Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer
With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthes...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 23; pp. 8720 - 8725 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/ja403232d |
Cover
Abstract | With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V4+(S2 2–)2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices. |
---|---|
AbstractList | With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices. With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V4+(S2 2–)2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices. With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S₂²–, such as pyrite (FeS₂), cattierite (CoS₂), and vaesite (NiS₂), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS₄, V⁴⁺(S₂²–)₂) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS₄ using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS₄. Furthermore, the VS₄/rGO hybrid was proved to be a promising functional material in energy storage devices. With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices. |
Author | Jeong, Hu Young Rout, Chandra Sekhar Yang, Jieun Kim, Byeong-Hwan Cho, Jaephil Shin, Hyeon Suk Odkhuu, Dorj Xu, Xiaodong Park, Noejung |
AuthorAffiliation | UNIST (Ulsan National Institute of Science and Technology) |
AuthorAffiliation_xml | – name: UNIST (Ulsan National Institute of Science and Technology) |
Author_xml | – sequence: 1 givenname: Chandra Sekhar surname: Rout fullname: Rout, Chandra Sekhar – sequence: 2 givenname: Byeong-Hwan surname: Kim fullname: Kim, Byeong-Hwan – sequence: 3 givenname: Xiaodong surname: Xu fullname: Xu, Xiaodong – sequence: 4 givenname: Jieun surname: Yang fullname: Yang, Jieun – sequence: 5 givenname: Hu Young surname: Jeong fullname: Jeong, Hu Young – sequence: 6 givenname: Dorj surname: Odkhuu fullname: Odkhuu, Dorj – sequence: 7 givenname: Noejung surname: Park fullname: Park, Noejung – sequence: 8 givenname: Jaephil surname: Cho fullname: Cho, Jaephil email: shin@unist.ac.kr, jpcho@unist.ac.kr – sequence: 9 givenname: Hyeon Suk surname: Shin fullname: Shin, Hyeon Suk email: shin@unist.ac.kr, jpcho@unist.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23679353$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1r3DAQBmBREpLNx6F_oPhSSA7OShrJso9laZLCQgvbtEcxa0usFlvaSvJh--vjZJMcSqCnYYZn5vDOGTnywRtCPjJ6wyhn8y0KChx494HMmOS0lIxXR2RGKeWlqis4JWcpbadW8JqdkFMOlWpAwoz8Xu193pjkUoG-KxYbjNhmE91fzC74ItjiB-YYvMumuA1xeJr8Qo-dG4diNfbWdaaY4F3E3cZl1xZL3Jt4QY4t9slcvtRz8nD79efivlx-v_u2-LIsUTCRS9OBElzhuqbAGs4qKSWzFAV0vIZWCcFMUzFowVIhOqsoBwV2DVxVQqKFc3J1uLuL4c9oUtaDS63pe_QmjEnzppZCCqrEfymbQqlVQ6GZ6KcXOq4H0-lddAPGvX7NbQLzA2hjSCkaq1uXnxPLEV2vGdVPn9Fvn5k2rv_ZeD36nv18sNgmvQ1j9FOE77hHX_iXDQ |
CitedBy_id | crossref_primary_10_1016_j_electacta_2015_03_196 crossref_primary_10_1016_j_ensm_2017_09_002 crossref_primary_10_1016_j_electacta_2024_144053 crossref_primary_10_1016_j_ensm_2022_10_034 crossref_primary_10_1016_j_scriptamat_2013_11_024 crossref_primary_10_1016_j_cej_2023_144738 crossref_primary_10_1039_C5CP01326G crossref_primary_10_1016_j_ssi_2017_09_020 crossref_primary_10_1088_1361_6528_aa5cf2 crossref_primary_10_1021_acssuschemeng_3c07411 crossref_primary_10_1021_jacs_7b03909 crossref_primary_10_1016_j_cej_2021_133044 crossref_primary_10_1038_srep08151 crossref_primary_10_1016_j_jpowsour_2017_03_070 crossref_primary_10_1002_admi_201700999 crossref_primary_10_1021_acs_jpcc_9b02142 crossref_primary_10_1007_s10854_019_01304_1 crossref_primary_10_1103_PhysRevB_93_054429 crossref_primary_10_1016_j_jpowsour_2019_227674 crossref_primary_10_1039_C6TA04390A crossref_primary_10_1016_j_carbon_2022_06_062 crossref_primary_10_1021_acsami_9b12128 crossref_primary_10_1039_C8TA02757A crossref_primary_10_1039_C9TA12235D crossref_primary_10_1016_j_snb_2019_127411 crossref_primary_10_1021_acssuschemeng_0c00080 crossref_primary_10_1002_pssa_202200203 crossref_primary_10_1016_j_ensm_2022_02_023 crossref_primary_10_1016_j_apsusc_2018_04_163 crossref_primary_10_1016_j_electacta_2017_09_129 crossref_primary_10_1021_jacs_0c08222 crossref_primary_10_1039_D2NR02304K crossref_primary_10_57634_RCR5072 crossref_primary_10_1007_s10008_015_3035_0 crossref_primary_10_1021_acsenergylett_9b00076 crossref_primary_10_1021_acsaem_1c03083 crossref_primary_10_1186_s40580_016_0066_x crossref_primary_10_1016_j_jcis_2017_03_081 crossref_primary_10_1016_j_est_2019_101074 crossref_primary_10_1002_ange_202002560 crossref_primary_10_1016_j_ijhydene_2014_08_088 crossref_primary_10_1016_j_inoche_2020_107883 crossref_primary_10_1021_acs_chemrev_2c00455 crossref_primary_10_1039_D0SE00897D crossref_primary_10_1016_j_nanoen_2019_01_004 crossref_primary_10_3390_nano9111638 crossref_primary_10_1002_adfm_202000427 crossref_primary_10_1016_j_nantod_2014_09_005 crossref_primary_10_1007_s40820_020_0377_7 crossref_primary_10_1007_s00604_019_3251_x crossref_primary_10_1039_C5RA10586B crossref_primary_10_1021_acs_inorgchem_5b00159 crossref_primary_10_1016_j_jpowsour_2018_07_036 crossref_primary_10_1088_2053_1591_aabca6 crossref_primary_10_1039_C9TA12346F crossref_primary_10_1002_ejic_201402448 crossref_primary_10_1039_D3TA04634F crossref_primary_10_1016_j_jmmm_2019_01_065 crossref_primary_10_1039_C9TA03516H crossref_primary_10_1039_C5NR01896J crossref_primary_10_1002_adfm_201801806 crossref_primary_10_1021_jacs_5b03395 crossref_primary_10_1039_D0RA06773C crossref_primary_10_1039_D1TC00096A crossref_primary_10_1002_adfm_202205453 crossref_primary_10_1007_s12274_017_1927_2 crossref_primary_10_1007_s11581_023_05236_z crossref_primary_10_1038_srep04673 crossref_primary_10_1039_c3ta13329j crossref_primary_10_1039_C9NR01953G crossref_primary_10_1039_D2EE04121A crossref_primary_10_1002_celc_202100630 crossref_primary_10_1039_C6TC01962E crossref_primary_10_1016_j_cej_2022_135778 crossref_primary_10_1021_cm502170q crossref_primary_10_1021_acsaem_1c01676 crossref_primary_10_1016_j_jallcom_2019_151769 crossref_primary_10_1016_j_aca_2019_04_058 crossref_primary_10_1021_acsanm_3c03373 crossref_primary_10_1039_C8TA08133F crossref_primary_10_1021_acssuschemeng_0c07984 crossref_primary_10_1007_s42864_021_00101_w crossref_primary_10_1039_C3NR05509D crossref_primary_10_1002_smll_202207047 crossref_primary_10_1016_j_carbon_2024_119566 crossref_primary_10_1039_D1TA01626A crossref_primary_10_1039_D3QI00712J crossref_primary_10_5796_electrochemistry_22_00087 crossref_primary_10_1016_j_jmmm_2024_171933 crossref_primary_10_1038_s41467_019_12310_6 crossref_primary_10_1002_adfm_201904398 crossref_primary_10_1021_acsami_7b13763 crossref_primary_10_1088_1361_6528_ac66ee crossref_primary_10_1016_j_cej_2021_133765 crossref_primary_10_1002_cnma_201900526 crossref_primary_10_1002_chem_201406428 crossref_primary_10_1002_adma_201802563 crossref_primary_10_1007_s11581_019_03239_3 crossref_primary_10_1016_j_nanoen_2016_02_010 crossref_primary_10_1021_acsami_2c07337 crossref_primary_10_1021_acsami_9b21436 crossref_primary_10_1002_tcr_202200117 crossref_primary_10_1021_acsami_9b18721 crossref_primary_10_1063_5_0084918 crossref_primary_10_1039_C4TA03161J crossref_primary_10_1021_am403663f crossref_primary_10_1002_cssc_201702031 crossref_primary_10_1149_2754_2734_acb224 crossref_primary_10_1063_5_0068407 crossref_primary_10_1007_s12274_021_4060_1 crossref_primary_10_1016_j_apcatb_2019_117911 crossref_primary_10_1016_j_snb_2017_08_070 crossref_primary_10_1002_adfm_201906586 crossref_primary_10_1002_smll_202107058 crossref_primary_10_1016_j_cej_2019_123385 crossref_primary_10_1021_jacsau_2c00596 crossref_primary_10_1039_C5TA03221K crossref_primary_10_1002_cssc_201702270 crossref_primary_10_2139_ssrn_3999296 crossref_primary_10_1016_j_memsci_2023_121771 crossref_primary_10_1039_C7TA07009H crossref_primary_10_1016_j_jallcom_2023_173096 crossref_primary_10_1016_j_est_2023_109059 crossref_primary_10_1016_j_ces_2020_116404 crossref_primary_10_1002_aenm_201600671 crossref_primary_10_1007_s10853_021_06537_2 crossref_primary_10_5796_electrochemistry_23_00030 crossref_primary_10_1016_j_micrna_2023_207652 crossref_primary_10_1016_j_jcis_2024_12_134 crossref_primary_10_1016_j_mtnano_2020_100073 crossref_primary_10_1186_s40580_015_0059_1 crossref_primary_10_3390_futurepharmacol4040040 crossref_primary_10_1016_j_matpr_2017_09_019 crossref_primary_10_1016_j_nanoen_2021_106838 crossref_primary_10_1002_smll_201903904 crossref_primary_10_1002_ejic_201501001 crossref_primary_10_1016_j_electacta_2017_10_137 crossref_primary_10_1021_acsaem_2c00141 crossref_primary_10_1021_acsomega_7b01226 crossref_primary_10_1002_anie_202002560 crossref_primary_10_1002_cssc_201701709 crossref_primary_10_1016_j_jpowsour_2020_228669 crossref_primary_10_1021_acsenergylett_2c02179 crossref_primary_10_1021_acsami_8b01876 crossref_primary_10_1016_j_mtadv_2023_100451 crossref_primary_10_1088_1748_605X_abb523 crossref_primary_10_1016_j_cej_2023_146408 crossref_primary_10_1039_C8NJ05636F crossref_primary_10_1002_cssc_201903081 crossref_primary_10_1002_aenm_201702139 crossref_primary_10_1016_j_jallcom_2020_155204 crossref_primary_10_1039_C5TB01239B crossref_primary_10_1021_acsaem_8b00449 crossref_primary_10_1016_j_bios_2014_08_010 crossref_primary_10_1039_D0TA06330D crossref_primary_10_1002_er_4892 crossref_primary_10_1021_acsami_9b09592 crossref_primary_10_3390_molecules26092507 crossref_primary_10_1016_j_ensm_2016_10_010 crossref_primary_10_1016_j_ensm_2021_05_004 crossref_primary_10_1016_j_jcis_2020_04_072 crossref_primary_10_1021_acsami_7b13558 crossref_primary_10_1016_j_jcis_2023_06_082 crossref_primary_10_1016_j_ultsonch_2018_07_008 crossref_primary_10_1002_batt_202200016 crossref_primary_10_3390_nano13101599 crossref_primary_10_1016_j_diamond_2022_109353 crossref_primary_10_1016_j_jelechem_2018_07_040 crossref_primary_10_1039_D0CP05395C crossref_primary_10_2139_ssrn_4193819 crossref_primary_10_1039_C9NR09027D crossref_primary_10_1021_acs_energyfuels_3c00866 crossref_primary_10_1016_j_nanoen_2018_06_076 crossref_primary_10_1021_acsami_1c09927 crossref_primary_10_1016_j_jallcom_2016_05_293 crossref_primary_10_1016_j_jcis_2019_06_105 crossref_primary_10_1016_j_est_2023_109133 crossref_primary_10_1016_j_ssi_2018_05_010 crossref_primary_10_1016_j_jpowsour_2022_231412 crossref_primary_10_1002_adfm_202009875 crossref_primary_10_1016_j_nanoen_2017_03_036 crossref_primary_10_1016_j_apsusc_2017_06_218 crossref_primary_10_1039_C8NR06458J crossref_primary_10_1021_acsami_5b06385 crossref_primary_10_1021_acssuschemeng_7b01137 crossref_primary_10_1002_admt_202301840 crossref_primary_10_1002_adma_201402041 crossref_primary_10_1016_j_electacta_2017_07_106 crossref_primary_10_1002_cssc_201901412 crossref_primary_10_1016_j_matlet_2017_06_058 crossref_primary_10_1021_acsami_2c19712 crossref_primary_10_1039_C5RA26817F crossref_primary_10_1039_C6TA05110C crossref_primary_10_3139_146_111343 crossref_primary_10_1016_j_jallcom_2023_171007 crossref_primary_10_1039_C4TC00025K crossref_primary_10_1039_C9RA04338A crossref_primary_10_1016_j_ssi_2018_10_022 crossref_primary_10_1021_ie5042287 crossref_primary_10_1016_j_electacta_2018_04_106 crossref_primary_10_1016_j_jallcom_2020_155073 crossref_primary_10_1039_D0EN00982B crossref_primary_10_1021_acsaem_3c01382 crossref_primary_10_1016_j_est_2022_104401 crossref_primary_10_1016_j_catcom_2016_07_010 crossref_primary_10_1080_25740881_2023_2221329 crossref_primary_10_1016_j_jssc_2014_06_031 crossref_primary_10_1016_j_cej_2022_135131 crossref_primary_10_1002_aenm_201702337 crossref_primary_10_1039_C4TA00371C crossref_primary_10_1002_eem2_12225 crossref_primary_10_1016_j_jallcom_2021_158810 crossref_primary_10_1016_j_apcatb_2017_10_065 crossref_primary_10_1016_j_cej_2024_157907 crossref_primary_10_1016_j_matlet_2021_131282 crossref_primary_10_1016_j_jpowsour_2017_07_056 crossref_primary_10_1016_j_jclepro_2020_121205 crossref_primary_10_1016_j_jallcom_2024_174171 crossref_primary_10_1021_acssuschemeng_0c03785 crossref_primary_10_1021_acsmaterialslett_1c00160 crossref_primary_10_1007_s00604_019_3942_3 crossref_primary_10_1021_acsami_9b03975 crossref_primary_10_1039_D3TA04138G crossref_primary_10_1039_C5AY01793A crossref_primary_10_1039_C7NR02867A crossref_primary_10_1016_j_enchem_2019_100022 crossref_primary_10_1039_D0TA07436E crossref_primary_10_5796_electrochemistry_21_00026 crossref_primary_10_1016_j_jpowsour_2015_03_154 crossref_primary_10_1016_j_mtener_2017_11_006 crossref_primary_10_1016_j_jcis_2023_07_015 crossref_primary_10_1007_s40820_022_00809_5 crossref_primary_10_1016_j_ijhydene_2022_01_063 crossref_primary_10_1103_PhysRevB_88_235310 crossref_primary_10_1016_j_ensm_2018_11_016 crossref_primary_10_1021_acsaem_0c02090 crossref_primary_10_1016_j_apmt_2023_101995 crossref_primary_10_1039_C8SE00539G crossref_primary_10_1016_j_jallcom_2019_152122 crossref_primary_10_1039_C8DT02547A crossref_primary_10_1002_adfm_201402560 crossref_primary_10_1016_j_wasman_2020_04_007 crossref_primary_10_1016_j_ensm_2021_11_027 crossref_primary_10_1021_acsami_6b04444 crossref_primary_10_1021_acsanm_8b01592 crossref_primary_10_1021_acs_jpclett_2c01299 crossref_primary_10_1016_j_ensm_2019_06_001 crossref_primary_10_1039_D0TA02645J crossref_primary_10_1002_ange_201307475 crossref_primary_10_1021_acsami_5b03124 crossref_primary_10_1016_j_rser_2022_112613 crossref_primary_10_1021_acs_chemmater_6b05084 crossref_primary_10_1016_j_jallcom_2018_07_322 crossref_primary_10_5796_electrochemistry_21_00015 crossref_primary_10_1016_j_jallcom_2021_161483 crossref_primary_10_1016_j_ssi_2022_115920 crossref_primary_10_1039_D3DT02586A crossref_primary_10_1016_j_electacta_2021_138351 crossref_primary_10_1002_smll_201302407 crossref_primary_10_1039_D2TC04241J crossref_primary_10_1021_acsanm_4c00478 crossref_primary_10_1134_S0022476618040248 crossref_primary_10_1016_j_matlet_2018_07_101 crossref_primary_10_1002_adma_201702061 crossref_primary_10_1002_aenm_201601920 crossref_primary_10_1002_anie_201307475 crossref_primary_10_1016_j_jmrt_2021_12_119 crossref_primary_10_1021_acsorginorgau_3c00043 crossref_primary_10_1039_C8TA11375K crossref_primary_10_1063_1_5139061 crossref_primary_10_1016_j_jma_2022_09_023 crossref_primary_10_1002_smll_202406547 crossref_primary_10_1039_C7TA05205G crossref_primary_10_1002_solr_202000403 crossref_primary_10_1002_advs_202206907 crossref_primary_10_1021_ac5012014 crossref_primary_10_1021_acs_jpcc_7b07630 crossref_primary_10_1016_j_electacta_2021_139357 crossref_primary_10_12677_ms_2024_144060 crossref_primary_10_1039_D0TA09920A crossref_primary_10_1039_C5NR03704B crossref_primary_10_1063_1_4903780 crossref_primary_10_1016_j_jechem_2023_07_003 crossref_primary_10_1002_solr_202100183 crossref_primary_10_1021_acsnano_2c01064 crossref_primary_10_1021_acs_jpcc_4c02519 crossref_primary_10_1016_j_cej_2017_03_069 crossref_primary_10_1016_j_diamond_2024_111563 crossref_primary_10_1021_acsenergylett_0c00292 crossref_primary_10_1039_D3MA00070B crossref_primary_10_1016_j_cej_2021_129328 crossref_primary_10_1021_acsami_7b13908 crossref_primary_10_1002_celc_202200526 crossref_primary_10_1002_adfm_202103802 crossref_primary_10_1039_C8TA11950C crossref_primary_10_1073_pnas_1615837114 crossref_primary_10_1016_j_saa_2023_122479 crossref_primary_10_1016_j_electacta_2016_06_067 crossref_primary_10_20517_energymater_2023_82 crossref_primary_10_1016_j_apcatb_2019_05_029 crossref_primary_10_1002_admi_201901682 crossref_primary_10_1016_j_jpowsour_2020_228031 |
Cites_doi | 10.1039/dt9960002245 10.1021/ja207176c 10.1021/jp307669k 10.1002/anie.200461326 10.1002/zaac.19804610136 10.1039/c1cc10631g 10.1021/ja201269b 10.1103/PhysRev.140.A1133 10.1038/nnano.2012.96 10.1021/nn302422x 10.1021/nl201874w 10.1016/0022-4596(82)90408-X 10.1021/ja307412e 10.1021/jp111626a 10.1021/ja211683m 10.1021/cm981085u 10.1039/c2jm31214j 10.1039/b900444k 10.1021/ja1096368 10.1016/0022-4596(85)90110-0 10.1002/adma.201104681 10.1016/j.susc.2003.09.033 10.1016/j.elspec.2004.03.004 10.1103/PhysRevB.55.9514 10.1021/am201666q 10.1039/b923002e 10.1038/ncomms1882 10.1103/PhysRev.136.B864 10.1103/PhysRevLett.77.3865 10.1016/0927-0256(96)00008-0 10.1038/nnano.2012.193 10.1038/nchem.1589 10.2138/am-2001-2-315 10.1021/ar300094m 10.1103/PhysRevB.54.11169 10.1149/1.2953496 10.1021/ja01961a006 10.1021/nn204667z 10.1002/adma.201000717 10.1038/ncomms1921 10.1002/smll.201101594 10.1038/nnano.2012.95 10.1021/ic50178a008 10.1039/B414922J 10.1002/ange.201103163 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja403232d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 8725 |
ExternalDocumentID | 23679353 10_1021_ja403232d a23778321 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a414t-ed37427ab803192165551f0a43d283c7441e9613c3f044df702373fb327645af3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Sep 04 15:22:46 EDT 2025 Thu Sep 04 21:47:20 EDT 2025 Mon Jul 21 06:04:53 EDT 2025 Tue Jul 01 02:08:46 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Thu Aug 27 13:44:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-ed37427ab803192165551f0a43d283c7441e9613c3f044df702373fb327645af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23679353 |
PQID | 1367879039 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2985454074 proquest_miscellaneous_1367879039 pubmed_primary_23679353 crossref_citationtrail_10_1021_ja403232d crossref_primary_10_1021_ja403232d acs_journals_10_1021_ja403232d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-12 |
PublicationDateYYYYMMDD | 2013-06-12 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Leiro J. A. (ref31/cit31) 2003; 547 Hillebrand W. F. (ref15/cit15) 1907; 29 Kohn W. (ref35/cit35) 1965; 140 Puthussery J. (ref21/cit21) 2011; 133 Hohenberg B. (ref34/cit34) 1964; 136 Feng J. (ref9/cit9) 2011; 133 ref16/cit16 Wang Q. (ref24/cit24) 2011; 115 Murugan A. V. (ref11/cit11) 2005; 15 Wang H. (ref44/cit44) 2012; 3 Zeng H. (ref3/cit3) 2012; 7 Feng J. (ref8/cit8) 2012; 24 Chhowalla M. (ref7/cit7) 2013; 5 Kresse G. (ref36/cit36) 1996; 54 Li Y. (ref29/cit29) 2011; 133 Hibble S. (ref39/cit39) 1996 Yang S.-L. (ref25/cit25) 2009; 11 Murphy D. W. (ref13/cit13) 1977; 16 Pak C. (ref42/cit42) 2012; 4 Ma Y. (ref12/cit12) 2012; 6 Vaughan D. J. (ref14/cit14) 1978 Perdew J. P. (ref38/cit38) 1996; 77 Mak K. F. (ref4/cit4) 2012; 7 Onada M. N. (ref18/cit18) 1976; 24 Eda G. (ref5/cit5) 2011; 11 Murugesan T. (ref20/cit20) 1982; 44 Jirkovsky J. S. (ref23/cit23) 2012; 116 Takeuchi T. (ref26/cit26) 2008; 155 Wang B. (ref28/cit28) 2012; 22 Cao T. (ref2/cit2) 2012; 3 Therese H. A. (ref10/cit10) 2005; 44 Wang H. (ref40/cit40) 2011; 123 Cabana J. (ref43/cit43) 2010; 22 Wang Q. H. (ref1/cit1) 2012; 7 Silvermit G. (ref30/cit30) 2004; 135 Nesbitt H. W. (ref32/cit32) 2001; 86 Kresse G. (ref37/cit37) 1996; 6 Xin S. (ref45/cit45) 2012; 45 Cho J. (ref47/cit47) 2010; 20 Morrish R. (ref22/cit22) 2012; 134 Yokoyama M. (ref17/cit17) 1985; 60 Kovtyukhova N. I. (ref48/cit48) 1999; 11 Eda G. (ref6/cit6) 2012; 6 Taniguchi M. (ref19/cit19) 1980; 461 Deng S. (ref41/cit41) 2012; 134 Sangaletti L. (ref33/cit33) 1997; 55 Dai L. (ref46/cit46) 2012; 8 Chang K. (ref27/cit27) 2011; 47 |
References_xml | – start-page: 2245 year: 1996 ident: ref39/cit39 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9960002245 – volume: 133 start-page: 17832 year: 2011 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207176c – volume: 116 start-page: 24436 year: 2012 ident: ref23/cit23 publication-title: J. Phys. Chem. C doi: 10.1021/jp307669k – volume: 44 start-page: 262 year: 2005 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461326 – volume: 461 start-page: 234 year: 1980 ident: ref19/cit19 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19804610136 – volume: 47 start-page: 4252 year: 2011 ident: ref27/cit27 publication-title: Chem. Commun. doi: 10.1039/c1cc10631g – volume: 133 start-page: 7296 year: 2011 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 140 start-page: A1133 year: 1965 ident: ref35/cit35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 7 start-page: 494 year: 2012 ident: ref4/cit4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 6 start-page: 7311 year: 2012 ident: ref6/cit6 publication-title: ACS Nano doi: 10.1021/nn302422x – volume: 11 start-page: 5111 year: 2011 ident: ref5/cit5 publication-title: Nano Lett. doi: 10.1021/nl201874w – volume: 44 start-page: 119 year: 1982 ident: ref20/cit20 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(82)90408-X – volume: 134 start-page: 17854 year: 2012 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307412e – volume: 115 start-page: 8300 year: 2011 ident: ref24/cit24 publication-title: J. Phys. Chem. C doi: 10.1021/jp111626a – volume: 134 start-page: 4905 year: 2012 ident: ref41/cit41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211683m – volume: 11 start-page: 771 year: 1999 ident: ref48/cit48 publication-title: Chem. Mater. doi: 10.1021/cm981085u – volume: 22 start-page: 15750 year: 2012 ident: ref28/cit28 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31214j – volume: 11 start-page: 1383 year: 2009 ident: ref25/cit25 publication-title: CrystEngComm doi: 10.1039/b900444k – volume: 133 start-page: 716 year: 2011 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1096368 – volume: 60 start-page: 182 year: 1985 ident: ref17/cit17 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(85)90110-0 – volume: 24 start-page: 1969 year: 2012 ident: ref8/cit8 publication-title: Adv. Mater. doi: 10.1002/adma.201104681 – volume: 547 start-page: 157 year: 2003 ident: ref31/cit31 publication-title: Surf. Sci. doi: 10.1016/j.susc.2003.09.033 – volume: 135 start-page: 167 year: 2004 ident: ref30/cit30 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2004.03.004 – volume: 55 start-page: 9514 year: 1997 ident: ref33/cit33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.9514 – volume: 4 start-page: 1021 year: 2012 ident: ref42/cit42 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201666q – volume: 20 start-page: 4009 year: 2010 ident: ref47/cit47 publication-title: J. Mater. Chem. doi: 10.1039/b923002e – volume: 3 start-page: 887 year: 2012 ident: ref2/cit2 publication-title: Nat. Commun. doi: 10.1038/ncomms1882 – volume: 136 start-page: B864 year: 1964 ident: ref34/cit34 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 77 start-page: 3865 year: 1996 ident: ref38/cit38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 6 start-page: 15 year: 1996 ident: ref37/cit37 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 7 start-page: 699 year: 2012 ident: ref1/cit1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 5 start-page: 263 year: 2013 ident: ref7/cit7 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 86 start-page: 318 year: 2001 ident: ref32/cit32 publication-title: Am. Minerol. doi: 10.2138/am-2001-2-315 – volume: 45 start-page: 1759 year: 2012 ident: ref45/cit45 publication-title: Acc. Chem. Res. doi: 10.1021/ar300094m – volume: 54 start-page: 11169 year: 1996 ident: ref36/cit36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 155 start-page: A679 year: 2008 ident: ref26/cit26 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2953496 – volume: 29 start-page: 1019 year: 1907 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01961a006 – volume: 6 start-page: 1695 year: 2012 ident: ref12/cit12 publication-title: ACS Nano doi: 10.1021/nn204667z – volume: 24 start-page: 341 year: 1976 ident: ref18/cit18 publication-title: J. Less-Common Met. – volume: 22 start-page: E170 year: 2010 ident: ref43/cit43 publication-title: Adv. Mater. doi: 10.1002/adma.201000717 – volume: 3 start-page: 917 year: 2012 ident: ref44/cit44 publication-title: Nat. Commun. doi: 10.1038/ncomms1921 – volume-title: Mineral Chemistry of Metal Sulfides year: 1978 ident: ref14/cit14 – ident: ref16/cit16 – volume: 8 start-page: 1130 year: 2012 ident: ref46/cit46 publication-title: Small doi: 10.1002/smll.201101594 – volume: 7 start-page: 490 year: 2012 ident: ref3/cit3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 16 start-page: 3027 year: 1977 ident: ref13/cit13 publication-title: Inorg. Chem. doi: 10.1021/ic50178a008 – volume: 15 start-page: 902 year: 2005 ident: ref11/cit11 publication-title: J. Mater. Chem. doi: 10.1039/B414922J – volume: 123 start-page: 7502 year: 2011 ident: ref40/cit40 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201103163 |
SSID | ssj0004281 |
Score | 2.5644164 |
Snippet | With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and... With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and... With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S₂²–, such as pyrite (FeS₂), cattierite (CoS₂), and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8720 |
SubjectTerms | energy conversion graphene graphene oxide Graphite - chemical synthesis Graphite - chemistry Models, Molecular Oxides - chemical synthesis Oxides - chemistry Particle Size sulfide minerals sulfides Sulfides - chemical synthesis Sulfides - chemistry Surface Properties vanadium Vanadium Compounds - chemical synthesis Vanadium Compounds - chemistry |
Title | Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer |
URI | http://dx.doi.org/10.1021/ja403232d https://www.ncbi.nlm.nih.gov/pubmed/23679353 https://www.proquest.com/docview/1367879039 https://www.proquest.com/docview/2985454074 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 0002-7863 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWyiwHLkGJ7cTJsSqUCgFCKoXeKmexVFFSRJIDfD3jLAVEC9doEide8t54PG8ATqnMlZ9sg_qhaXDXUXrNCcNy8Xfp-dKVkc53vr1zun1-PbAHNTiZE8GnWh-ImwxxP1yAReq4lvawWu3eV_Ijda2K4wrXYZV80PdbNfQEyU_omcMnc1zprMJFlZ1THCd5Ps9S_zz4-C3W-Ncrr8FKyStJq5gI61CL4g1Yalfl3DbhqfceI9lLRgmRcUjaU6HmIg-TTBS5z_fFkYOSDjJZfeUxPxKWvZBeNlajMCJoeKUlrvWZOXIjka9vQb9z-dDuGmVVBUNyi6dGFDJ0h4X0XZ3ARC3HRtKkTMlZiFQjEMiPIg9BPmDK5DxUAlFdMOUzKhxuS8W2oR5P4mgXiG-hX4681wx09XmuPInOoY0OCj5e-Ew0oIndPixXRTLMA94UHY6qfxpwVo3IMCg1yXVpjPEs0-Op6WshxDHL6Kga1iF2r459yDiaZNg0Q1QWnsm8-TbUc-1ckJA3YKeYE9OmtNCdx2y2998n7cMyLSpmGBY9gHr6lkWHyFtSv5nP20_gg-Kk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG4UH_DF-wUvWI0PvoxsbUe3R0NEVCAmgPK2dJcmRBzGsQf99Z52G6iB6Oty1na97PtO2_MdhC6J0MpPtkH80DSYU5dqzXHDcuB36frCEZGKd-50660Bux_aw1wmR8XCQCMSKCnRh_hzdQElE8RMCvAfrqI1rYCiaFCjN4-BJI5VUF3u1GmhIvT9VYVAQfITgZbQSg0vzc0sT5FumL5V8lJLp34t-Pyl2fi_lm-hjZxl4utsWmyjlSjeQeVGkdxtFz33PmKgfskowSIOcWMm25xFZeKJxI96lxwYKW4Cr1VPnvQFsfQV99KxHIURBsNbJXitbtDhtgD2vocGzZt-o2XkORYMwSw2NaKQgnPMhe-ocCZi1W2gUNIUjIZAPAIObClyAfIDKk3GQskB4zmVPiUcBkFIuo9K8SSODhH2LfDSgQWbgcpFz6QrwFW0wV2B4rlPeQVVoXu8fI0knj7-JuB-FP1TQVfFwHhBrlCuEmWMF5lezEzfMlmORUbnxeh60L3qJETE0SSFqilgNHdN6i63Ia5ja3lCVkEH2dSYVaVk71xq06O_PukMlVv9Tttr33UfjtE6yXJpGBY5QaXpexqdAqOZ-lU9lb8ACV_rDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1ZT4QwEMcnuibqi_exntX44AsbaAuFR7O63keyXm-kHE2Mym5kedBP77TAekSjr2SAUlrmN7TzH4AdKo3yk2vRKLEt7ntKzzlhOT5-LoNI-jLV-c7nF97RDT-5d--rQFHnwmAjcrxSbhbx9azuJ6pSGNBSQdxmiADJKIy5WvpNo1C7-5EHSX2nxl3he6xWEvp8qvZCcf7VC_2ClsbFdKbhctg4s7PksVUMolb89k238f-tn4GpijbJXjk8ZmEkzeZgol0XeZuHu-5rhgiYP-REZglpD-Wby-xM0lPkyvwtRzIlHeRbfeTWbBQrnkm3eFIPSUrQ8FALX-uddORMIsUvwE3n4Lp9ZFW1FizJHT6w0oRhkCxk5Ou0Jup4LqKUsiVnCQJILJCa0gBdf8yUzXmiBPp6wVTEqPC4KxVbhEbWy9JlIJGD0TrSsB3rmvRcBRJDRhfDFry8iJhowgZ2UVjNlTw0y-AUw5C6f5qwW7-cMK6UynXBjKefTLeHpv1SnuMno636DYfYvXpFRGZpr8BbM_TVIrBZ8LsNDXzXyBTyJiyVw2N4Ky1_FzCXrfz1SJswfrXfCc-OL05XYZKWJTUsh65BY_BSpOsINoNow4zmd8cX7Yk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+patronite+form+of+vanadium+sulfide+on+graphitic+layer&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Rout%2C+Chandra+Sekhar&rft.au=Kim%2C+Byeong-Hwan&rft.au=Xu%2C+Xiaodong&rft.au=Yang%2C+Jieun&rft.date=2013-06-12&rft.eissn=1520-5126&rft.volume=135&rft.issue=23&rft.spage=8720&rft_id=info:doi/10.1021%2Fja403232d&rft_id=info%3Apmid%2F23679353&rft.externalDocID=23679353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |