBenedetto S. A. (ref7/cit7a) 2009; 21
Murphy A. R. (ref4/cit4) 2007; 107
Fukuto M. (ref20/cit20) 2003; 119
Sirringhaus H. (ref1/cit1d) 2010; 22
Street R. A. (ref3/cit3b) 2006; 9
Ye H. (ref17/cit17b) 2006; 128
Manaka T. (ref9/cit9c) 2008; 78
Yang H. C. (ref11/cit11b) 2005; 127
Kobayashi S. (ref12/cit12c) 2004; 3
References_xml – volume-title: Organic Field Effect Transistors
  year: 2007
  ident: ref12/cit12d
– volume: 5
  start-page: 328
  year: 2006
  ident: ref28/cit28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1612
– volume: 22
  start-page: 5031
  year: 2010
  ident: ref18/cit18
  publication-title: Chem. Mater.
  doi: 10.1021/cm101435s
– volume: 23
  start-page: 319
  year: 2011
  ident: ref9/cit9a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001760
– volume: 434
  start-page: 194
  year: 2005
  ident: ref11/cit11d
  publication-title: Nature
  doi: 10.1038/nature03376
– volume: 107
  start-page: 1066
  year: 2007
  ident: ref4/cit4
  publication-title: Chem. Rev.
  doi: 10.1021/cr0501386
– volume: 23
  start-page: 523
  year: 2011
  ident: ref2/cit2b
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002682
– volume: 21
  start-page: 209
  year: 2009
  ident: ref7/cit7f
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802032
– volume: 20
  start-page: 2549
  year: 2010
  ident: ref7/cit7c
  publication-title: J. Mater. Chem.
  doi: 10.1039/b924415h
– volume: 119
  start-page: 6144
  year: 1997
  ident: ref15/cit15a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja962277y
– volume-title: Semiconductor Devices: Physics and Technology
  year: 1985
  ident: ref19/cit19
– volume: 127
  start-page: 11542
  year: 2005
  ident: ref11/cit11b
  publication-title: Am. Chem. Soc.
  doi: 10.1021/ja052478e
– volume: 45
  start-page: 361
  year: 2012
  ident: ref6/cit6c
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar2001233
– volume: 299
  start-page: 551
  year: 1994
  ident: ref15/cit15b
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)90681-5
– volume: 22
  start-page: 4489
  year: 2010
  ident: ref8/cit8b
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001502
– volume: 131
  start-page: 2521
  year: 2009
  ident: ref7/cit7d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801475h
– volume: 268
  start-page: 270
  year: 1995
  ident: ref29/cit29
  publication-title: Science
  doi: 10.1126/science.268.5208.270
– volume: 126
  start-page: 3378
  year: 2004
  ident: ref12/cit12b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039772w
– volume: 1
  start-page: 581
  year: 2007
  ident: ref9/cit9b
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2007.172
– volume: 22
  start-page: 4612
  year: 2010
  ident: ref5/cit5a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001697
– volume: 22
  start-page: 3812
  year: 2010
  ident: ref9/cit9g
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903712
– volume: 22
  start-page: 3081
  year: 2010
  ident: ref8/cit8a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001310
– volume: 20
  start-page: 4069
  year: 2010
  ident: ref6/cit6a
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001031
– volume: 55
  start-page: 3164
  year: 1997
  ident: ref21/cit21
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.55.3164
– volume: 19
  start-page: 1962
  year: 2009
  ident: ref13/cit13b
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801727
– volume: 21
  start-page: 29
  year: 2011
  ident: ref5/cit5b
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001530
– volume: 22
  start-page: 5105
  year: 2010
  ident: ref9/cit9e
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001865
– volume: 117
  start-page: 8039
  year: 1995
  ident: ref16/cit16b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00135a032
– volume: 19
  start-page: 3351
  year: 2009
  ident: ref6/cit6b
  publication-title: J. Mater. Chem.
  doi: 10.1039/b816386c
– volume: 23
  start-page: 3231
  year: 2011
  ident: ref1/cit1e
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101493
– volume: 22
  start-page: 3893
  year: 2010
  ident: ref1/cit1d
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902857
– ident: ref12/cit12e
– volume: 9
  start-page: 1836
  year: 1993
  ident: ref22/cit22
  publication-title: Langmuir
  doi: 10.1021/la00031a035
– volume: 130
  start-page: 10556
  year: 2008
  ident: ref13/cit13a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800142t
– volume: 78
  start-page: 121302
  year: 2008
  ident: ref9/cit9c
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.121302
– volume: 128
  start-page: 6528
  year: 2006
  ident: ref17/cit17b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja060442w
– volume: 23
  start-page: 733
  year: 2011
  ident: ref1/cit1c
  publication-title: Chem. Mater.
  doi: 10.1021/cm102419z
– volume: 22
  start-page: 1331
  year: 2010
  ident: ref1/cit1g
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901454
– volume: 59
  start-page: 1597
  year: 1987
  ident: ref16/cit16c
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.1597
– volume: 2
  start-page: 590
  year: 2011
  ident: ref7/cit7e
  publication-title: Chem Sci
  doi: 10.1039/C0SC00502A
– volume: 22
  start-page: 1253
  year: 2010
  ident: ref1/cit1b
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903420
– volume: 92
  start-page: 242108
  year: 2008
  ident: ref27/cit27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2943659
– volume: 5
  start-page: 982
  year: 2006
  ident: ref8/cit8g
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1774
– volume: 131
  start-page: 9396
  year: 2009
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9029957
– volume: 22
  start-page: 3778
  year: 2010
  ident: ref3/cit3a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903559
– volume: 22
  start-page: 5361
  year: 2010
  ident: ref8/cit8c
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002912
– volume-title: X-Ray Diffraction
  year: 1969
  ident: ref25/cit25
– volume: 22
  start-page: 3876
  year: 2010
  ident: ref1/cit1a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903628
– volume: 97
  start-page: 143307
  year: 2010
  ident: ref8/cit8e
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3493190
– volume: 23
  start-page: 127
  year: 2011
  ident: ref9/cit9d
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003135
– volume: 42
  start-page: 1573
  year: 2009
  ident: ref8/cit8d
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9000873
– volume: 480
  start-page: 504
  year: 2011
  ident: ref7/cit7b
  publication-title: Nature
  doi: 10.1038/nature10683
– volume: 3
  start-page: 317
  year: 2004
  ident: ref12/cit12c
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1105
– volume: 58
  start-page: 7686
  year: 1998
  ident: ref24/cit24
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.7686
– volume: 128
  start-page: 16002
  year: 2006
  ident: ref12/cit12a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066824j
– volume: 59
  start-page: 12632
  year: 1999
  ident: ref15/cit15c
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.12632
– volume: 17
  start-page: 4329
  year: 2001
  ident: ref16/cit16a
  publication-title: Langmuir
  doi: 10.1021/la010123c
– volume: 111
  start-page: 3358
  year: 2011
  ident: ref1/cit1h
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001904
– volume: 114
  start-page: 17629
  year: 2010
  ident: ref10/cit10a
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103636s
– volume: 129
  start-page: 10056
  year: 2007
  ident: ref16/cit16d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071989t
– volume: 114
  start-page: 12308
  year: 2010
  ident: ref10/cit10b
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101768w
– volume: 119
  start-page: 6253
  year: 2003
  ident: ref20/cit20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1602058
– volume: 22
  start-page: 3857
  year: 2010
  ident: ref1/cit1f
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903193
– volume: 110
  start-page: 3
  year: 2010
  ident: ref2/cit2a
  publication-title: Chem. Rev.
  doi: 10.1021/cr900150b
– volume: 9
  start-page: 32
  year: 2006
  ident: ref3/cit3b
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71445-6
– volume: 115
  start-page: 16027
  year: 2011
  ident: ref23/cit23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2035339
– volume: 35
  start-page: 1018
  year: 2010
  ident: ref2/cit2c
  publication-title: MRS Bull.
  doi: 10.1557/mrs2010.707
– volume: 78
  start-page: 973
  year: 2006
  ident: ref8/cit8f
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.973
– volume: 16
  start-page: 4543
  year: 2004
  ident: ref11/cit11c
  publication-title: Chem. Mater.
  doi: 10.1021/cm049598q
– volume: 19
  start-page: 2365
  year: 2009
  ident: ref11/cit11a
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900298
– volume: 111
  start-page: 13250
  year: 2007
  ident: ref17/cit17a
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp072767k
– volume: 8
  start-page: 952
  year: 2009
  ident: ref9/cit9f
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2570
– volume: 22
  start-page: 982
  year: 2010
  ident: ref3/cit3c
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902740
– volume: 21
  start-page: 1407
  year: 2009
  ident: ref7/cit7a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803267
SSID ssj0004281
Score 2.392848
Snippet Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11726
SubjectTerms atomic force microscopy
crystal structure
reflectance
semiconductors
spectroscopy
X-radiation
Title In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities
URI http://dx.doi.org/10.1021/ja3036493
https://www.ncbi.nlm.nih.gov/pubmed/22708575
https://www.proquest.com/docview/1027040729
https://www.proquest.com/docview/2000358590
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004281
  issn: 0002-7863
  databaseCode: ACS
  dateStart: 18790101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOMCl5d1tKTKFAxej2HESpze0gABBi7QgcVvZjiOtQEnFZi_9EfxmZpwNtCpbrtE4TuKJ5_M8vgHYR1CBZqQQPDYu4cpZzU1hLE9UbBOE9zq35Ie8-pGe3aqLu-RuDvZmRPAl8QPRLqvyeB4WZaoFnbCO-oPX4kepRYdxM53GHX3Qn0PJ9Ljx36ZnBp4MduX0Ixx31TltOsn94aSxh-73v2SN_3vkFfgwxZXsqFWEVZjz1Ros9bt2buvwdF7xwaiZsGsqAGJ1ychxxo5HbSOckeMDypOvKyKArR9ZcBWWhjzq7Cfxc7JRxdrKTceChQsEI-PveJF6azFTFazfJr7T3S8pxZxdv9YlsAHlyodmFXg634Db05Ob_hmfNmPgRgnV8NISM5CO47RQOVq02FiPYMZ4XUaoBTJLvExNpqyRuU2lLxBqJiYSBR7JtDYq3oSFqq78J2BR5ESZuhThg1VJ5nPcdSPhccsuciFL04MdXK3h9GcaD0OcXOI5pfusPTjoFnLoplTm1FHj4S3Rby-iv1r-jreEdjttGOKqUMjEVL6e0NQyi4hDLp8tI0M4Vid51IOtVpVeppI4nHqgfn7vlb7AMkKxkAgs9DYsNI8T_xXhTmN3gro_A38_9vM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoHOgFaGlhoYBBHLgYJY6TONyqpWiX7gLSgsQtsh1HWrVKEMle-BH8ZmachAUEaq_R-CP22PNsz7wh5BBABZiRzGeBMiETRkumMqVZKAIdAryXicZ7yPFFNLgR57fhbUuTg7Ew0IkKaqrcI_6cXQBpgnCzFUnwiSw5BhSEQf3JPAaSS7-DurGMgo5F6GVRtECmem2BPoCVzrycrTZ5ilzHnFfJn-NZrY_NwxvOxv_r-RpZaVEm_dmoxReyYIuvZLnfJXdbJ4_Dgk2m9YxeYTgQLXOK12j0dNqkxZkaNkGv-bJAOtjynrqLw1zh_Tq9RLZOOi1oE8dpqLN3jm6kOoGPmGmLqiKj_cYNHmsfocM5vZpHKdAJes671BVwVv9Gbs5-XfcHrE3NwJTwRc1yjTxBMgiiTCRg3wKlLUAbZWXugU7wOLQ8UrHQiic64jYD4Bkqz8_ggCalEsF3sliUhd0k1POMn0cmAjChRRjbBPZgz7ewgWeJz3PVI7swqmm7tKrUvZpzOLV0w9ojR918pqYlNsf8Gn_fEz14Fr1r2DzeE9rvlCKFWcEHFFXYcoZN89hDRrnkYxnuHmdlmHg9stFo1HNTHIpjRtStf_3SHlkeXI9H6Wh48XubfAaQ5lyEffmDLNb3M7sDQKjWu24FPAHNlf9e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAX3tDlUQziwMVV4tiJw63asmqhtCstlXqLbMeRVqCkarIXfkR_c2ecZEtRK7hG40fsseezPfMNwEcEFWhGypgnxikundXclMZyJROrEN7r3NI95PejdP9Efj1Vp8NBkWJhsBMt1tSGR3xa1WdlNTAMEFUQbbgyT-7CPUXUbwSFpourOEih4xHuZjpNRiahP4uSFXLtdSt0C7QMJmb2CI7XnQueJT93Vp3dcb__4m38_94_hocD2mS7vXo8gTu-fgoPpmOSt2dwcVDzxbJbsTmFBbGmYnSdxvaWfXqcpeML8p5vaqKFbc5ZuECsDN2zs2Ni7WTLmvXxnI4FuxdoR9rP-JEybjFTl2zau8NT7YfkeM7mV9EKbEEe9CGFBZ7Zn8PJ7MuP6T4fUjRwI2PZ8coSX5BOkrSUOdq5xFiPEMd4XUWoGyJTXqQmk9aI3KbClwhAlYniEg9qWhuZvICNuqn9FrAocnGVuhRBhZUq8znuxVHscSMv81hUZgLbOLLFsMTaIryeCzy9jMM6gU_jnBZuIDinPBu_bhL9sBY961k9bhJ6PypGgbNCDymm9s2KmhZZRMxy-e0yIjzSapVHE3jZa9W6KYHFKTPqq3_90ju4P9-bFYcHR99ewyZiteApHOs3sNGdr_xbxEOd3Q6L4BIU_AHn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Situ+Probe+of+Gate+Dielectric-Semiconductor+Interfacial+Order+in+Organic+Transistors%3A+Origin+and+Control+of+Large+Performance+Sensitivities&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Walter%2C+Stephanie+R&rft.au=Youn%2C+Jangdae&rft.au=Emery%2C+Jonathan+D&rft.au=Kewalramani%2C+Sumit&rft.date=2012-07-18&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=134&rft.issue=28&rft.spage=11726&rft.epage=11733&rft_id=info:doi/10.1021%2Fja3036493&rft.externalDocID=b383399359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon