Note on fractal interpolation function with variable parameters
Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. The...
Saved in:
| Published in | AIMS mathematics Vol. 9; no. 2; pp. 2584 - 2601 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2024127 |
Cover
| Abstract | Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. Then, we may define the generalized affine FIF $ f $ interpolating a given data set $ \big\{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \big\} $, where $ I = [x_0, x_N] $. In this paper, we discuss the smoothness of the FIF $ f $. We prove, in particular, that $ f $ is $ \theta $-hölder function whenever $ \psi_n $ are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case. |
|---|---|
| AbstractList | Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. Then, we may define the generalized affine FIF $ f $ interpolating a given data set $ \big\{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \big\} $, where $ I = [x_0, x_N] $. In this paper, we discuss the smoothness of the FIF $ f $. We prove, in particular, that $ f $ is $ \theta $-hölder function whenever $ \psi_n $ are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case. |
| Author | Attia, Najmeddine Moulahi, Taoufik Amami, Rim Saidi, Neji |
| Author_xml | – sequence: 1 givenname: Najmeddine surname: Attia fullname: Attia, Najmeddine organization: Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia – sequence: 2 givenname: Taoufik surname: Moulahi fullname: Moulahi, Taoufik organization: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Box 173 Al-Kharj 11942, Saudi Arabia – sequence: 3 givenname: Rim surname: Amami fullname: Amami, Rim organization: Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia – sequence: 4 givenname: Neji surname: Saidi fullname: Saidi, Neji organization: Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia |
| BookMark | eNp9kFtLAzEQhYNUsNa--QP2B7g1t-5mn0SKl0LRF30Os7nYlHSzZFNL_73bCyKCPs1hOOfM8F2iQRMag9A1wRNWMX67hrScUEw5oeUZGlJesryohBj80Bdo3HUrjDEllNOSD9HdS0gmC01mI6gEPnNNMrENHpLbbzeNOoitS8vsE6KD2pushQhr0xu7K3RuwXdmfJoj9P748DZ7zhevT_PZ_SKH_p-UKw0MqOCimGJNVQ1AKisELyoLpCCaVqqylE2xKjTmhBhBgJRmKkpKWG0sG6H5sVcHWMk2ujXEnQzg5GER4oeEmJzyRnKriDK8wqQQ3ChcC82MxhYMNUzXtO_Kj12bpoXdFrz_LiRY7mHKPUx5gtn76dGvYui6aKxULh34pAjO_xW6-RX698YXnruJzg |
| CitedBy_id | crossref_primary_10_3934_math_2024143 crossref_primary_10_3934_math_2024817 |
| Cites_doi | 10.1016/j.jat.2013.07.008 10.1007/s10998-020-00351-0 10.1007/BF01893434 10.3390/fractalfract6100602 10.1137/040611070 10.1007/s00222-021-01060-2 10.1007/BF02662880 10.1142/S0218348X17500633 10.1007/s10440-018-0182-1 10.1109/78.143444 10.1007/s11228-014-0291-6 10.1090/S0002-9947-1993-1076614-6 10.3934/era.2023238 10.4171/JFG/136 10.3390/axioms9040119 10.1017/S0004972712000500 10.1155/2010/584215 10.1016/j.chaos.2019.01.010 10.1016/j.na.2007.04.017 10.3934/era.2023347 10.1016/j.na.2008.01.013 10.1007/BFb0089156 10.1007/s13226-020-0412-x 10.1512/iumj.1981.30.30055 10.4171/ZAA/1248 10.1016/j.chaos.2017.07.002 10.1016/j.aml.2007.03.026 10.1155/JIA/2006/78734 10.4064/ba52-1-1 10.7153/mia-2021-24-18 10.1016/B978-0-08-092458-8.50003-4 10.4153/CMB-1973-036-0 10.1016/j.jmaa.2014.05.019 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2024127 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 2601 |
| ExternalDocumentID | oai_doaj_org_article_4fc1ce4901684ec0b8d3ed0fae2e3db2 10.3934/math.2024127 10_3934_math_2024127 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a412t-cda3a2848650d2cbaa19f88469fa161d29c9f2350c6d0411e81a17e587213bef3 |
| IEDL.DBID | DOA |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:22 EDT 2025 Mon Sep 15 10:14:02 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Tue Jul 01 03:57:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-cda3a2848650d2cbaa19f88469fa161d29c9f2350c6d0411e81a17e587213bef3 |
| OpenAccessLink | https://doaj.org/article/4fc1ce4901684ec0b8d3ed0fae2e3db2 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4fc1ce4901684ec0b8d3ed0fae2e3db2 unpaywall_primary_10_3934_math_2024127 crossref_citationtrail_10_3934_math_2024127 crossref_primary_10_3934_math_2024127 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2024127-9 key-10.3934/math.2024127-8 key-10.3934/math.2024127-7 key-10.3934/math.2024127-6 key-10.3934/math.2024127-25 key-10.3934/math.2024127-24 key-10.3934/math.2024127-27 key-10.3934/math.2024127-26 key-10.3934/math.2024127-29 key-10.3934/math.2024127-28 key-10.3934/math.2024127-40 key-10.3934/math.2024127-21 key-10.3934/math.2024127-20 key-10.3934/math.2024127-23 key-10.3934/math.2024127-22 key-10.3934/math.2024127-14 key-10.3934/math.2024127-36 key-10.3934/math.2024127-13 key-10.3934/math.2024127-35 key-10.3934/math.2024127-16 key-10.3934/math.2024127-38 key-10.3934/math.2024127-15 key-10.3934/math.2024127-37 key-10.3934/math.2024127-18 key-10.3934/math.2024127-17 key-10.3934/math.2024127-39 key-10.3934/math.2024127-19 key-10.3934/math.2024127-1 key-10.3934/math.2024127-30 key-10.3934/math.2024127-5 key-10.3934/math.2024127-10 key-10.3934/math.2024127-32 key-10.3934/math.2024127-4 key-10.3934/math.2024127-31 key-10.3934/math.2024127-3 key-10.3934/math.2024127-12 key-10.3934/math.2024127-34 key-10.3934/math.2024127-2 key-10.3934/math.2024127-11 key-10.3934/math.2024127-33 |
| References_xml | – ident: key-10.3934/math.2024127-26 – ident: key-10.3934/math.2024127-30 doi: 10.1016/j.jat.2013.07.008 – ident: key-10.3934/math.2024127-24 doi: 10.1007/s10998-020-00351-0 – ident: key-10.3934/math.2024127-1 doi: 10.1007/BF01893434 – ident: key-10.3934/math.2024127-20 doi: 10.3390/fractalfract6100602 – ident: key-10.3934/math.2024127-8 doi: 10.1137/040611070 – ident: key-10.3934/math.2024127-35 doi: 10.1007/s00222-021-01060-2 – ident: key-10.3934/math.2024127-28 doi: 10.1007/BF02662880 – ident: key-10.3934/math.2024127-39 – ident: key-10.3934/math.2024127-40 – ident: key-10.3934/math.2024127-10 doi: 10.1142/S0218348X17500633 – ident: key-10.3934/math.2024127-11 doi: 10.1007/s10440-018-0182-1 – ident: key-10.3934/math.2024127-32 doi: 10.1109/78.143444 – ident: key-10.3934/math.2024127-5 doi: 10.1007/s11228-014-0291-6 – ident: key-10.3934/math.2024127-36 doi: 10.1090/S0002-9947-1993-1076614-6 – ident: key-10.3934/math.2024127-23 doi: 10.3934/era.2023238 – ident: key-10.3934/math.2024127-37 doi: 10.4171/JFG/136 – ident: key-10.3934/math.2024127-33 doi: 10.3390/axioms9040119 – ident: key-10.3934/math.2024127-18 doi: 10.1017/S0004972712000500 – ident: key-10.3934/math.2024127-16 doi: 10.1155/2010/584215 – ident: key-10.3934/math.2024127-21 doi: 10.1016/j.chaos.2019.01.010 – ident: key-10.3934/math.2024127-27 doi: 10.1016/j.na.2007.04.017 – ident: key-10.3934/math.2024127-22 doi: 10.3934/era.2023347 – ident: key-10.3934/math.2024127-6 doi: 10.1016/j.na.2008.01.013 – ident: key-10.3934/math.2024127-19 doi: 10.1007/BFb0089156 – ident: key-10.3934/math.2024127-9 doi: 10.1007/s13226-020-0412-x – ident: key-10.3934/math.2024127-13 doi: 10.1512/iumj.1981.30.30055 – ident: key-10.3934/math.2024127-31 – ident: key-10.3934/math.2024127-3 – ident: key-10.3934/math.2024127-38 doi: 10.4171/ZAA/1248 – ident: key-10.3934/math.2024127-29 doi: 10.1016/j.chaos.2017.07.002 – ident: key-10.3934/math.2024127-34 doi: 10.1016/j.aml.2007.03.026 – ident: key-10.3934/math.2024127-15 – ident: key-10.3934/math.2024127-7 doi: 10.1155/JIA/2006/78734 – ident: key-10.3934/math.2024127-14 doi: 10.4064/ba52-1-1 – ident: key-10.3934/math.2024127-17 – ident: key-10.3934/math.2024127-25 doi: 10.7153/mia-2021-24-18 – ident: key-10.3934/math.2024127-4 doi: 10.1016/B978-0-08-092458-8.50003-4 – ident: key-10.3934/math.2024127-2 doi: 10.4153/CMB-1973-036-0 – ident: key-10.3934/math.2024127-12 doi: 10.1016/j.jmaa.2014.05.019 |
| SSID | ssj0002124274 |
| Score | 2.2592897 |
| Snippet | Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 2584 |
| SubjectTerms | generalized affine fractal interpolation function hölder and lipschitz functions iterated function system |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60PagH32J9kYN6kdQku0l2T1KlUgSLBwt6CvsEsaZiU0V_vbNNWnzg47aE2ewykzDf7sx8A7CvUkYkF8ZnVnGfpoT4MtDUN6kKXRwq0tYVCl92k06PXtzENzOwP6mF-RC_J5zQY4RtLmSAfiZKZ6GexIi4a1Dvda9at65vHL7dTzhjZU77tymfvM2YlH8B5kb5o3h9Ef3-B09yvgTtyR7KBJL75qiQTfX2hZ7xr00uw2IFJb1WafsVmDH5KixcTnlYh2tw0h0UxhvknnXFUCh8V7bVKhPgPOfUxgN3G-s947HZFVJ5jg78waXJDNehd96-Puv4VcsEX-Diha-0IAI9DkPgpSMlhQi5ZYgxuBWI7XTEFbcRiQOV6ICGoWGhCFMTMzwIEmks2YBaPsjNJngp1yThMlCBTqlmVAbM6pjJFCciKkwacDRRbaYqPnHX1qKf4bnCqSVzaskqtTTgYCr9WPJo_CB36qw0lXHs1-MHqO-s-pkyalWoDEUokzBqVCCZJkYHVpjIEC2jBhxObfzralv_FdyGeTcq7152oFY8jcwuopFC7lUf4zsTaNyj priority: 102 providerName: Unpaywall |
| Title | Note on fractal interpolation function with variable parameters |
| URI | https://doi.org/10.3934/math.2024127 https://doaj.org/article/4fc1ce4901684ec0b8d3ed0fae2e3db2 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Mathematics Source customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: AMVHM dateStart: 20220701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHrQH8Yn1RQ7qRUI32U2ye5IqliK0eLBST2GfINS02Fbx3zuTxNKLevGWhEl2mQk73-zOfEPIuckE01K5UHgjQ54xFmpqeegyE-E5VGw9Fgr3B2lvyO9HyWil1RfmhFX0wJXi2tybyDgObisV3BmqhWXOUq9c7JjV5epLhVwJpnANhgWZQ7xVZbozyXgb8B-ePYDDwgYyKz6opOpvko1FMVWfH2o8XvEv3W2yVQPDoFNNaIesuWKXNPtLVtXZHrkeTOYumBSBx9ImEH6pmmRV6WwBuqjyAvdWg3cIgrEsKkBy71dMepntk2H37vG2F9YNEEIF05yHxiqmwH8IgFE2NlqpSHoBiEF6BUjNxtJIH7OEmtRSHkVORCrKXCIgrGPaeXZAGsWkcIckyKRlqdTUUJtxK7imwttE6AxeBIyXtsjVt0pyU7ODY5OKcQ5RAiowRwXmtQJb5GIpPa1YMX6Qu0HtLmWQy7p8ABbOawvnf1m4RS6Xtvl1tKP_GO2YbOLnql2WE9KYvy3cKeCOuT4j653-U69_Vv5qcDccPHSevwDdn9tL |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60PagH32J9kYN6kdQku0l2T1KlUgSLBwt6CvsEsaZiU0V_vbNNWnzg47aE2ewykzDf7sx8A7CvUkYkF8ZnVnGfpoT4MtDUN6kKXRwq0tYVCl92k06PXtzENzOwP6mF-RC_J5zQY4RtLmSAfiZKZ6GexIi4a1Dvda9at65vHL7dTzhjZU77tymfvM2YlH8B5kb5o3h9Ef3-B09yvgTtyR7KBJL75qiQTfX2hZ7xr00uw2IFJb1WafsVmDH5KixcTnlYh2tw0h0UxhvknnXFUCh8V7bVKhPgPOfUxgN3G-s947HZFVJ5jg78waXJDNehd96-Puv4VcsEX-Diha-0IAI9DkPgpSMlhQi5ZYgxuBWI7XTEFbcRiQOV6ICGoWGhCFMTMzwIEmks2YBaPsjNJngp1yThMlCBTqlmVAbM6pjJFCciKkwacDRRbaYqPnHX1qKf4bnCqSVzaskqtTTgYCr9WPJo_CB36qw0lXHs1-MHqO-s-pkyalWoDEUokzBqVCCZJkYHVpjIEC2jBhxObfzralv_FdyGeTcq7152oFY8jcwuopFC7lUf4zsTaNyj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Note+on+fractal+interpolation+function+with+variable+parameters&rft.jtitle=AIMS+mathematics&rft.au=Najmeddine+Attia&rft.au=Taoufik+Moulahi&rft.au=Rim+Amami&rft.au=Neji+Saidi&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=2&rft.spage=2584&rft.epage=2601&rft_id=info:doi/10.3934%2Fmath.2024127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4fc1ce4901684ec0b8d3ed0fae2e3db2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |