Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer

With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthes...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 135; no. 23; pp. 8720 - 8725
Main Authors Rout, Chandra Sekhar, Kim, Byeong-Hwan, Xu, Xiaodong, Yang, Jieun, Jeong, Hu Young, Odkhuu, Dorj, Park, Noejung, Cho, Jaephil, Shin, Hyeon Suk
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.06.2013
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/ja403232d

Cover

Abstract With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V4+(S2 2–)2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.
AbstractList With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.
With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V4+(S2 2–)2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.
With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S₂²–, such as pyrite (FeS₂), cattierite (CoS₂), and vaesite (NiS₂), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS₄, V⁴⁺(S₂²–)₂) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS₄ using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS₄. Furthermore, the VS₄/rGO hybrid was proved to be a promising functional material in energy storage devices.
With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.
Author Jeong, Hu Young
Rout, Chandra Sekhar
Yang, Jieun
Kim, Byeong-Hwan
Cho, Jaephil
Shin, Hyeon Suk
Odkhuu, Dorj
Xu, Xiaodong
Park, Noejung
AuthorAffiliation UNIST (Ulsan National Institute of Science and Technology)
AuthorAffiliation_xml – name: UNIST (Ulsan National Institute of Science and Technology)
Author_xml – sequence: 1
  givenname: Chandra Sekhar
  surname: Rout
  fullname: Rout, Chandra Sekhar
– sequence: 2
  givenname: Byeong-Hwan
  surname: Kim
  fullname: Kim, Byeong-Hwan
– sequence: 3
  givenname: Xiaodong
  surname: Xu
  fullname: Xu, Xiaodong
– sequence: 4
  givenname: Jieun
  surname: Yang
  fullname: Yang, Jieun
– sequence: 5
  givenname: Hu Young
  surname: Jeong
  fullname: Jeong, Hu Young
– sequence: 6
  givenname: Dorj
  surname: Odkhuu
  fullname: Odkhuu, Dorj
– sequence: 7
  givenname: Noejung
  surname: Park
  fullname: Park, Noejung
– sequence: 8
  givenname: Jaephil
  surname: Cho
  fullname: Cho, Jaephil
  email: shin@unist.ac.kr, jpcho@unist.ac.kr
– sequence: 9
  givenname: Hyeon Suk
  surname: Shin
  fullname: Shin, Hyeon Suk
  email: shin@unist.ac.kr, jpcho@unist.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23679353$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1r3DAQBmBREpLNx6F_oPhSSA7OShrJso9laZLCQgvbtEcxa0usFlvaSvJh--vjZJMcSqCnYYZn5vDOGTnywRtCPjJ6wyhn8y0KChx494HMmOS0lIxXR2RGKeWlqis4JWcpbadW8JqdkFMOlWpAwoz8Xu193pjkUoG-KxYbjNhmE91fzC74ItjiB-YYvMumuA1xeJr8Qo-dG4diNfbWdaaY4F3E3cZl1xZL3Jt4QY4t9slcvtRz8nD79efivlx-v_u2-LIsUTCRS9OBElzhuqbAGs4qKSWzFAV0vIZWCcFMUzFowVIhOqsoBwV2DVxVQqKFc3J1uLuL4c9oUtaDS63pe_QmjEnzppZCCqrEfymbQqlVQ6GZ6KcXOq4H0-lddAPGvX7NbQLzA2hjSCkaq1uXnxPLEV2vGdVPn9Fvn5k2rv_ZeD36nv18sNgmvQ1j9FOE77hHX_iXDQ
CitedBy_id crossref_primary_10_1016_j_electacta_2015_03_196
crossref_primary_10_1016_j_ensm_2017_09_002
crossref_primary_10_1016_j_electacta_2024_144053
crossref_primary_10_1016_j_ensm_2022_10_034
crossref_primary_10_1016_j_scriptamat_2013_11_024
crossref_primary_10_1016_j_cej_2023_144738
crossref_primary_10_1039_C5CP01326G
crossref_primary_10_1016_j_ssi_2017_09_020
crossref_primary_10_1088_1361_6528_aa5cf2
crossref_primary_10_1021_acssuschemeng_3c07411
crossref_primary_10_1021_jacs_7b03909
crossref_primary_10_1016_j_cej_2021_133044
crossref_primary_10_1038_srep08151
crossref_primary_10_1016_j_jpowsour_2017_03_070
crossref_primary_10_1002_admi_201700999
crossref_primary_10_1021_acs_jpcc_9b02142
crossref_primary_10_1007_s10854_019_01304_1
crossref_primary_10_1103_PhysRevB_93_054429
crossref_primary_10_1016_j_jpowsour_2019_227674
crossref_primary_10_1039_C6TA04390A
crossref_primary_10_1016_j_carbon_2022_06_062
crossref_primary_10_1021_acsami_9b12128
crossref_primary_10_1039_C8TA02757A
crossref_primary_10_1039_C9TA12235D
crossref_primary_10_1016_j_snb_2019_127411
crossref_primary_10_1021_acssuschemeng_0c00080
crossref_primary_10_1002_pssa_202200203
crossref_primary_10_1016_j_ensm_2022_02_023
crossref_primary_10_1016_j_apsusc_2018_04_163
crossref_primary_10_1016_j_electacta_2017_09_129
crossref_primary_10_1021_jacs_0c08222
crossref_primary_10_1039_D2NR02304K
crossref_primary_10_57634_RCR5072
crossref_primary_10_1007_s10008_015_3035_0
crossref_primary_10_1021_acsenergylett_9b00076
crossref_primary_10_1021_acsaem_1c03083
crossref_primary_10_1186_s40580_016_0066_x
crossref_primary_10_1016_j_jcis_2017_03_081
crossref_primary_10_1016_j_est_2019_101074
crossref_primary_10_1002_ange_202002560
crossref_primary_10_1016_j_ijhydene_2014_08_088
crossref_primary_10_1016_j_inoche_2020_107883
crossref_primary_10_1021_acs_chemrev_2c00455
crossref_primary_10_1039_D0SE00897D
crossref_primary_10_1016_j_nanoen_2019_01_004
crossref_primary_10_3390_nano9111638
crossref_primary_10_1002_adfm_202000427
crossref_primary_10_1016_j_nantod_2014_09_005
crossref_primary_10_1007_s40820_020_0377_7
crossref_primary_10_1007_s00604_019_3251_x
crossref_primary_10_1039_C5RA10586B
crossref_primary_10_1021_acs_inorgchem_5b00159
crossref_primary_10_1016_j_jpowsour_2018_07_036
crossref_primary_10_1088_2053_1591_aabca6
crossref_primary_10_1039_C9TA12346F
crossref_primary_10_1002_ejic_201402448
crossref_primary_10_1039_D3TA04634F
crossref_primary_10_1016_j_jmmm_2019_01_065
crossref_primary_10_1039_C9TA03516H
crossref_primary_10_1039_C5NR01896J
crossref_primary_10_1002_adfm_201801806
crossref_primary_10_1021_jacs_5b03395
crossref_primary_10_1039_D0RA06773C
crossref_primary_10_1039_D1TC00096A
crossref_primary_10_1002_adfm_202205453
crossref_primary_10_1007_s12274_017_1927_2
crossref_primary_10_1007_s11581_023_05236_z
crossref_primary_10_1038_srep04673
crossref_primary_10_1039_c3ta13329j
crossref_primary_10_1039_C9NR01953G
crossref_primary_10_1039_D2EE04121A
crossref_primary_10_1002_celc_202100630
crossref_primary_10_1039_C6TC01962E
crossref_primary_10_1016_j_cej_2022_135778
crossref_primary_10_1021_cm502170q
crossref_primary_10_1021_acsaem_1c01676
crossref_primary_10_1016_j_jallcom_2019_151769
crossref_primary_10_1016_j_aca_2019_04_058
crossref_primary_10_1021_acsanm_3c03373
crossref_primary_10_1039_C8TA08133F
crossref_primary_10_1021_acssuschemeng_0c07984
crossref_primary_10_1007_s42864_021_00101_w
crossref_primary_10_1039_C3NR05509D
crossref_primary_10_1002_smll_202207047
crossref_primary_10_1016_j_carbon_2024_119566
crossref_primary_10_1039_D1TA01626A
crossref_primary_10_1039_D3QI00712J
crossref_primary_10_5796_electrochemistry_22_00087
crossref_primary_10_1016_j_jmmm_2024_171933
crossref_primary_10_1038_s41467_019_12310_6
crossref_primary_10_1002_adfm_201904398
crossref_primary_10_1021_acsami_7b13763
crossref_primary_10_1088_1361_6528_ac66ee
crossref_primary_10_1016_j_cej_2021_133765
crossref_primary_10_1002_cnma_201900526
crossref_primary_10_1002_chem_201406428
crossref_primary_10_1002_adma_201802563
crossref_primary_10_1007_s11581_019_03239_3
crossref_primary_10_1016_j_nanoen_2016_02_010
crossref_primary_10_1021_acsami_2c07337
crossref_primary_10_1021_acsami_9b21436
crossref_primary_10_1002_tcr_202200117
crossref_primary_10_1021_acsami_9b18721
crossref_primary_10_1063_5_0084918
crossref_primary_10_1039_C4TA03161J
crossref_primary_10_1021_am403663f
crossref_primary_10_1002_cssc_201702031
crossref_primary_10_1149_2754_2734_acb224
crossref_primary_10_1063_5_0068407
crossref_primary_10_1007_s12274_021_4060_1
crossref_primary_10_1016_j_apcatb_2019_117911
crossref_primary_10_1016_j_snb_2017_08_070
crossref_primary_10_1002_adfm_201906586
crossref_primary_10_1002_smll_202107058
crossref_primary_10_1016_j_cej_2019_123385
crossref_primary_10_1021_jacsau_2c00596
crossref_primary_10_1039_C5TA03221K
crossref_primary_10_1002_cssc_201702270
crossref_primary_10_2139_ssrn_3999296
crossref_primary_10_1016_j_memsci_2023_121771
crossref_primary_10_1039_C7TA07009H
crossref_primary_10_1016_j_jallcom_2023_173096
crossref_primary_10_1016_j_est_2023_109059
crossref_primary_10_1016_j_ces_2020_116404
crossref_primary_10_1002_aenm_201600671
crossref_primary_10_1007_s10853_021_06537_2
crossref_primary_10_5796_electrochemistry_23_00030
crossref_primary_10_1016_j_micrna_2023_207652
crossref_primary_10_1016_j_jcis_2024_12_134
crossref_primary_10_1016_j_mtnano_2020_100073
crossref_primary_10_1186_s40580_015_0059_1
crossref_primary_10_3390_futurepharmacol4040040
crossref_primary_10_1016_j_matpr_2017_09_019
crossref_primary_10_1016_j_nanoen_2021_106838
crossref_primary_10_1002_smll_201903904
crossref_primary_10_1002_ejic_201501001
crossref_primary_10_1016_j_electacta_2017_10_137
crossref_primary_10_1021_acsaem_2c00141
crossref_primary_10_1021_acsomega_7b01226
crossref_primary_10_1002_anie_202002560
crossref_primary_10_1002_cssc_201701709
crossref_primary_10_1016_j_jpowsour_2020_228669
crossref_primary_10_1021_acsenergylett_2c02179
crossref_primary_10_1021_acsami_8b01876
crossref_primary_10_1016_j_mtadv_2023_100451
crossref_primary_10_1088_1748_605X_abb523
crossref_primary_10_1016_j_cej_2023_146408
crossref_primary_10_1039_C8NJ05636F
crossref_primary_10_1002_cssc_201903081
crossref_primary_10_1002_aenm_201702139
crossref_primary_10_1016_j_jallcom_2020_155204
crossref_primary_10_1039_C5TB01239B
crossref_primary_10_1021_acsaem_8b00449
crossref_primary_10_1016_j_bios_2014_08_010
crossref_primary_10_1039_D0TA06330D
crossref_primary_10_1002_er_4892
crossref_primary_10_1021_acsami_9b09592
crossref_primary_10_3390_molecules26092507
crossref_primary_10_1016_j_ensm_2016_10_010
crossref_primary_10_1016_j_ensm_2021_05_004
crossref_primary_10_1016_j_jcis_2020_04_072
crossref_primary_10_1021_acsami_7b13558
crossref_primary_10_1016_j_jcis_2023_06_082
crossref_primary_10_1016_j_ultsonch_2018_07_008
crossref_primary_10_1002_batt_202200016
crossref_primary_10_3390_nano13101599
crossref_primary_10_1016_j_diamond_2022_109353
crossref_primary_10_1016_j_jelechem_2018_07_040
crossref_primary_10_1039_D0CP05395C
crossref_primary_10_2139_ssrn_4193819
crossref_primary_10_1039_C9NR09027D
crossref_primary_10_1021_acs_energyfuels_3c00866
crossref_primary_10_1016_j_nanoen_2018_06_076
crossref_primary_10_1021_acsami_1c09927
crossref_primary_10_1016_j_jallcom_2016_05_293
crossref_primary_10_1016_j_jcis_2019_06_105
crossref_primary_10_1016_j_est_2023_109133
crossref_primary_10_1016_j_ssi_2018_05_010
crossref_primary_10_1016_j_jpowsour_2022_231412
crossref_primary_10_1002_adfm_202009875
crossref_primary_10_1016_j_nanoen_2017_03_036
crossref_primary_10_1016_j_apsusc_2017_06_218
crossref_primary_10_1039_C8NR06458J
crossref_primary_10_1021_acsami_5b06385
crossref_primary_10_1021_acssuschemeng_7b01137
crossref_primary_10_1002_admt_202301840
crossref_primary_10_1002_adma_201402041
crossref_primary_10_1016_j_electacta_2017_07_106
crossref_primary_10_1002_cssc_201901412
crossref_primary_10_1016_j_matlet_2017_06_058
crossref_primary_10_1021_acsami_2c19712
crossref_primary_10_1039_C5RA26817F
crossref_primary_10_1039_C6TA05110C
crossref_primary_10_3139_146_111343
crossref_primary_10_1016_j_jallcom_2023_171007
crossref_primary_10_1039_C4TC00025K
crossref_primary_10_1039_C9RA04338A
crossref_primary_10_1016_j_ssi_2018_10_022
crossref_primary_10_1021_ie5042287
crossref_primary_10_1016_j_electacta_2018_04_106
crossref_primary_10_1016_j_jallcom_2020_155073
crossref_primary_10_1039_D0EN00982B
crossref_primary_10_1021_acsaem_3c01382
crossref_primary_10_1016_j_est_2022_104401
crossref_primary_10_1016_j_catcom_2016_07_010
crossref_primary_10_1080_25740881_2023_2221329
crossref_primary_10_1016_j_jssc_2014_06_031
crossref_primary_10_1016_j_cej_2022_135131
crossref_primary_10_1002_aenm_201702337
crossref_primary_10_1039_C4TA00371C
crossref_primary_10_1002_eem2_12225
crossref_primary_10_1016_j_jallcom_2021_158810
crossref_primary_10_1016_j_apcatb_2017_10_065
crossref_primary_10_1016_j_cej_2024_157907
crossref_primary_10_1016_j_matlet_2021_131282
crossref_primary_10_1016_j_jpowsour_2017_07_056
crossref_primary_10_1016_j_jclepro_2020_121205
crossref_primary_10_1016_j_jallcom_2024_174171
crossref_primary_10_1021_acssuschemeng_0c03785
crossref_primary_10_1021_acsmaterialslett_1c00160
crossref_primary_10_1007_s00604_019_3942_3
crossref_primary_10_1021_acsami_9b03975
crossref_primary_10_1039_D3TA04138G
crossref_primary_10_1039_C5AY01793A
crossref_primary_10_1039_C7NR02867A
crossref_primary_10_1016_j_enchem_2019_100022
crossref_primary_10_1039_D0TA07436E
crossref_primary_10_5796_electrochemistry_21_00026
crossref_primary_10_1016_j_jpowsour_2015_03_154
crossref_primary_10_1016_j_mtener_2017_11_006
crossref_primary_10_1016_j_jcis_2023_07_015
crossref_primary_10_1007_s40820_022_00809_5
crossref_primary_10_1016_j_ijhydene_2022_01_063
crossref_primary_10_1103_PhysRevB_88_235310
crossref_primary_10_1016_j_ensm_2018_11_016
crossref_primary_10_1021_acsaem_0c02090
crossref_primary_10_1016_j_apmt_2023_101995
crossref_primary_10_1039_C8SE00539G
crossref_primary_10_1016_j_jallcom_2019_152122
crossref_primary_10_1039_C8DT02547A
crossref_primary_10_1002_adfm_201402560
crossref_primary_10_1016_j_wasman_2020_04_007
crossref_primary_10_1016_j_ensm_2021_11_027
crossref_primary_10_1021_acsami_6b04444
crossref_primary_10_1021_acsanm_8b01592
crossref_primary_10_1021_acs_jpclett_2c01299
crossref_primary_10_1016_j_ensm_2019_06_001
crossref_primary_10_1039_D0TA02645J
crossref_primary_10_1002_ange_201307475
crossref_primary_10_1021_acsami_5b03124
crossref_primary_10_1016_j_rser_2022_112613
crossref_primary_10_1021_acs_chemmater_6b05084
crossref_primary_10_1016_j_jallcom_2018_07_322
crossref_primary_10_5796_electrochemistry_21_00015
crossref_primary_10_1016_j_jallcom_2021_161483
crossref_primary_10_1016_j_ssi_2022_115920
crossref_primary_10_1039_D3DT02586A
crossref_primary_10_1016_j_electacta_2021_138351
crossref_primary_10_1002_smll_201302407
crossref_primary_10_1039_D2TC04241J
crossref_primary_10_1021_acsanm_4c00478
crossref_primary_10_1134_S0022476618040248
crossref_primary_10_1016_j_matlet_2018_07_101
crossref_primary_10_1002_adma_201702061
crossref_primary_10_1002_aenm_201601920
crossref_primary_10_1002_anie_201307475
crossref_primary_10_1016_j_jmrt_2021_12_119
crossref_primary_10_1021_acsorginorgau_3c00043
crossref_primary_10_1039_C8TA11375K
crossref_primary_10_1063_1_5139061
crossref_primary_10_1016_j_jma_2022_09_023
crossref_primary_10_1002_smll_202406547
crossref_primary_10_1039_C7TA05205G
crossref_primary_10_1002_solr_202000403
crossref_primary_10_1002_advs_202206907
crossref_primary_10_1021_ac5012014
crossref_primary_10_1021_acs_jpcc_7b07630
crossref_primary_10_1016_j_electacta_2021_139357
crossref_primary_10_12677_ms_2024_144060
crossref_primary_10_1039_D0TA09920A
crossref_primary_10_1039_C5NR03704B
crossref_primary_10_1063_1_4903780
crossref_primary_10_1016_j_jechem_2023_07_003
crossref_primary_10_1002_solr_202100183
crossref_primary_10_1021_acsnano_2c01064
crossref_primary_10_1021_acs_jpcc_4c02519
crossref_primary_10_1016_j_cej_2017_03_069
crossref_primary_10_1016_j_diamond_2024_111563
crossref_primary_10_1021_acsenergylett_0c00292
crossref_primary_10_1039_D3MA00070B
crossref_primary_10_1016_j_cej_2021_129328
crossref_primary_10_1021_acsami_7b13908
crossref_primary_10_1002_celc_202200526
crossref_primary_10_1002_adfm_202103802
crossref_primary_10_1039_C8TA11950C
crossref_primary_10_1073_pnas_1615837114
crossref_primary_10_1016_j_saa_2023_122479
crossref_primary_10_1016_j_electacta_2016_06_067
crossref_primary_10_20517_energymater_2023_82
crossref_primary_10_1016_j_apcatb_2019_05_029
crossref_primary_10_1002_admi_201901682
crossref_primary_10_1016_j_jpowsour_2020_228031
Cites_doi 10.1039/dt9960002245
10.1021/ja207176c
10.1021/jp307669k
10.1002/anie.200461326
10.1002/zaac.19804610136
10.1039/c1cc10631g
10.1021/ja201269b
10.1103/PhysRev.140.A1133
10.1038/nnano.2012.96
10.1021/nn302422x
10.1021/nl201874w
10.1016/0022-4596(82)90408-X
10.1021/ja307412e
10.1021/jp111626a
10.1021/ja211683m
10.1021/cm981085u
10.1039/c2jm31214j
10.1039/b900444k
10.1021/ja1096368
10.1016/0022-4596(85)90110-0
10.1002/adma.201104681
10.1016/j.susc.2003.09.033
10.1016/j.elspec.2004.03.004
10.1103/PhysRevB.55.9514
10.1021/am201666q
10.1039/b923002e
10.1038/ncomms1882
10.1103/PhysRev.136.B864
10.1103/PhysRevLett.77.3865
10.1016/0927-0256(96)00008-0
10.1038/nnano.2012.193
10.1038/nchem.1589
10.2138/am-2001-2-315
10.1021/ar300094m
10.1103/PhysRevB.54.11169
10.1149/1.2953496
10.1021/ja01961a006
10.1021/nn204667z
10.1002/adma.201000717
10.1038/ncomms1921
10.1002/smll.201101594
10.1038/nnano.2012.95
10.1021/ic50178a008
10.1039/B414922J
10.1002/ange.201103163
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/ja403232d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8725
ExternalDocumentID 23679353
10_1021_ja403232d
a23778321
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a414t-ed37427ab803192165551f0a43d283c7441e9613c3f044df702373fb327645af3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Sep 04 15:22:46 EDT 2025
Thu Sep 04 21:47:20 EDT 2025
Mon Jul 21 06:04:53 EDT 2025
Tue Jul 01 02:08:46 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Thu Aug 27 13:44:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-ed37427ab803192165551f0a43d283c7441e9613c3f044df702373fb327645af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23679353
PQID 1367879039
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2985454074
proquest_miscellaneous_1367879039
pubmed_primary_23679353
crossref_citationtrail_10_1021_ja403232d
crossref_primary_10_1021_ja403232d
acs_journals_10_1021_ja403232d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-12
PublicationDateYYYYMMDD 2013-06-12
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Leiro J. A. (ref31/cit31) 2003; 547
Hillebrand W. F. (ref15/cit15) 1907; 29
Kohn W. (ref35/cit35) 1965; 140
Puthussery J. (ref21/cit21) 2011; 133
Hohenberg B. (ref34/cit34) 1964; 136
Feng J. (ref9/cit9) 2011; 133
ref16/cit16
Wang Q. (ref24/cit24) 2011; 115
Murugan A. V. (ref11/cit11) 2005; 15
Wang H. (ref44/cit44) 2012; 3
Zeng H. (ref3/cit3) 2012; 7
Feng J. (ref8/cit8) 2012; 24
Chhowalla M. (ref7/cit7) 2013; 5
Kresse G. (ref36/cit36) 1996; 54
Li Y. (ref29/cit29) 2011; 133
Hibble S. (ref39/cit39) 1996
Yang S.-L. (ref25/cit25) 2009; 11
Murphy D. W. (ref13/cit13) 1977; 16
Pak C. (ref42/cit42) 2012; 4
Ma Y. (ref12/cit12) 2012; 6
Vaughan D. J. (ref14/cit14) 1978
Perdew J. P. (ref38/cit38) 1996; 77
Mak K. F. (ref4/cit4) 2012; 7
Onada M. N. (ref18/cit18) 1976; 24
Eda G. (ref5/cit5) 2011; 11
Murugesan T. (ref20/cit20) 1982; 44
Jirkovsky J. S. (ref23/cit23) 2012; 116
Takeuchi T. (ref26/cit26) 2008; 155
Wang B. (ref28/cit28) 2012; 22
Cao T. (ref2/cit2) 2012; 3
Therese H. A. (ref10/cit10) 2005; 44
Wang H. (ref40/cit40) 2011; 123
Cabana J. (ref43/cit43) 2010; 22
Wang Q. H. (ref1/cit1) 2012; 7
Silvermit G. (ref30/cit30) 2004; 135
Nesbitt H. W. (ref32/cit32) 2001; 86
Kresse G. (ref37/cit37) 1996; 6
Xin S. (ref45/cit45) 2012; 45
Cho J. (ref47/cit47) 2010; 20
Morrish R. (ref22/cit22) 2012; 134
Yokoyama M. (ref17/cit17) 1985; 60
Kovtyukhova N. I. (ref48/cit48) 1999; 11
Eda G. (ref6/cit6) 2012; 6
Taniguchi M. (ref19/cit19) 1980; 461
Deng S. (ref41/cit41) 2012; 134
Sangaletti L. (ref33/cit33) 1997; 55
Dai L. (ref46/cit46) 2012; 8
Chang K. (ref27/cit27) 2011; 47
References_xml – start-page: 2245
  year: 1996
  ident: ref39/cit39
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9960002245
– volume: 133
  start-page: 17832
  year: 2011
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207176c
– volume: 116
  start-page: 24436
  year: 2012
  ident: ref23/cit23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp307669k
– volume: 44
  start-page: 262
  year: 2005
  ident: ref10/cit10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461326
– volume: 461
  start-page: 234
  year: 1980
  ident: ref19/cit19
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19804610136
– volume: 47
  start-page: 4252
  year: 2011
  ident: ref27/cit27
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10631g
– volume: 133
  start-page: 7296
  year: 2011
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 140
  start-page: A1133
  year: 1965
  ident: ref35/cit35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 7
  start-page: 494
  year: 2012
  ident: ref4/cit4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 6
  start-page: 7311
  year: 2012
  ident: ref6/cit6
  publication-title: ACS Nano
  doi: 10.1021/nn302422x
– volume: 11
  start-page: 5111
  year: 2011
  ident: ref5/cit5
  publication-title: Nano Lett.
  doi: 10.1021/nl201874w
– volume: 44
  start-page: 119
  year: 1982
  ident: ref20/cit20
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(82)90408-X
– volume: 134
  start-page: 17854
  year: 2012
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307412e
– volume: 115
  start-page: 8300
  year: 2011
  ident: ref24/cit24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111626a
– volume: 134
  start-page: 4905
  year: 2012
  ident: ref41/cit41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211683m
– volume: 11
  start-page: 771
  year: 1999
  ident: ref48/cit48
  publication-title: Chem. Mater.
  doi: 10.1021/cm981085u
– volume: 22
  start-page: 15750
  year: 2012
  ident: ref28/cit28
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31214j
– volume: 11
  start-page: 1383
  year: 2009
  ident: ref25/cit25
  publication-title: CrystEngComm
  doi: 10.1039/b900444k
– volume: 133
  start-page: 716
  year: 2011
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1096368
– volume: 60
  start-page: 182
  year: 1985
  ident: ref17/cit17
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(85)90110-0
– volume: 24
  start-page: 1969
  year: 2012
  ident: ref8/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104681
– volume: 547
  start-page: 157
  year: 2003
  ident: ref31/cit31
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2003.09.033
– volume: 135
  start-page: 167
  year: 2004
  ident: ref30/cit30
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2004.03.004
– volume: 55
  start-page: 9514
  year: 1997
  ident: ref33/cit33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.9514
– volume: 4
  start-page: 1021
  year: 2012
  ident: ref42/cit42
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201666q
– volume: 20
  start-page: 4009
  year: 2010
  ident: ref47/cit47
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923002e
– volume: 3
  start-page: 887
  year: 2012
  ident: ref2/cit2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1882
– volume: 136
  start-page: B864
  year: 1964
  ident: ref34/cit34
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref38/cit38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 6
  start-page: 15
  year: 1996
  ident: ref37/cit37
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 7
  start-page: 699
  year: 2012
  ident: ref1/cit1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 5
  start-page: 263
  year: 2013
  ident: ref7/cit7
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 86
  start-page: 318
  year: 2001
  ident: ref32/cit32
  publication-title: Am. Minerol.
  doi: 10.2138/am-2001-2-315
– volume: 45
  start-page: 1759
  year: 2012
  ident: ref45/cit45
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300094m
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref36/cit36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 155
  start-page: A679
  year: 2008
  ident: ref26/cit26
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2953496
– volume: 29
  start-page: 1019
  year: 1907
  ident: ref15/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01961a006
– volume: 6
  start-page: 1695
  year: 2012
  ident: ref12/cit12
  publication-title: ACS Nano
  doi: 10.1021/nn204667z
– volume: 24
  start-page: 341
  year: 1976
  ident: ref18/cit18
  publication-title: J. Less-Common Met.
– volume: 22
  start-page: E170
  year: 2010
  ident: ref43/cit43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000717
– volume: 3
  start-page: 917
  year: 2012
  ident: ref44/cit44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1921
– volume-title: Mineral Chemistry of Metal Sulfides
  year: 1978
  ident: ref14/cit14
– ident: ref16/cit16
– volume: 8
  start-page: 1130
  year: 2012
  ident: ref46/cit46
  publication-title: Small
  doi: 10.1002/smll.201101594
– volume: 7
  start-page: 490
  year: 2012
  ident: ref3/cit3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 16
  start-page: 3027
  year: 1977
  ident: ref13/cit13
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50178a008
– volume: 15
  start-page: 902
  year: 2005
  ident: ref11/cit11
  publication-title: J. Mater. Chem.
  doi: 10.1039/B414922J
– volume: 123
  start-page: 7502
  year: 2011
  ident: ref40/cit40
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201103163
SSID ssj0004281
Score 2.5644164
Snippet With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2 2–, such as pyrite (FeS2), cattierite (CoS2), and...
With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and...
With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S₂²–, such as pyrite (FeS₂), cattierite (CoS₂), and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8720
SubjectTerms energy conversion
graphene
graphene oxide
Graphite - chemical synthesis
Graphite - chemistry
Models, Molecular
Oxides - chemical synthesis
Oxides - chemistry
Particle Size
sulfide minerals
sulfides
Sulfides - chemical synthesis
Sulfides - chemistry
Surface Properties
vanadium
Vanadium Compounds - chemical synthesis
Vanadium Compounds - chemistry
Title Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer
URI http://dx.doi.org/10.1021/ja403232d
https://www.ncbi.nlm.nih.gov/pubmed/23679353
https://www.proquest.com/docview/1367879039
https://www.proquest.com/docview/2985454074
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004281
  issn: 0002-7863
  databaseCode: ACS
  dateStart: 18790101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWyiwHLkGJ7cTJsSqUCgFCKoXeKmexVFFSRJIDfD3jLAVEC9doEide8t54PG8ATqnMlZ9sg_qhaXDXUXrNCcNy8Xfp-dKVkc53vr1zun1-PbAHNTiZE8GnWh-ImwxxP1yAReq4lvawWu3eV_Ijda2K4wrXYZV80PdbNfQEyU_omcMnc1zprMJFlZ1THCd5Ps9S_zz4-C3W-Ncrr8FKyStJq5gI61CL4g1Yalfl3DbhqfceI9lLRgmRcUjaU6HmIg-TTBS5z_fFkYOSDjJZfeUxPxKWvZBeNlajMCJoeKUlrvWZOXIjka9vQb9z-dDuGmVVBUNyi6dGFDJ0h4X0XZ3ARC3HRtKkTMlZiFQjEMiPIg9BPmDK5DxUAlFdMOUzKhxuS8W2oR5P4mgXiG-hX4681wx09XmuPInOoY0OCj5e-Ew0oIndPixXRTLMA94UHY6qfxpwVo3IMCg1yXVpjPEs0-Op6WshxDHL6Kga1iF2r459yDiaZNg0Q1QWnsm8-TbUc-1ckJA3YKeYE9OmtNCdx2y2998n7cMyLSpmGBY9gHr6lkWHyFtSv5nP20_gg-Kk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG4UH_DF-wUvWI0PvoxsbUe3R0NEVCAmgPK2dJcmRBzGsQf99Z52G6iB6Oty1na97PtO2_MdhC6J0MpPtkH80DSYU5dqzXHDcuB36frCEZGKd-50660Bux_aw1wmR8XCQCMSKCnRh_hzdQElE8RMCvAfrqI1rYCiaFCjN4-BJI5VUF3u1GmhIvT9VYVAQfITgZbQSg0vzc0sT5FumL5V8lJLp34t-Pyl2fi_lm-hjZxl4utsWmyjlSjeQeVGkdxtFz33PmKgfskowSIOcWMm25xFZeKJxI96lxwYKW4Cr1VPnvQFsfQV99KxHIURBsNbJXitbtDhtgD2vocGzZt-o2XkORYMwSw2NaKQgnPMhe-ocCZi1W2gUNIUjIZAPAIObClyAfIDKk3GQskB4zmVPiUcBkFIuo9K8SSODhH2LfDSgQWbgcpFz6QrwFW0wV2B4rlPeQVVoXu8fI0knj7-JuB-FP1TQVfFwHhBrlCuEmWMF5lezEzfMlmORUbnxeh60L3qJETE0SSFqilgNHdN6i63Ia5ja3lCVkEH2dSYVaVk71xq06O_PukMlVv9Tttr33UfjtE6yXJpGBY5QaXpexqdAqOZ-lU9lb8ACV_rDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1ZT4QwEMcnuibqi_exntX44AsbaAuFR7O63keyXm-kHE2Mym5kedBP77TAekSjr2SAUlrmN7TzH4AdKo3yk2vRKLEt7ntKzzlhOT5-LoNI-jLV-c7nF97RDT-5d--rQFHnwmAjcrxSbhbx9azuJ6pSGNBSQdxmiADJKIy5WvpNo1C7-5EHSX2nxl3he6xWEvp8qvZCcf7VC_2ClsbFdKbhctg4s7PksVUMolb89k238f-tn4GpijbJXjk8ZmEkzeZgol0XeZuHu-5rhgiYP-REZglpD-Wby-xM0lPkyvwtRzIlHeRbfeTWbBQrnkm3eFIPSUrQ8FALX-uddORMIsUvwE3n4Lp9ZFW1FizJHT6w0oRhkCxk5Ou0Jup4LqKUsiVnCQJILJCa0gBdf8yUzXmiBPp6wVTEqPC4KxVbhEbWy9JlIJGD0TrSsB3rmvRcBRJDRhfDFry8iJhowgZ2UVjNlTw0y-AUw5C6f5qwW7-cMK6UynXBjKefTLeHpv1SnuMno636DYfYvXpFRGZpr8BbM_TVIrBZ8LsNDXzXyBTyJiyVw2N4Ky1_FzCXrfz1SJswfrXfCc-OL05XYZKWJTUsh65BY_BSpOsINoNow4zmd8cX7Yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+patronite+form+of+vanadium+sulfide+on+graphitic+layer&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Rout%2C+Chandra+Sekhar&rft.au=Kim%2C+Byeong-Hwan&rft.au=Xu%2C+Xiaodong&rft.au=Yang%2C+Jieun&rft.date=2013-06-12&rft.eissn=1520-5126&rft.volume=135&rft.issue=23&rft.spage=8720&rft_id=info:doi/10.1021%2Fja403232d&rft_id=info%3Apmid%2F23679353&rft.externalDocID=23679353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon