Relationship between Capillary Wettability, Mass, and Momentum Transfer in Nanoconfined Water: The Case of Water in Nanoslits of Graphite and Hexagonal Boron Nitride

The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 16; no. 41; pp. 56316 - 56324
Main Authors Smith, Lois, Wei, Zixuan, Williams, Christopher D., Chiricotto, Mara, Pereira da Fonte, Claudio, Carbone, Paola
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.10.2024
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.4c10738

Cover

Abstract The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen–Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values.
AbstractList The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen–Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values.
The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen-Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values.The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen-Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values.
The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen–Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values.
Author Pereira da Fonte, Claudio
Williams, Christopher D.
Wei, Zixuan
Carbone, Paola
Smith, Lois
Chiricotto, Mara
AuthorAffiliation Department of Chemistry
University of Liverpool
Department of Chemical Engineering
Division of Pharmacy and Optometry, School of Health Sciences
University of Manchester
The Hartree Centre, STFC Daresbury Laboratory
AuthorAffiliation_xml – name: University of Liverpool
– name: Department of Chemical Engineering
– name: Department of Chemistry
– name: The Hartree Centre, STFC Daresbury Laboratory
– name: Division of Pharmacy and Optometry, School of Health Sciences
– name: University of Manchester
Author_xml – sequence: 1
  givenname: Lois
  surname: Smith
  fullname: Smith, Lois
  organization: University of Manchester
– sequence: 2
  givenname: Zixuan
  orcidid: 0000-0002-8854-279X
  surname: Wei
  fullname: Wei, Zixuan
  organization: University of Liverpool
– sequence: 3
  givenname: Christopher D.
  orcidid: 0000-0002-5073-5924
  surname: Williams
  fullname: Williams, Christopher D.
  organization: University of Manchester
– sequence: 4
  givenname: Mara
  surname: Chiricotto
  fullname: Chiricotto, Mara
  organization: The Hartree Centre, STFC Daresbury Laboratory
– sequence: 5
  givenname: Claudio
  orcidid: 0000-0001-9714-0779
  surname: Pereira da Fonte
  fullname: Pereira da Fonte, Claudio
  organization: University of Manchester
– sequence: 6
  givenname: Paola
  orcidid: 0000-0001-9927-8376
  surname: Carbone
  fullname: Carbone, Paola
  email: paola.carbone@manchester.ac.uk
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39376153$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gyhH5iFB3a8fOFxcEFbRILUhoUY_WJBl3XSV2sB3K_iD-J16yLXBAcLI187yvZt45JHvWWSTkKWdLzjJ-Am2AwSxly1kpqgfkgNdSLqosz_bu_1Luk8MQbhgrRMbyR2Rf1KIseC4OyPdP2EM0zoa1GWmD8RbR0lMYTd-D39ArjBEa05u4OaaXEMIxBdvRSzegjdNAVx5s0OipsfQDWNc6q43Fjl5BRP-SrtaY3AJSp-fSHRiSZdhWzzyMaxPxp-85foNrZ6Gnb5x3iTTRmw4fk4ca-oBPdu8R-fzu7er0fHHx8ez96euLBUgu4yJHLTrJc6wR065VVTOoJHAN0LYVMFmWDBvUnaiwK4SWjS6bQsuuqZtO61wckZPZd7IjbG6h79XozZCCUJypbeBqDlztAk-KV7NinJoBuzal4uGXyoFRf3asWatr91VxLussy7cOz3cO3n2ZMEQ1mNBiit-im4IS6U5VXmS5_A-Up-15UbKEPvt9rvuB7i6fgOUMtN6F4FH_e9MXsyDV1Y2bfLpS-Bv8A1a9044
Cites_doi 10.1126/science.aan5275
10.1016/j.molliq.2020.114027
10.1016/j.apsusc.2008.01.170
10.1038/nnano.2017.21
10.1126/science.1245711
10.1038/s41467-021-23325-3
10.1063/1.3450302
10.1063/1.2121687
10.1039/C5CS00736D
10.1016/j.mtadv.2020.100108
10.1021/acs.nanolett.1c02208
10.1103/PhysRevLett.101.226101
10.1039/D1NR02169A
10.1021/acs.langmuir.2c00972
10.1039/D0CP00200C
10.1002/adfm.201603181
10.1039/D1NR08275B
10.1021/jp076747u
10.1038/nnano.2015.37
10.1038/s41565-017-0031-9
10.1038/ncomms2818
10.1039/D0NR02511A
10.1002/adfm.201202601
10.1103/PhysRevLett.91.025502
10.1021/acs.jpcc.9b02178
10.1039/C9NR01572H
10.1103/PhysRevE.73.041604
10.1063/1.4985252
10.1021/acs.jpclett.1c02828
10.1038/nature11876
10.1021/acsami.0c10445
10.1038/nature11477
10.1021/acsnano.3c08260
10.1016/j.carbon.2022.07.019
10.1039/D1NR04794A
10.1021/jp0268112
10.1021/acs.jpcc.0c11455
10.1038/s41586-021-04284-7
10.1021/acs.jpcc.1c06410
10.1103/PhysRevE.92.052403
10.1021/nl8013617
10.1038/s41586-019-0961-5
10.1039/C9CP02485A
10.1021/acs.jpclett.6b01365
10.1021/la0517181
10.1021/jp0375057
10.1021/ja00124a002
10.1021/jacs.3c10814
10.1039/a809733j
10.1038/438044a
10.1080/08927022.2020.1782401
10.1002/jcc.25369
10.1021/nn1006495
10.1038/nnano.2015.134
10.1039/D0NR06399A
10.1021/acs.nanolett.8b04335
10.1021/nl502837d
10.1021/ja0687318
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1021/acsami.4c10738
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 56324
ExternalDocumentID oai:purl.org/net/epubs:work/61291335
PMC11492258
39376153
10_1021_acsami_4c10738
c041938705
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7S9
L.6
5PM
ADTOC
EJD
LG6
UNPAY
ID FETCH-LOGICAL-a414t-5ef3d415e9ee0638890a84a1faacc8a04770ebefd38ed63f4bf7b6f4db9bdff53
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Sun Oct 26 04:06:13 EDT 2025
Tue Sep 30 17:07:38 EDT 2025
Wed Jul 02 04:42:37 EDT 2025
Thu Jul 10 17:37:17 EDT 2025
Sat Jul 26 01:47:21 EDT 2025
Tue Jul 01 04:03:27 EDT 2025
Fri Oct 18 03:17:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords diffusion
nanoconfined water
graphite
Hagen–Poiseuille theory
hBN
flow rate
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-5ef3d415e9ee0638890a84a1faacc8a04770ebefd38ed63f4bf7b6f4db9bdff53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9714-0779
0000-0002-8854-279X
0000-0001-9927-8376
0000-0002-5073-5924
OpenAccessLink https://proxy.k.utb.cz/login?url=http://purl.org/net/epubs/work/61291335
PMID 39376153
PQID 3114151670
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1021_acsami_4c10738
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11492258
proquest_miscellaneous_3153856254
proquest_miscellaneous_3114151670
pubmed_primary_39376153
crossref_primary_10_1021_acsami_4c10738
acs_journals_10_1021_acsami_4c10738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-08
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1126/science.aan5275
– ident: ref25/cit25
  doi: 10.1016/j.molliq.2020.114027
– ident: ref54/cit54
  doi: 10.1016/j.apsusc.2008.01.170
– ident: ref14/cit14
  doi: 10.1038/nnano.2017.21
– ident: ref3/cit3
  doi: 10.1126/science.1245711
– ident: ref32/cit32
  doi: 10.1038/s41467-021-23325-3
– ident: ref52/cit52
  doi: 10.1063/1.3450302
– ident: ref45/cit45
  doi: 10.1063/1.2121687
– ident: ref46/cit46
  doi: 10.1039/C5CS00736D
– ident: ref1/cit1
  doi: 10.1016/j.mtadv.2020.100108
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.1c02208
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.101.226101
– ident: ref19/cit19
  doi: 10.1039/D1NR02169A
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.2c00972
– ident: ref44/cit44
  doi: 10.1039/D0CP00200C
– ident: ref53/cit53
  doi: 10.1002/adfm.201603181
– ident: ref39/cit39
  doi: 10.1039/D1NR08275B
– ident: ref24/cit24
  doi: 10.1021/jp076747u
– ident: ref6/cit6
  doi: 10.1038/nnano.2015.37
– ident: ref5/cit5
  doi: 10.1038/s41565-017-0031-9
– ident: ref8/cit8
  doi: 10.1038/ncomms2818
– ident: ref36/cit36
  doi: 10.1039/D0NR02511A
– ident: ref9/cit9
  doi: 10.1002/adfm.201202601
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.91.025502
– ident: ref17/cit17
  doi: 10.1021/acs.jpcc.9b02178
– ident: ref20/cit20
  doi: 10.1039/C9NR01572H
– ident: ref26/cit26
  doi: 10.1103/PhysRevE.73.041604
– ident: ref51/cit51
  doi: 10.1063/1.4985252
– ident: ref23/cit23
  doi: 10.1021/acs.jpclett.1c02828
– ident: ref7/cit7
  doi: 10.1038/nature11876
– ident: ref59/cit59
  doi: 10.1021/acsami.0c10445
– ident: ref10/cit10
  doi: 10.1038/nature11477
– ident: ref60/cit60
  doi: 10.1021/acsnano.3c08260
– ident: ref28/cit28
  doi: 10.1016/j.carbon.2022.07.019
– ident: ref16/cit16
  doi: 10.1039/D1NR04794A
– ident: ref43/cit43
  doi: 10.1021/jp0268112
– ident: ref55/cit55
  doi: 10.1021/acs.jpcc.0c11455
– ident: ref35/cit35
  doi: 10.1038/s41586-021-04284-7
– ident: ref48/cit48
  doi: 10.1021/acs.jpcc.1c06410
– ident: ref49/cit49
  doi: 10.1103/PhysRevE.92.052403
– ident: ref50/cit50
  doi: 10.1021/nl8013617
– ident: ref31/cit31
  doi: 10.1038/s41586-019-0961-5
– ident: ref47/cit47
  doi: 10.1039/C9CP02485A
– ident: ref18/cit18
  doi: 10.1021/acs.jpclett.6b01365
– ident: ref27/cit27
  doi: 10.1021/la0517181
– ident: ref56/cit56
  doi: 10.1021/jp0375057
– ident: ref42/cit42
  doi: 10.1021/ja00124a002
– ident: ref58/cit58
  doi: 10.1021/jacs.3c10814
– ident: ref29/cit29
  doi: 10.1039/a809733j
– ident: ref13/cit13
  doi: 10.1038/438044a
– ident: ref38/cit38
  doi: 10.1038/s41467-021-23325-3
– ident: ref15/cit15
  doi: 10.1080/08927022.2020.1782401
– ident: ref40/cit40
  doi: 10.1002/jcc.25369
– ident: ref11/cit11
  doi: 10.1021/nn1006495
– ident: ref4/cit4
  doi: 10.1038/nnano.2015.134
– ident: ref21/cit21
  doi: 10.1039/D0NR06399A
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.8b04335
– ident: ref33/cit33
  doi: 10.1021/nl502837d
– ident: ref41/cit41
– ident: ref12/cit12
  doi: 10.1021/ja0687318
SSID ssj0063205
Score 2.444561
Snippet The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the...
The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 56316
SubjectTerms boron nitride
friction
graphene
molecular dynamics
momentum
Surfaces, Interfaces, and Applications
viscosity
wettability
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAcKG-WAjICCQ5Nm8TOi1upKCukXXFg1XKKnNimESUb5SFY_k__Z2fy2Ha1gnKJImc0eX32fCOPPwO84SrAyMA9ywQJt4TAQ4SDpaUVsfNU2dyl1cjTmT-Zi88n3smlSFJB-0XR_D3l5bQqrNpva6ExDkeYTXk3Ycv3kHSPYGs--3LwrZ0zFsIKXSEuzz13kGd0nX2ZVrSVjkgx0WlXoWDDehDaYJabBZK3mryQy1_y7OxK9DnahsmwhqcrOvmx19TJXvpnU9Lxuhe7B3d7BsoOOsjchxs6fwB3rugSPoTzVYncaVawvpSLHcqCtigql-xY13Wn773cZVOk37tM5opNSc2hbn6yNgAaXbIsZzh8LzDnNuhdsWNktuV7hthEb5VmC9M1DYZIeuuKWj-Rjjay4dbvRP-W3yljYB9Ib4HNsrrMlH4E86OPXw8nVr-fgyWFI2rL04YrJAw60pqYUhjZMhTSMVKmaShtEQQ2YsooHmrlcyMSBJBvhEqiRBnj8ccwyhe5fgoMcZegC2l7yDEc7UtkhUqhoyiQpMk3htf4m-O-P1ZxO9XuOnEHhrgHwxjeDjCIi07c46-WrwaUxNj_aFJF5nrRVDHHhBJZkx_Y_7LBsEKZphjDkw5Zq_uRICGR7jGEa5hbGZD-9_qVPDttdcDxzhEOx_hw71bwvOY9nv2_6Q7cdvHjdvWOz2FUl41-gQSsTl72ne8CWd4y8w
  priority: 102
  providerName: Unpaywall
Title Relationship between Capillary Wettability, Mass, and Momentum Transfer in Nanoconfined Water: The Case of Water in Nanoslits of Graphite and Hexagonal Boron Nitride
URI http://dx.doi.org/10.1021/acsami.4c10738
https://www.ncbi.nlm.nih.gov/pubmed/39376153
https://www.proquest.com/docview/3114151670
https://www.proquest.com/docview/3153856254
https://pubmed.ncbi.nlm.nih.gov/PMC11492258
http://purl.org/net/epubs/work/61291335
UnpaywallVersion submittedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8252
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgPQAHoEBhaamMQIJD0yax89XbsqJdIe0KCVYtp8iJ7TaiZFeJI7r9P_2fzORj6bKi7SWHxJnEo2fPm3jyTMh7JgOIDMyzdJAwi3M4RDBZWkoiO0-lzVz8G3k09ocT_uXEO_n7vePfFXzX2RdpiVvh8BQSFRbeJ-uuHwRYvNcffOvmXJ-5dbEiZOTcCiFidfKMK_djEErL5SC0wixXCyQfVPlMzH-L8_Nr0efwSSOFVNaihVh08nOvMsleerkq6Xhrx56Sxy0Fpf0GMxvknsqfkUfXhAmfk6tFjdxZNqNtLRcdiBnuUVTM6bEyphH4nu_SEfDvXSpySUco52CqX7SOgFoVNMspzN9TSLo1WJf0GKhtcUABnGCtVHSqm1NdQ2C9psSzRyikDXS4tjtUF-IUUwb6CQUX6DgzRSbVCzI5_Px9MLTaDR0swR1uLE9pJoExqEgppEphZIuQC0cLkaahsHkQ2AAqLVmopM80TwBBvuYyiRKptcc2yVo-zdUrQgF4CZgQtgckw1G-AFooJRiKAoGifD3yDvwbtwOyjOu1dteJG6fHrdN75EOHg3jWqHv8t-XbDiYxDEBcVRG5mlZlzCCjBNrkB_ZNbSCuYKrJe-RlA63F81CREFl3j4RLoFs0QAHw5St5dlYLgcOTI5iP4eU-LvB5Sz9e38kvW-ShC35tah23yZopKvUGyJdJdupxt0PWJ-Ov_R9_AAl1L6M
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigceJcuTyOQ4NC0ydp5cSsrygLdFRKt2lvkxHYbUbKrPATL_-F_MpMXXVa8Ljk4zsQZffZ8I08-AzzjysfIwF3L-DG3hMBLiIulpRWx80TZfEh_I0-m3vhIvDtxT9Zgt_sXBgdRoKWi3sT_qS7g7GIbnYgjEsxXeHAJLruecCjb2ht97JZejw_rmkVMzIUVYODqVBpXnqdYlBTLsWiFYK7WSW5U2Vwuvsjz8wtBaP86fOiHX9eefNqpyngn-faLsuN_fN8NuNYSUrbXIOgmrOnsFly9IFN4G773FXNn6Zy1lV1sJOd0YlG-YMe6LBu578U2myAb32YyU2xC4g5l9ZnV8dDonKUZw9V8him4QeuKHSPRzV8yhCpaKzSbmaap64gcuCyo9Q3JaiM5ru2O9Vd5SgkEe0XyC2yalnmq9B042n99OBpb7fEOlhSOKC1XG66QP-hQayJOQWjLQEjHSJkkgbSF79sIMaN4oJXHjYgRT54RKg5jZYzLN2E9m2V6CxjCMEYT0naRcjjak0gSlUJDoS9Jom8AT9G_UTs9i6jeeR86UeP0qHX6AJ53cIjmjdbHb3s-6dAS4XSkPRaZ6VlVRBzzSyRRnm__qQ9GGUo8xQDuNgjr30f6hMTBBxAsYa_vQHLgy3ey9KyWBcc3h7g64-Be9DD9y3fc-ye_PIaN8eHkIDp4O31_H64M0cdNFeQDWC_zSj9EWlbGj-qp-ANUSTZV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7BInE8cB_lNAKJfdgsSe1cvEGhlKMVErvafYuc2GYjljTKISj_h__JTC5tqbhe-uA6k9j6xvONPP4M8JgrHyMDdy3jx9wSAn9CXCwtrYidJ8rmYzqNPF94s33x9tA97M5x01kY_IgSLZXNJj55da5MpzDgPMV2uhVHJJiz8OA0nHE99HPiQ5OP_fLr8XFTt4jJubACDF69UuPG8xSPknI9Hm2QzM1ayXN1lsvVV3l8fCIQTS_B3jCEpv7k825dxbvJ91_UHf9zjJfhYkdM2fMWSVfglM6uwoUTcoXX4MdQOXeU5qyr8GITmdPNRcWKHeiqamW_Vztsjqx8h8lMsTmJPFT1F9bERaMLlmYMV_UlpuIGrSt2gIS3eMYQsmit1Gxp2qa-I3LhqqTW1ySvjSS5sTvT3-QnSiTYC5JhYIu0KlKlr8P-9NXeZGZ11zxYUjiislxtuEIeoUOtiUAFoS0DIR0jZZIE0ha-byPUjOKBVh43IkZceUaoOIyVMS6_AVvZMtO3gCEcYzQhbReph6M9iWRRKTQU-pKk-kbwCOc36ty0jJod-LETtZMedZM-gic9JKK81fz4bc-HPWIidEvaa5GZXtZlxDHPRDLl-faf-mC0oQRUjOBmi7LhfaRTSFx8BMEa_oYOJAu-_k-WHjXy4PjmEFdp_LjtAap_Gcftf5qXB3D2w8tp9P7N4t0dOD_GKW6LIe_CVlXU-h6ysyq-33jjTxRqONg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAcKG-WAjICCQ5Nm8TOi1upKCukXXFg1XKKnNimESUb5SFY_k__Z2fy2Ha1gnKJImc0eX32fCOPPwO84SrAyMA9ywQJt4TAQ4SDpaUVsfNU2dyl1cjTmT-Zi88n3smlSFJB-0XR_D3l5bQqrNpva6ExDkeYTXk3Ycv3kHSPYGs--3LwrZ0zFsIKXSEuzz13kGd0nX2ZVrSVjkgx0WlXoWDDehDaYJabBZK3mryQy1_y7OxK9DnahsmwhqcrOvmx19TJXvpnU9Lxuhe7B3d7BsoOOsjchxs6fwB3rugSPoTzVYncaVawvpSLHcqCtigql-xY13Wn773cZVOk37tM5opNSc2hbn6yNgAaXbIsZzh8LzDnNuhdsWNktuV7hthEb5VmC9M1DYZIeuuKWj-Rjjay4dbvRP-W3yljYB9Ib4HNsrrMlH4E86OPXw8nVr-fgyWFI2rL04YrJAw60pqYUhjZMhTSMVKmaShtEQQ2YsooHmrlcyMSBJBvhEqiRBnj8ccwyhe5fgoMcZegC2l7yDEc7UtkhUqhoyiQpMk3htf4m-O-P1ZxO9XuOnEHhrgHwxjeDjCIi07c46-WrwaUxNj_aFJF5nrRVDHHhBJZkx_Y_7LBsEKZphjDkw5Zq_uRICGR7jGEa5hbGZD-9_qVPDttdcDxzhEOx_hw71bwvOY9nv2_6Q7cdvHjdvWOz2FUl41-gQSsTl72ne8CWd4y8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+Capillary+Wettability%2C+Mass%2C+and+Momentum+Transfer+in+Nanoconfined+Water%3A+The+Case+of+Water+in+Nanoslits+of+Graphite+and+Hexagonal+Boron+Nitride&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Smith%2C+Lois&rft.au=Wei%2C+Zixuan&rft.au=Williams%2C+Christopher+D.&rft.au=Chiricotto%2C+Mara&rft.date=2024-10-08&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.4c10738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_4c10738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon