Engineering Electron–Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator

Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 19; no. 10; pp. 7021 - 7027
Main Authors Chen, Huiyao, Opondo, Noah F, Jiang, Boyang, MacQuarrie, Evan R, Daveau, Raphaël S, Bhave, Sunil A, Fuchs, Gregory D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.10.2019
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/acs.nanolett.9b02430

Cover

Abstract Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron–phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)­2.19(14) MHz/V p, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.
AbstractList Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with × > 10 (>10 ). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/ , which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.
Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron–phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)­2.19(14) MHz/V p, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.
Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/Vp, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/Vp, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.
Author MacQuarrie, Evan R
Bhave, Sunil A
Fuchs, Gregory D
Jiang, Boyang
Opondo, Noah F
Daveau, Raphaël S
Chen, Huiyao
AuthorAffiliation Cornell University
Kavli Institute at Cornell for Nanoscale Science
Purdue University
AuthorAffiliation_xml – name: Cornell University
– name: Purdue University
– name: Kavli Institute at Cornell for Nanoscale Science
Author_xml – sequence: 1
  givenname: Huiyao
  surname: Chen
  fullname: Chen, Huiyao
– sequence: 2
  givenname: Noah F
  surname: Opondo
  fullname: Opondo, Noah F
  organization: Purdue University
– sequence: 3
  givenname: Boyang
  surname: Jiang
  fullname: Jiang, Boyang
  organization: Purdue University
– sequence: 4
  givenname: Evan R
  surname: MacQuarrie
  fullname: MacQuarrie, Evan R
– sequence: 5
  givenname: Raphaël S
  surname: Daveau
  fullname: Daveau, Raphaël S
– sequence: 6
  givenname: Sunil A
  surname: Bhave
  fullname: Bhave, Sunil A
  organization: Purdue University
– sequence: 7
  givenname: Gregory D
  orcidid: 0000-0003-4343-8523
  surname: Fuchs
  fullname: Fuchs, Gregory D
  email: gdf9@cornell.edu
  organization: Cornell University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31498998$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOAyEUQImpsQ_9A2NYupkKA9MBd02tj6SJ760TykClmYEKzMKd_-Af-iVO09aFC11Bcs-Bm9MHHeusAuAYoyFGKT4TMgytsK5SMQ75HKWUoD3QwxlByYjztPNzZ7QL-iEsEUKcZOgAdAmmnHHOeuBlahfGKuWNXcBppWT0zn59fN69uvY_OHHNqlqPnIb3jbCxqeGF0i0WYHRQwEdVG-msdlJUcCxdE6KR8EEFZ0V0_hDsa1EFdbQ9B-D5cvo0uU5mt1c3k_EsERTTmFCd5STNtMjnKcuJVHqOsSC0lFqWbIQY0lRKQkalIEQrmmd8JBnNc5KXJaWcDMDp5t2Vd2-NCrGoTZCqqoRV7U5FmjKGUJZntEVPtmgzr1VZrLyphX8vdk1agG4A6V0IXukfBKNinb5o0xe79MU2faud_9KkiSIaZ6MXpvpPRht5PV26xtu21t_KNzV0oME
CitedBy_id crossref_primary_10_1063_5_0013848
crossref_primary_10_1063_5_0189742
crossref_primary_10_1103_PhysRevResearch_2_023035
crossref_primary_10_1002_smsc_202200052
crossref_primary_10_1021_acs_nanolett_2c04095
crossref_primary_10_1063_5_0141405
crossref_primary_10_1063_5_0024001
crossref_primary_10_1103_PhysRevApplied_20_024024
crossref_primary_10_1063_5_0230359
crossref_primary_10_1109_JMEMS_2020_3009516
crossref_primary_10_1103_PhysRevLett_131_043602
crossref_primary_10_1103_PhysRevApplied_13_054068
crossref_primary_10_1038_s41467_019_13822_x
crossref_primary_10_1063_5_0023827
crossref_primary_10_3390_mi12060724
crossref_primary_10_1080_17455030_2024_2326137
crossref_primary_10_1021_acs_jpcc_1c08530
crossref_primary_10_1021_acs_nanolett_3c04953
crossref_primary_10_1021_acs_nanolett_1c03703
crossref_primary_10_1021_acs_nanolett_4c03071
crossref_primary_10_1109_TQE_2023_3322342
crossref_primary_10_1103_PhysRevA_101_052342
crossref_primary_10_1002_qute_202300189
crossref_primary_10_1021_acs_jpcb_1c08679
crossref_primary_10_1021_acs_jpclett_1c03269
crossref_primary_10_1103_PhysRevApplied_22_064019
crossref_primary_10_1038_s41467_020_15472_w
crossref_primary_10_1063_5_0045232
crossref_primary_10_1103_PhysRevB_110_045419
crossref_primary_10_1103_PhysRevB_106_155415
crossref_primary_10_1021_acs_jpca_1c08677
crossref_primary_10_1103_PhysRevApplied_22_024016
crossref_primary_10_1103_PhysRevB_106_035305
crossref_primary_10_1103_PhysRevLett_125_107702
crossref_primary_10_1088_1367_2630_ac1000
crossref_primary_10_1103_PhysRevLett_124_013902
Cites_doi 10.1103/PhysRevLett.120.167401
10.1038/s41566-018-0232-2
10.1016/j.diamond.2008.01.011
10.1364/OPTICA.2.000233
10.1109/58.19148
10.1016/j.diamond.2009.01.013
10.1103/PhysRevLett.113.020503
10.1103/PhysRevLett.118.093601
10.1063/1.3519847
10.1038/nature08967
10.1103/PhysRevLett.102.057403
10.1103/PhysRevLett.105.140502
10.1364/OPTICA.3.001404
10.1109/FCS.2018.8597489
10.1038/ncomms5429
10.1103/PhysRevLett.116.143602
10.1038/s41567-019-0420-0
10.1038/nmat4144
10.1109/ULTSYM.2000.922679
10.1007/978-3-319-28688-4
10.1103/PhysRevB.97.205444
10.1038/nmat4145
10.1063/1.2951467
10.1103/PhysRev.123.1553
10.1016/j.physrep.2013.02.001
10.1088/2058-9565/ab043e
10.1063/1.4952953
10.1038/nphys1075
10.1103/PhysRev.52.230
10.1103/PhysRevLett.119.223602
10.1038/nphys3411
10.1021/acs.nanolett.6b04544
10.1021/acs.nanolett.9b01316
10.1063/1.3658631
10.1038/nature12016
10.1038/srep02132
10.1063/1.5026798
10.1103/PhysRevB.61.5600
10.1126/science.aao1511
10.1109/ULTSYM.2008.0140
10.1103/PhysRevB.92.224419
10.1126/science.aan0070
10.1103/PhysRevLett.111.227602
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.9b02430
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 7027
ExternalDocumentID 31498998
10_1021_acs_nanolett_9b02430
c51298737
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a414t-4f57325fa7b2873cefb11a34dcfcd86080f4cc336da33fe47596c847737dd4493
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 15:27:07 EDT 2025
Thu Jan 02 22:59:18 EST 2025
Thu Apr 24 22:59:54 EDT 2025
Tue Jul 01 03:14:08 EDT 2025
Thu Aug 27 13:43:30 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Nitrogen-vacancy center
diamond
MEMS
silicon carbide
bulk acoustic resonator
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-4f57325fa7b2873cefb11a34dcfcd86080f4cc336da33fe47596c847737dd4493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4343-8523
PMID 31498998
PQID 2288005754
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2288005754
pubmed_primary_31498998
crossref_primary_10_1021_acs_nanolett_9b02430
crossref_citationtrail_10_1021_acs_nanolett_9b02430
acs_journals_10_1021_acs_nanolett_9b02430
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-09
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
Bhugra H. (ref25/cit25) 2017
ref18/cit18
ref11/cit11
ref16/cit16
ref29/cit29
Siegman A. (ref27/cit27) 1986
Baron T. (ref26/cit26) 2013
ref32/cit32
ref23/cit23
Akhieser A. (ref38/cit38) 1939; 1
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref28/cit28
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
Landau L. (ref37/cit37) 1937
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
Landau L. D. (ref40/cit40) 1986
ref47/cit47
ref1/cit1
ref24/cit24
ref44/cit44
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1103/PhysRevLett.120.167401
– ident: ref1/cit1
  doi: 10.1038/s41566-018-0232-2
– ident: ref30/cit30
  doi: 10.1016/j.diamond.2008.01.011
– ident: ref42/cit42
  doi: 10.1364/OPTICA.2.000233
– ident: ref21/cit21
  doi: 10.1109/58.19148
– ident: ref31/cit31
  doi: 10.1016/j.diamond.2009.01.013
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.113.020503
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.118.093601
– volume-title: Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices
  year: 2013
  ident: ref26/cit26
– ident: ref28/cit28
  doi: 10.1063/1.3519847
– ident: ref18/cit18
  doi: 10.1038/nature08967
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.102.057403
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.105.140502
– ident: ref13/cit13
  doi: 10.1364/OPTICA.3.001404
– ident: ref29/cit29
  doi: 10.1109/FCS.2018.8597489
– ident: ref12/cit12
  doi: 10.1038/ncomms5429
– ident: ref15/cit15
  doi: 10.1103/PhysRevLett.116.143602
– ident: ref17/cit17
  doi: 10.1038/s41567-019-0420-0
– ident: ref4/cit4
  doi: 10.1038/nmat4144
– volume-title: Lasers
  year: 1986
  ident: ref27/cit27
– ident: ref35/cit35
  doi: 10.1109/ULTSYM.2000.922679
– volume-title: Piezoelectric MEMS resonators
  year: 2017
  ident: ref25/cit25
  doi: 10.1007/978-3-319-28688-4
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.97.205444
– ident: ref5/cit5
  doi: 10.1038/nmat4145
– ident: ref22/cit22
  doi: 10.1063/1.2951467
– ident: ref39/cit39
  doi: 10.1103/PhysRev.123.1553
– ident: ref2/cit2
  doi: 10.1016/j.physrep.2013.02.001
– ident: ref14/cit14
  doi: 10.1088/2058-9565/ab043e
– ident: ref32/cit32
  doi: 10.1063/1.4952953
– ident: ref45/cit45
  doi: 10.1038/nphys1075
– ident: ref36/cit36
  doi: 10.1103/PhysRev.52.230
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.119.223602
– start-page: 11
  year: 1937
  ident: ref37/cit37
  publication-title: Phys. Z. Sowjetunion
– ident: ref11/cit11
  doi: 10.1038/nphys3411
– ident: ref6/cit6
  doi: 10.1021/acs.nanolett.6b04544
– ident: ref33/cit33
  doi: 10.1021/acs.nanolett.9b01316
– ident: ref34/cit34
  doi: 10.1063/1.3658631
– ident: ref8/cit8
  doi: 10.1038/nature12016
– ident: ref23/cit23
  doi: 10.1038/srep02132
– ident: ref24/cit24
  doi: 10.1063/1.5026798
– volume-title: Theory of elasticity
  year: 1986
  ident: ref40/cit40
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.61.5600
– ident: ref19/cit19
  doi: 10.1126/science.aao1511
– ident: ref20/cit20
  doi: 10.1109/ULTSYM.2008.0140
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.92.224419
– ident: ref9/cit9
  doi: 10.1126/science.aan0070
– volume: 1
  start-page: 277
  year: 1939
  ident: ref38/cit38
  publication-title: J. Phys.(Ussr)
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.111.227602
SSID ssj0009350
Score 2.5324326
Snippet Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7021
Title Engineering Electron–Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator
URI http://dx.doi.org/10.1021/acs.nanolett.9b02430
https://www.ncbi.nlm.nih.gov/pubmed/31498998
https://www.proquest.com/docview/2288005754
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEG6MXvTg-7G-UhMvHliFlkKPZt2NMfEVNfEkKdNWExWMCxdP_gf_ob_EKQu6aox6hNBCp9PON8z0G0I2hdDG0WR5yofI41EqvFho8OIwRmuud5Q27n_H4ZHYv-AHl-Hlh6P4NYIf-NsK-u1MZTkOo2jL1DHooYs-Fgg0NQ4Kdc4-SHZZVZEVFzG6RDLmzVG5H3pxBgn6nw3SDyizsja9KXLcnNkZJJnctssibcPTdwrHPw5kmkzWwJPuDjRlhoyYbJZMDNERzpGroSvarevjvD6_nNzkWZ7RTl6647vXNLf0tMQZKe_pnqnSQWiRU0XPXKJ9jhoL7kWQV4XCqAsQZM61nycXve55Z9-r6y94ivu88LgNIxaEVkUp-lUMjE19XzGuwYKOBWJNywEYE1oxZo1jDhSA1i5ikdacS7ZARvHzzBKhWimlEUvIQAPuEiIWaRpLK2UEXEBoW2QLxZPU66efVKHxwE_czUZmSS2zFmHNhCVQE5m7ehp3v7Ty3ls9DIg8fnl-o9GFBFecC6OozKDkkiDAPc_BXN4iiwMlee-RocPpPNjlf4xnhYwjCpNVhqBcJaPFY2nWEOkU6Xql3m8QDv0F
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6tyoFyKNACXUrBSL30kKWJHSc-VktXC32Iqi3qicjxAyQgQWxy4cR_4B_2lzDjTbYPqap6jBU7nvHYM5MZfwOwJaV1BJMV6dhkkchKGeXSmihPc9TmdkdbR_87Do_k9Ex8PE_PB5D2d2FwEjMcaRaC-JfoAvE7aqt0VSM1zUiVBKSHnvqDVApJFRt2xyeXWLs8FGbFvYyekcpFf2PullFIL5nZdb10i7EZlM7kMXxeTDfkmnwftU05Mn9uIDnem54nsNKZoWx3LjdPYeCqVXh0BZxwDb5ceWJ7XbWci7__Pn2rq7pi47qly7xfWe3ZcYvr0_5k711IDmFNzTQ7obT7GuXX0IdMHcqGMQoXVOToP4Ozyd7peBp11RgiLWLRRMKnGU9Sr7MSvSxunC_jWHNhjTc2l2h5emEM59Jqzr0jHEFpUPdlPLNWCMWfwxJOz60Ds1pri5aFSqzBM0Pmsixz5ZXKjJAm9UPYRvYU3W6aFSFQnsQFNfY8KzqeDYH361aYDtacqmv8uKNXtOj1aw7rccf7b3uRKHD_UVBFVw45VyQJnoBk9IohvJjLymJEju4n-bMv70HPG3g4PT08KA4-HO1vwDLaZyrkDqpXsNT8bt0m2kBN-TpI_H9y9wV2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqkBA98ChQlgI1EpcesiWx48RHtA_RQhEIkBCHRo4fRQISxCYXTvyH_kN-CTPe7LJUQogeY8WOPZ7xzGTG3xCyLYSxCJMVqFAnAU9yEaTC6CCNU9DmZkcZi_87fh2KvTP-8zw-nyj1BZMYwEgDH8RHqb41rkEYCL9je6GKElZUtWWOYHrgrU-DTRJi1Ybdzskz3i7zxVlBnsE7kikf3Zp7ZRTUTXrwUje9YnB6xdOfJxfjKft8k6t2XeVtff8PmuN_rWmBzDXmKN0d8s8i-WCLT-TjBEjhEvk98UR7TdWcx4e_R5dlURa0U9Z4qfcPLR09rmGf6hvatT5JhFYlVfQE0-9L4GONH9KlLx9GMWxQoMO_TM76vdPOXtBUZQgUD3kVcBcnLIqdSnLwtpi2Lg9DxbjRTptUgAXquNaMCaMYcxbxBIUGHZiwxBjOJVshUzA9u0qoUUoZsDBkZDScHSIVeZ5KJ2WiudCxa5FvQJ6skapB5gPmUZhh44hmWUOzFmGjvct0A2-OVTau3-gVjHvdDuE93nh_a8QWGcghBldUYYFyWRTBSYjGL2-Rz0N-GY_IwA1Fv3btHev5SmaOuv3s4Mfh_hcyC2aa9CmEcp1MVXe13QBTqMo3PdM_AaqHB_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Electron-Phonon+Coupling+of+Quantum+Defects+to+a+Semiconfocal+Acoustic+Resonator&rft.jtitle=Nano+letters&rft.au=Chen%2C+Huiyao&rft.au=Opondo%2C+Noah+F&rft.au=Jiang%2C+Boyang&rft.au=MacQuarrie%2C+Evan+R&rft.date=2019-10-09&rft.eissn=1530-6992&rft.volume=19&rft.issue=10&rft.spage=7021&rft_id=info:doi/10.1021%2Facs.nanolett.9b02430&rft_id=info%3Apmid%2F31498998&rft.externalDocID=31498998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon