Relationship between Capillary Wettability, Mass, and Momentum Transfer in Nanoconfined Water: The Case of Water in Nanoslits of Graphite and Hexagonal Boron Nitride
The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of...
Saved in:
| Published in | ACS applied materials & interfaces Vol. 16; no. 41; pp. 56316 - 56324 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
08.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1944-8244 1944-8252 1944-8252 |
| DOI | 10.1021/acsami.4c10738 |
Cover
| Abstract | The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen–Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values. |
|---|---|
| AbstractList | The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen–Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values. The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen-Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values.The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen-Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values. The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both. The capillaries containing hBN show a reduced flow rate compared to those that are purely graphitic, likely due to the high friction coefficient between water and hBN. Such resistance to the flow is, however, at its maximum in the smallest capillary and lower for larger ones. Finally, we show that the flow rate values obtained from the Hagen–Poiseuille theory are almost always smaller than those obtained from simulations, indicating that either the slip length or the viscosity of nanoconfined water could be substantially different from the bulk values. |
| Author | Pereira da Fonte, Claudio Williams, Christopher D. Wei, Zixuan Carbone, Paola Smith, Lois Chiricotto, Mara |
| AuthorAffiliation | Department of Chemistry University of Liverpool Department of Chemical Engineering Division of Pharmacy and Optometry, School of Health Sciences University of Manchester The Hartree Centre, STFC Daresbury Laboratory |
| AuthorAffiliation_xml | – name: University of Liverpool – name: Department of Chemical Engineering – name: Department of Chemistry – name: The Hartree Centre, STFC Daresbury Laboratory – name: Division of Pharmacy and Optometry, School of Health Sciences – name: University of Manchester |
| Author_xml | – sequence: 1 givenname: Lois surname: Smith fullname: Smith, Lois organization: University of Manchester – sequence: 2 givenname: Zixuan orcidid: 0000-0002-8854-279X surname: Wei fullname: Wei, Zixuan organization: University of Liverpool – sequence: 3 givenname: Christopher D. orcidid: 0000-0002-5073-5924 surname: Williams fullname: Williams, Christopher D. organization: University of Manchester – sequence: 4 givenname: Mara surname: Chiricotto fullname: Chiricotto, Mara organization: The Hartree Centre, STFC Daresbury Laboratory – sequence: 5 givenname: Claudio orcidid: 0000-0001-9714-0779 surname: Pereira da Fonte fullname: Pereira da Fonte, Claudio organization: University of Manchester – sequence: 6 givenname: Paola orcidid: 0000-0001-9927-8376 surname: Carbone fullname: Carbone, Paola email: paola.carbone@manchester.ac.uk organization: Department of Chemistry |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39376153$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi1URD_gyhH5iFB3a8fOFxcEFbRILUhoUY_WJBl3XSV2sB3K_iD-J16yLXBAcLI187yvZt45JHvWWSTkKWdLzjJ-Am2AwSxly1kpqgfkgNdSLqosz_bu_1Luk8MQbhgrRMbyR2Rf1KIseC4OyPdP2EM0zoa1GWmD8RbR0lMYTd-D39ArjBEa05u4OaaXEMIxBdvRSzegjdNAVx5s0OipsfQDWNc6q43Fjl5BRP-SrtaY3AJSp-fSHRiSZdhWzzyMaxPxp-85foNrZ6Gnb5x3iTTRmw4fk4ca-oBPdu8R-fzu7er0fHHx8ez96euLBUgu4yJHLTrJc6wR065VVTOoJHAN0LYVMFmWDBvUnaiwK4SWjS6bQsuuqZtO61wckZPZd7IjbG6h79XozZCCUJypbeBqDlztAk-KV7NinJoBuzal4uGXyoFRf3asWatr91VxLussy7cOz3cO3n2ZMEQ1mNBiit-im4IS6U5VXmS5_A-Up-15UbKEPvt9rvuB7i6fgOUMtN6F4FH_e9MXsyDV1Y2bfLpS-Bv8A1a9044 |
| Cites_doi | 10.1126/science.aan5275 10.1016/j.molliq.2020.114027 10.1016/j.apsusc.2008.01.170 10.1038/nnano.2017.21 10.1126/science.1245711 10.1038/s41467-021-23325-3 10.1063/1.3450302 10.1063/1.2121687 10.1039/C5CS00736D 10.1016/j.mtadv.2020.100108 10.1021/acs.nanolett.1c02208 10.1103/PhysRevLett.101.226101 10.1039/D1NR02169A 10.1021/acs.langmuir.2c00972 10.1039/D0CP00200C 10.1002/adfm.201603181 10.1039/D1NR08275B 10.1021/jp076747u 10.1038/nnano.2015.37 10.1038/s41565-017-0031-9 10.1038/ncomms2818 10.1039/D0NR02511A 10.1002/adfm.201202601 10.1103/PhysRevLett.91.025502 10.1021/acs.jpcc.9b02178 10.1039/C9NR01572H 10.1103/PhysRevE.73.041604 10.1063/1.4985252 10.1021/acs.jpclett.1c02828 10.1038/nature11876 10.1021/acsami.0c10445 10.1038/nature11477 10.1021/acsnano.3c08260 10.1016/j.carbon.2022.07.019 10.1039/D1NR04794A 10.1021/jp0268112 10.1021/acs.jpcc.0c11455 10.1038/s41586-021-04284-7 10.1021/acs.jpcc.1c06410 10.1103/PhysRevE.92.052403 10.1021/nl8013617 10.1038/s41586-019-0961-5 10.1039/C9CP02485A 10.1021/acs.jpclett.6b01365 10.1021/la0517181 10.1021/jp0375057 10.1021/ja00124a002 10.1021/jacs.3c10814 10.1039/a809733j 10.1038/438044a 10.1080/08927022.2020.1782401 10.1002/jcc.25369 10.1021/nn1006495 10.1038/nnano.2015.134 10.1039/D0NR06399A 10.1021/acs.nanolett.8b04335 10.1021/nl502837d 10.1021/ja0687318 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM ADTOC UNPAY |
| DOI | 10.1021/acsami.4c10738 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1944-8252 |
| EndPage | 56324 |
| ExternalDocumentID | oai:purl.org/net/epubs:work/61291335 PMC11492258 39376153 10_1021_acsami_4c10738 c041938705 |
| Genre | Journal Article |
| GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 5PM ADTOC EJD LG6 UNPAY |
| ID | FETCH-LOGICAL-a414t-5ef3d415e9ee0638890a84a1faacc8a04770ebefd38ed63f4bf7b6f4db9bdff53 |
| IEDL.DBID | ACS |
| ISSN | 1944-8244 1944-8252 |
| IngestDate | Sun Oct 26 04:06:13 EDT 2025 Tue Sep 30 17:07:38 EDT 2025 Wed Jul 02 04:42:37 EDT 2025 Thu Jul 10 17:37:17 EDT 2025 Sat Jul 26 01:47:21 EDT 2025 Tue Jul 01 04:03:27 EDT 2025 Fri Oct 18 03:17:46 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 41 |
| Keywords | diffusion nanoconfined water graphite Hagen–Poiseuille theory hBN flow rate |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a414t-5ef3d415e9ee0638890a84a1faacc8a04770ebefd38ed63f4bf7b6f4db9bdff53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9714-0779 0000-0002-8854-279X 0000-0001-9927-8376 0000-0002-5073-5924 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://purl.org/net/epubs/work/61291335 |
| PMID | 39376153 |
| PQID | 3114151670 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1021_acsami_4c10738 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11492258 proquest_miscellaneous_3153856254 proquest_miscellaneous_3114151670 pubmed_primary_39376153 crossref_primary_10_1021_acsami_4c10738 acs_journals_10_1021_acsami_4c10738 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-08 |
| PublicationDateYYYYMMDD | 2024-10-08 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS applied materials & interfaces |
| PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
| PublicationYear | 2024 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref2/cit2 doi: 10.1126/science.aan5275 – ident: ref25/cit25 doi: 10.1016/j.molliq.2020.114027 – ident: ref54/cit54 doi: 10.1016/j.apsusc.2008.01.170 – ident: ref14/cit14 doi: 10.1038/nnano.2017.21 – ident: ref3/cit3 doi: 10.1126/science.1245711 – ident: ref32/cit32 doi: 10.1038/s41467-021-23325-3 – ident: ref52/cit52 doi: 10.1063/1.3450302 – ident: ref45/cit45 doi: 10.1063/1.2121687 – ident: ref46/cit46 doi: 10.1039/C5CS00736D – ident: ref1/cit1 doi: 10.1016/j.mtadv.2020.100108 – ident: ref37/cit37 doi: 10.1021/acs.nanolett.1c02208 – ident: ref30/cit30 doi: 10.1103/PhysRevLett.101.226101 – ident: ref19/cit19 doi: 10.1039/D1NR02169A – ident: ref22/cit22 doi: 10.1021/acs.langmuir.2c00972 – ident: ref44/cit44 doi: 10.1039/D0CP00200C – ident: ref53/cit53 doi: 10.1002/adfm.201603181 – ident: ref39/cit39 doi: 10.1039/D1NR08275B – ident: ref24/cit24 doi: 10.1021/jp076747u – ident: ref6/cit6 doi: 10.1038/nnano.2015.37 – ident: ref5/cit5 doi: 10.1038/s41565-017-0031-9 – ident: ref8/cit8 doi: 10.1038/ncomms2818 – ident: ref36/cit36 doi: 10.1039/D0NR02511A – ident: ref9/cit9 doi: 10.1002/adfm.201202601 – ident: ref57/cit57 doi: 10.1103/PhysRevLett.91.025502 – ident: ref17/cit17 doi: 10.1021/acs.jpcc.9b02178 – ident: ref20/cit20 doi: 10.1039/C9NR01572H – ident: ref26/cit26 doi: 10.1103/PhysRevE.73.041604 – ident: ref51/cit51 doi: 10.1063/1.4985252 – ident: ref23/cit23 doi: 10.1021/acs.jpclett.1c02828 – ident: ref7/cit7 doi: 10.1038/nature11876 – ident: ref59/cit59 doi: 10.1021/acsami.0c10445 – ident: ref10/cit10 doi: 10.1038/nature11477 – ident: ref60/cit60 doi: 10.1021/acsnano.3c08260 – ident: ref28/cit28 doi: 10.1016/j.carbon.2022.07.019 – ident: ref16/cit16 doi: 10.1039/D1NR04794A – ident: ref43/cit43 doi: 10.1021/jp0268112 – ident: ref55/cit55 doi: 10.1021/acs.jpcc.0c11455 – ident: ref35/cit35 doi: 10.1038/s41586-021-04284-7 – ident: ref48/cit48 doi: 10.1021/acs.jpcc.1c06410 – ident: ref49/cit49 doi: 10.1103/PhysRevE.92.052403 – ident: ref50/cit50 doi: 10.1021/nl8013617 – ident: ref31/cit31 doi: 10.1038/s41586-019-0961-5 – ident: ref47/cit47 doi: 10.1039/C9CP02485A – ident: ref18/cit18 doi: 10.1021/acs.jpclett.6b01365 – ident: ref27/cit27 doi: 10.1021/la0517181 – ident: ref56/cit56 doi: 10.1021/jp0375057 – ident: ref42/cit42 doi: 10.1021/ja00124a002 – ident: ref58/cit58 doi: 10.1021/jacs.3c10814 – ident: ref29/cit29 doi: 10.1039/a809733j – ident: ref13/cit13 doi: 10.1038/438044a – ident: ref38/cit38 doi: 10.1038/s41467-021-23325-3 – ident: ref15/cit15 doi: 10.1080/08927022.2020.1782401 – ident: ref40/cit40 doi: 10.1002/jcc.25369 – ident: ref11/cit11 doi: 10.1021/nn1006495 – ident: ref4/cit4 doi: 10.1038/nnano.2015.134 – ident: ref21/cit21 doi: 10.1039/D0NR06399A – ident: ref34/cit34 doi: 10.1021/acs.nanolett.8b04335 – ident: ref33/cit33 doi: 10.1021/nl502837d – ident: ref41/cit41 – ident: ref12/cit12 doi: 10.1021/ja0687318 |
| SSID | ssj0063205 |
| Score | 2.444561 |
| Snippet | The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the... The flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 56316 |
| SubjectTerms | boron nitride friction graphene molecular dynamics momentum Surfaces, Interfaces, and Applications viscosity wettability |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAcKG-WAjICCQ5Nm8TOi1upKCukXXFg1XKKnNimESUb5SFY_k__Z2fy2Ha1gnKJImc0eX32fCOPPwO84SrAyMA9ywQJt4TAQ4SDpaUVsfNU2dyl1cjTmT-Zi88n3smlSFJB-0XR_D3l5bQqrNpva6ExDkeYTXk3Ycv3kHSPYGs--3LwrZ0zFsIKXSEuzz13kGd0nX2ZVrSVjkgx0WlXoWDDehDaYJabBZK3mryQy1_y7OxK9DnahsmwhqcrOvmx19TJXvpnU9Lxuhe7B3d7BsoOOsjchxs6fwB3rugSPoTzVYncaVawvpSLHcqCtigql-xY13Wn773cZVOk37tM5opNSc2hbn6yNgAaXbIsZzh8LzDnNuhdsWNktuV7hthEb5VmC9M1DYZIeuuKWj-Rjjay4dbvRP-W3yljYB9Ib4HNsrrMlH4E86OPXw8nVr-fgyWFI2rL04YrJAw60pqYUhjZMhTSMVKmaShtEQQ2YsooHmrlcyMSBJBvhEqiRBnj8ccwyhe5fgoMcZegC2l7yDEc7UtkhUqhoyiQpMk3htf4m-O-P1ZxO9XuOnEHhrgHwxjeDjCIi07c46-WrwaUxNj_aFJF5nrRVDHHhBJZkx_Y_7LBsEKZphjDkw5Zq_uRICGR7jGEa5hbGZD-9_qVPDttdcDxzhEOx_hw71bwvOY9nv2_6Q7cdvHjdvWOz2FUl41-gQSsTl72ne8CWd4y8w priority: 102 providerName: Unpaywall |
| Title | Relationship between Capillary Wettability, Mass, and Momentum Transfer in Nanoconfined Water: The Case of Water in Nanoslits of Graphite and Hexagonal Boron Nitride |
| URI | http://dx.doi.org/10.1021/acsami.4c10738 https://www.ncbi.nlm.nih.gov/pubmed/39376153 https://www.proquest.com/docview/3114151670 https://www.proquest.com/docview/3153856254 https://pubmed.ncbi.nlm.nih.gov/PMC11492258 http://purl.org/net/epubs/work/61291335 |
| UnpaywallVersion | submittedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1944-8252 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063205 issn: 1944-8252 databaseCode: ACS dateStart: 20090128 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgPQAHoEBhaamMQIJD0yax89XbsqJdIe0KCVYtp8iJ7TaiZFeJI7r9P_2fzORj6bKi7SWHxJnEo2fPm3jyTMh7JgOIDMyzdJAwi3M4RDBZWkoiO0-lzVz8G3k09ocT_uXEO_n7vePfFXzX2RdpiVvh8BQSFRbeJ-uuHwRYvNcffOvmXJ-5dbEiZOTcCiFidfKMK_djEErL5SC0wixXCyQfVPlMzH-L8_Nr0efwSSOFVNaihVh08nOvMsleerkq6Xhrx56Sxy0Fpf0GMxvknsqfkUfXhAmfk6tFjdxZNqNtLRcdiBnuUVTM6bEyphH4nu_SEfDvXSpySUco52CqX7SOgFoVNMspzN9TSLo1WJf0GKhtcUABnGCtVHSqm1NdQ2C9psSzRyikDXS4tjtUF-IUUwb6CQUX6DgzRSbVCzI5_Px9MLTaDR0swR1uLE9pJoExqEgppEphZIuQC0cLkaahsHkQ2AAqLVmopM80TwBBvuYyiRKptcc2yVo-zdUrQgF4CZgQtgckw1G-AFooJRiKAoGifD3yDvwbtwOyjOu1dteJG6fHrdN75EOHg3jWqHv8t-XbDiYxDEBcVRG5mlZlzCCjBNrkB_ZNbSCuYKrJe-RlA63F81CREFl3j4RLoFs0QAHw5St5dlYLgcOTI5iP4eU-LvB5Sz9e38kvW-ShC35tah23yZopKvUGyJdJdupxt0PWJ-Ov_R9_AAl1L6M |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigceJcuTyOQ4NC0ydp5cSsrygLdFRKt2lvkxHYbUbKrPATL_-F_MpMXXVa8Ljk4zsQZffZ8I08-AzzjysfIwF3L-DG3hMBLiIulpRWx80TZfEh_I0-m3vhIvDtxT9Zgt_sXBgdRoKWi3sT_qS7g7GIbnYgjEsxXeHAJLruecCjb2ht97JZejw_rmkVMzIUVYODqVBpXnqdYlBTLsWiFYK7WSW5U2Vwuvsjz8wtBaP86fOiHX9eefNqpyngn-faLsuN_fN8NuNYSUrbXIOgmrOnsFly9IFN4G773FXNn6Zy1lV1sJOd0YlG-YMe6LBu578U2myAb32YyU2xC4g5l9ZnV8dDonKUZw9V8him4QeuKHSPRzV8yhCpaKzSbmaap64gcuCyo9Q3JaiM5ru2O9Vd5SgkEe0XyC2yalnmq9B042n99OBpb7fEOlhSOKC1XG66QP-hQayJOQWjLQEjHSJkkgbSF79sIMaN4oJXHjYgRT54RKg5jZYzLN2E9m2V6CxjCMEYT0naRcjjak0gSlUJDoS9Jom8AT9G_UTs9i6jeeR86UeP0qHX6AJ53cIjmjdbHb3s-6dAS4XSkPRaZ6VlVRBzzSyRRnm__qQ9GGUo8xQDuNgjr30f6hMTBBxAsYa_vQHLgy3ey9KyWBcc3h7g64-Be9DD9y3fc-ye_PIaN8eHkIDp4O31_H64M0cdNFeQDWC_zSj9EWlbGj-qp-ANUSTZV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7BInE8cB_lNAKJfdgsSe1cvEGhlKMVErvafYuc2GYjljTKISj_h__JTC5tqbhe-uA6k9j6xvONPP4M8JgrHyMDdy3jx9wSAn9CXCwtrYidJ8rmYzqNPF94s33x9tA97M5x01kY_IgSLZXNJj55da5MpzDgPMV2uhVHJJiz8OA0nHE99HPiQ5OP_fLr8XFTt4jJubACDF69UuPG8xSPknI9Hm2QzM1ayXN1lsvVV3l8fCIQTS_B3jCEpv7k825dxbvJ91_UHf9zjJfhYkdM2fMWSVfglM6uwoUTcoXX4MdQOXeU5qyr8GITmdPNRcWKHeiqamW_Vztsjqx8h8lMsTmJPFT1F9bERaMLlmYMV_UlpuIGrSt2gIS3eMYQsmit1Gxp2qa-I3LhqqTW1ySvjSS5sTvT3-QnSiTYC5JhYIu0KlKlr8P-9NXeZGZ11zxYUjiislxtuEIeoUOtiUAFoS0DIR0jZZIE0ha-byPUjOKBVh43IkZceUaoOIyVMS6_AVvZMtO3gCEcYzQhbReph6M9iWRRKTQU-pKk-kbwCOc36ty0jJod-LETtZMedZM-gic9JKK81fz4bc-HPWIidEvaa5GZXtZlxDHPRDLl-faf-mC0oQRUjOBmi7LhfaRTSFx8BMEa_oYOJAu-_k-WHjXy4PjmEFdp_LjtAap_Gcftf5qXB3D2w8tp9P7N4t0dOD_GKW6LIe_CVlXU-h6ysyq-33jjTxRqONg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAcKG-WAjICCQ5Nm8TOi1upKCukXXFg1XKKnNimESUb5SFY_k__Z2fy2Ha1gnKJImc0eX32fCOPPwO84SrAyMA9ywQJt4TAQ4SDpaUVsfNU2dyl1cjTmT-Zi88n3smlSFJB-0XR_D3l5bQqrNpva6ExDkeYTXk3Ycv3kHSPYGs--3LwrZ0zFsIKXSEuzz13kGd0nX2ZVrSVjkgx0WlXoWDDehDaYJabBZK3mryQy1_y7OxK9DnahsmwhqcrOvmx19TJXvpnU9Lxuhe7B3d7BsoOOsjchxs6fwB3rugSPoTzVYncaVawvpSLHcqCtigql-xY13Wn773cZVOk37tM5opNSc2hbn6yNgAaXbIsZzh8LzDnNuhdsWNktuV7hthEb5VmC9M1DYZIeuuKWj-Rjjay4dbvRP-W3yljYB9Ib4HNsrrMlH4E86OPXw8nVr-fgyWFI2rL04YrJAw60pqYUhjZMhTSMVKmaShtEQQ2YsooHmrlcyMSBJBvhEqiRBnj8ccwyhe5fgoMcZegC2l7yDEc7UtkhUqhoyiQpMk3htf4m-O-P1ZxO9XuOnEHhrgHwxjeDjCIi07c46-WrwaUxNj_aFJF5nrRVDHHhBJZkx_Y_7LBsEKZphjDkw5Zq_uRICGR7jGEa5hbGZD-9_qVPDttdcDxzhEOx_hw71bwvOY9nv2_6Q7cdvHjdvWOz2FUl41-gQSsTl72ne8CWd4y8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+Capillary+Wettability%2C+Mass%2C+and+Momentum+Transfer+in+Nanoconfined+Water%3A+The+Case+of+Water+in+Nanoslits+of+Graphite+and+Hexagonal+Boron+Nitride&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Smith%2C+Lois&rft.au=Wei%2C+Zixuan&rft.au=Williams%2C+Christopher+D.&rft.au=Chiricotto%2C+Mara&rft.date=2024-10-08&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.4c10738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_4c10738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |