Engineering Electron–Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator
Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer...
Saved in:
Published in | Nano letters Vol. 19; no. 10; pp. 7021 - 7027 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/acs.nanolett.9b02430 |
Cover
Abstract | Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron–phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/V p, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration. |
---|---|
AbstractList | Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with
×
> 10
(>10
). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/
, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration. Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron–phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/V p, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration. Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/Vp, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/Vp, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration. |
Author | MacQuarrie, Evan R Bhave, Sunil A Fuchs, Gregory D Jiang, Boyang Opondo, Noah F Daveau, Raphaël S Chen, Huiyao |
AuthorAffiliation | Cornell University Kavli Institute at Cornell for Nanoscale Science Purdue University |
AuthorAffiliation_xml | – name: Cornell University – name: Purdue University – name: Kavli Institute at Cornell for Nanoscale Science |
Author_xml | – sequence: 1 givenname: Huiyao surname: Chen fullname: Chen, Huiyao – sequence: 2 givenname: Noah F surname: Opondo fullname: Opondo, Noah F organization: Purdue University – sequence: 3 givenname: Boyang surname: Jiang fullname: Jiang, Boyang organization: Purdue University – sequence: 4 givenname: Evan R surname: MacQuarrie fullname: MacQuarrie, Evan R – sequence: 5 givenname: Raphaël S surname: Daveau fullname: Daveau, Raphaël S – sequence: 6 givenname: Sunil A surname: Bhave fullname: Bhave, Sunil A organization: Purdue University – sequence: 7 givenname: Gregory D orcidid: 0000-0003-4343-8523 surname: Fuchs fullname: Fuchs, Gregory D email: gdf9@cornell.edu organization: Cornell University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31498998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOAyEUQImpsQ_9A2NYupkKA9MBd02tj6SJ760TykClmYEKzMKd_-Af-iVO09aFC11Bcs-Bm9MHHeusAuAYoyFGKT4TMgytsK5SMQ75HKWUoD3QwxlByYjztPNzZ7QL-iEsEUKcZOgAdAmmnHHOeuBlahfGKuWNXcBppWT0zn59fN69uvY_OHHNqlqPnIb3jbCxqeGF0i0WYHRQwEdVG-msdlJUcCxdE6KR8EEFZ0V0_hDsa1EFdbQ9B-D5cvo0uU5mt1c3k_EsERTTmFCd5STNtMjnKcuJVHqOsSC0lFqWbIQY0lRKQkalIEQrmmd8JBnNc5KXJaWcDMDp5t2Vd2-NCrGoTZCqqoRV7U5FmjKGUJZntEVPtmgzr1VZrLyphX8vdk1agG4A6V0IXukfBKNinb5o0xe79MU2faud_9KkiSIaZ6MXpvpPRht5PV26xtu21t_KNzV0oME |
CitedBy_id | crossref_primary_10_1063_5_0013848 crossref_primary_10_1063_5_0189742 crossref_primary_10_1103_PhysRevResearch_2_023035 crossref_primary_10_1002_smsc_202200052 crossref_primary_10_1021_acs_nanolett_2c04095 crossref_primary_10_1063_5_0141405 crossref_primary_10_1063_5_0024001 crossref_primary_10_1103_PhysRevApplied_20_024024 crossref_primary_10_1063_5_0230359 crossref_primary_10_1109_JMEMS_2020_3009516 crossref_primary_10_1103_PhysRevLett_131_043602 crossref_primary_10_1103_PhysRevApplied_13_054068 crossref_primary_10_1038_s41467_019_13822_x crossref_primary_10_1063_5_0023827 crossref_primary_10_3390_mi12060724 crossref_primary_10_1080_17455030_2024_2326137 crossref_primary_10_1021_acs_jpcc_1c08530 crossref_primary_10_1021_acs_nanolett_3c04953 crossref_primary_10_1021_acs_nanolett_1c03703 crossref_primary_10_1021_acs_nanolett_4c03071 crossref_primary_10_1109_TQE_2023_3322342 crossref_primary_10_1103_PhysRevA_101_052342 crossref_primary_10_1002_qute_202300189 crossref_primary_10_1021_acs_jpcb_1c08679 crossref_primary_10_1021_acs_jpclett_1c03269 crossref_primary_10_1103_PhysRevApplied_22_064019 crossref_primary_10_1038_s41467_020_15472_w crossref_primary_10_1063_5_0045232 crossref_primary_10_1103_PhysRevB_110_045419 crossref_primary_10_1103_PhysRevB_106_155415 crossref_primary_10_1021_acs_jpca_1c08677 crossref_primary_10_1103_PhysRevApplied_22_024016 crossref_primary_10_1103_PhysRevB_106_035305 crossref_primary_10_1103_PhysRevLett_125_107702 crossref_primary_10_1088_1367_2630_ac1000 crossref_primary_10_1103_PhysRevLett_124_013902 |
Cites_doi | 10.1103/PhysRevLett.120.167401 10.1038/s41566-018-0232-2 10.1016/j.diamond.2008.01.011 10.1364/OPTICA.2.000233 10.1109/58.19148 10.1016/j.diamond.2009.01.013 10.1103/PhysRevLett.113.020503 10.1103/PhysRevLett.118.093601 10.1063/1.3519847 10.1038/nature08967 10.1103/PhysRevLett.102.057403 10.1103/PhysRevLett.105.140502 10.1364/OPTICA.3.001404 10.1109/FCS.2018.8597489 10.1038/ncomms5429 10.1103/PhysRevLett.116.143602 10.1038/s41567-019-0420-0 10.1038/nmat4144 10.1109/ULTSYM.2000.922679 10.1007/978-3-319-28688-4 10.1103/PhysRevB.97.205444 10.1038/nmat4145 10.1063/1.2951467 10.1103/PhysRev.123.1553 10.1016/j.physrep.2013.02.001 10.1088/2058-9565/ab043e 10.1063/1.4952953 10.1038/nphys1075 10.1103/PhysRev.52.230 10.1103/PhysRevLett.119.223602 10.1038/nphys3411 10.1021/acs.nanolett.6b04544 10.1021/acs.nanolett.9b01316 10.1063/1.3658631 10.1038/nature12016 10.1038/srep02132 10.1063/1.5026798 10.1103/PhysRevB.61.5600 10.1126/science.aao1511 10.1109/ULTSYM.2008.0140 10.1103/PhysRevB.92.224419 10.1126/science.aan0070 10.1103/PhysRevLett.111.227602 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.9b02430 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 7027 |
ExternalDocumentID | 31498998 10_1021_acs_nanolett_9b02430 c51298737 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a414t-4f57325fa7b2873cefb11a34dcfcd86080f4cc336da33fe47596c847737dd4493 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 15:27:07 EDT 2025 Thu Jan 02 22:59:18 EST 2025 Thu Apr 24 22:59:54 EDT 2025 Tue Jul 01 03:14:08 EDT 2025 Thu Aug 27 13:43:30 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Nitrogen-vacancy center diamond MEMS silicon carbide bulk acoustic resonator |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-4f57325fa7b2873cefb11a34dcfcd86080f4cc336da33fe47596c847737dd4493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4343-8523 |
PMID | 31498998 |
PQID | 2288005754 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2288005754 pubmed_primary_31498998 crossref_primary_10_1021_acs_nanolett_9b02430 crossref_citationtrail_10_1021_acs_nanolett_9b02430 acs_journals_10_1021_acs_nanolett_9b02430 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-09 |
PublicationDateYYYYMMDD | 2019-10-09 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 Bhugra H. (ref25/cit25) 2017 ref18/cit18 ref11/cit11 ref16/cit16 ref29/cit29 Siegman A. (ref27/cit27) 1986 Baron T. (ref26/cit26) 2013 ref32/cit32 ref23/cit23 Akhieser A. (ref38/cit38) 1939; 1 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref28/cit28 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 Landau L. (ref37/cit37) 1937 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 Landau L. D. (ref40/cit40) 1986 ref47/cit47 ref1/cit1 ref24/cit24 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1103/PhysRevLett.120.167401 – ident: ref1/cit1 doi: 10.1038/s41566-018-0232-2 – ident: ref30/cit30 doi: 10.1016/j.diamond.2008.01.011 – ident: ref42/cit42 doi: 10.1364/OPTICA.2.000233 – ident: ref21/cit21 doi: 10.1109/58.19148 – ident: ref31/cit31 doi: 10.1016/j.diamond.2009.01.013 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.113.020503 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.118.093601 – volume-title: Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices year: 2013 ident: ref26/cit26 – ident: ref28/cit28 doi: 10.1063/1.3519847 – ident: ref18/cit18 doi: 10.1038/nature08967 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.102.057403 – ident: ref47/cit47 doi: 10.1103/PhysRevLett.105.140502 – ident: ref13/cit13 doi: 10.1364/OPTICA.3.001404 – ident: ref29/cit29 doi: 10.1109/FCS.2018.8597489 – ident: ref12/cit12 doi: 10.1038/ncomms5429 – ident: ref15/cit15 doi: 10.1103/PhysRevLett.116.143602 – ident: ref17/cit17 doi: 10.1038/s41567-019-0420-0 – ident: ref4/cit4 doi: 10.1038/nmat4144 – volume-title: Lasers year: 1986 ident: ref27/cit27 – ident: ref35/cit35 doi: 10.1109/ULTSYM.2000.922679 – volume-title: Piezoelectric MEMS resonators year: 2017 ident: ref25/cit25 doi: 10.1007/978-3-319-28688-4 – ident: ref48/cit48 doi: 10.1103/PhysRevB.97.205444 – ident: ref5/cit5 doi: 10.1038/nmat4145 – ident: ref22/cit22 doi: 10.1063/1.2951467 – ident: ref39/cit39 doi: 10.1103/PhysRev.123.1553 – ident: ref2/cit2 doi: 10.1016/j.physrep.2013.02.001 – ident: ref14/cit14 doi: 10.1088/2058-9565/ab043e – ident: ref32/cit32 doi: 10.1063/1.4952953 – ident: ref45/cit45 doi: 10.1038/nphys1075 – ident: ref36/cit36 doi: 10.1103/PhysRev.52.230 – ident: ref3/cit3 doi: 10.1103/PhysRevLett.119.223602 – start-page: 11 year: 1937 ident: ref37/cit37 publication-title: Phys. Z. Sowjetunion – ident: ref11/cit11 doi: 10.1038/nphys3411 – ident: ref6/cit6 doi: 10.1021/acs.nanolett.6b04544 – ident: ref33/cit33 doi: 10.1021/acs.nanolett.9b01316 – ident: ref34/cit34 doi: 10.1063/1.3658631 – ident: ref8/cit8 doi: 10.1038/nature12016 – ident: ref23/cit23 doi: 10.1038/srep02132 – ident: ref24/cit24 doi: 10.1063/1.5026798 – volume-title: Theory of elasticity year: 1986 ident: ref40/cit40 – ident: ref41/cit41 doi: 10.1103/PhysRevB.61.5600 – ident: ref19/cit19 doi: 10.1126/science.aao1511 – ident: ref20/cit20 doi: 10.1109/ULTSYM.2008.0140 – ident: ref10/cit10 doi: 10.1103/PhysRevB.92.224419 – ident: ref9/cit9 doi: 10.1126/science.aan0070 – volume: 1 start-page: 277 year: 1939 ident: ref38/cit38 publication-title: J. Phys.(Ussr) – ident: ref7/cit7 doi: 10.1103/PhysRevLett.111.227602 |
SSID | ssj0009350 |
Score | 2.5324326 |
Snippet | Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7021 |
Title | Engineering Electron–Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator |
URI | http://dx.doi.org/10.1021/acs.nanolett.9b02430 https://www.ncbi.nlm.nih.gov/pubmed/31498998 https://www.proquest.com/docview/2288005754 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEG6MXvTg-7G-UhMvHliFlkKPZt2NMfEVNfEkKdNWExWMCxdP_gf_ob_EKQu6aox6hNBCp9PON8z0G0I2hdDG0WR5yofI41EqvFho8OIwRmuud5Q27n_H4ZHYv-AHl-Hlh6P4NYIf-NsK-u1MZTkOo2jL1DHooYs-Fgg0NQ4Kdc4-SHZZVZEVFzG6RDLmzVG5H3pxBgn6nw3SDyizsja9KXLcnNkZJJnctssibcPTdwrHPw5kmkzWwJPuDjRlhoyYbJZMDNERzpGroSvarevjvD6_nNzkWZ7RTl6647vXNLf0tMQZKe_pnqnSQWiRU0XPXKJ9jhoL7kWQV4XCqAsQZM61nycXve55Z9-r6y94ivu88LgNIxaEVkUp-lUMjE19XzGuwYKOBWJNywEYE1oxZo1jDhSA1i5ikdacS7ZARvHzzBKhWimlEUvIQAPuEiIWaRpLK2UEXEBoW2QLxZPU66efVKHxwE_czUZmSS2zFmHNhCVQE5m7ehp3v7Ty3ls9DIg8fnl-o9GFBFecC6OozKDkkiDAPc_BXN4iiwMlee-RocPpPNjlf4xnhYwjCpNVhqBcJaPFY2nWEOkU6Xql3m8QDv0F |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6tyoFyKNACXUrBSL30kKWJHSc-VktXC32Iqi3qicjxAyQgQWxy4cR_4B_2lzDjTbYPqap6jBU7nvHYM5MZfwOwJaV1BJMV6dhkkchKGeXSmihPc9TmdkdbR_87Do_k9Ex8PE_PB5D2d2FwEjMcaRaC-JfoAvE7aqt0VSM1zUiVBKSHnvqDVApJFRt2xyeXWLs8FGbFvYyekcpFf2PullFIL5nZdb10i7EZlM7kMXxeTDfkmnwftU05Mn9uIDnem54nsNKZoWx3LjdPYeCqVXh0BZxwDb5ceWJ7XbWci7__Pn2rq7pi47qly7xfWe3ZcYvr0_5k711IDmFNzTQ7obT7GuXX0IdMHcqGMQoXVOToP4Ozyd7peBp11RgiLWLRRMKnGU9Sr7MSvSxunC_jWHNhjTc2l2h5emEM59Jqzr0jHEFpUPdlPLNWCMWfwxJOz60Ds1pri5aFSqzBM0Pmsixz5ZXKjJAm9UPYRvYU3W6aFSFQnsQFNfY8KzqeDYH361aYDtacqmv8uKNXtOj1aw7rccf7b3uRKHD_UVBFVw45VyQJnoBk9IohvJjLymJEju4n-bMv70HPG3g4PT08KA4-HO1vwDLaZyrkDqpXsNT8bt0m2kBN-TpI_H9y9wV2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqkBA98ChQlgI1EpcesiWx48RHtA_RQhEIkBCHRo4fRQISxCYXTvyH_kN-CTPe7LJUQogeY8WOPZ7xzGTG3xCyLYSxCJMVqFAnAU9yEaTC6CCNU9DmZkcZi_87fh2KvTP-8zw-nyj1BZMYwEgDH8RHqb41rkEYCL9je6GKElZUtWWOYHrgrU-DTRJi1Ybdzskz3i7zxVlBnsE7kikf3Zp7ZRTUTXrwUje9YnB6xdOfJxfjKft8k6t2XeVtff8PmuN_rWmBzDXmKN0d8s8i-WCLT-TjBEjhEvk98UR7TdWcx4e_R5dlURa0U9Z4qfcPLR09rmGf6hvatT5JhFYlVfQE0-9L4GONH9KlLx9GMWxQoMO_TM76vdPOXtBUZQgUD3kVcBcnLIqdSnLwtpi2Lg9DxbjRTptUgAXquNaMCaMYcxbxBIUGHZiwxBjOJVshUzA9u0qoUUoZsDBkZDScHSIVeZ5KJ2WiudCxa5FvQJ6skapB5gPmUZhh44hmWUOzFmGjvct0A2-OVTau3-gVjHvdDuE93nh_a8QWGcghBldUYYFyWRTBSYjGL2-Rz0N-GY_IwA1Fv3btHev5SmaOuv3s4Mfh_hcyC2aa9CmEcp1MVXe13QBTqMo3PdM_AaqHB_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Electron-Phonon+Coupling+of+Quantum+Defects+to+a+Semiconfocal+Acoustic+Resonator&rft.jtitle=Nano+letters&rft.au=Chen%2C+Huiyao&rft.au=Opondo%2C+Noah+F&rft.au=Jiang%2C+Boyang&rft.au=MacQuarrie%2C+Evan+R&rft.date=2019-10-09&rft.eissn=1530-6992&rft.volume=19&rft.issue=10&rft.spage=7021&rft_id=info:doi/10.1021%2Facs.nanolett.9b02430&rft_id=info%3Apmid%2F31498998&rft.externalDocID=31498998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |