Note on fractal interpolation function with variable parameters

Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. The...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 2; pp. 2584 - 2601
Main Authors Attia, Najmeddine, Moulahi, Taoufik, Amami, Rim, Saidi, Neji
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2024127

Cover

Abstract Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. Then, we may define the generalized affine FIF $ f $ interpolating a given data set $ \big\{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \big\} $, where $ I = [x_0, x_N] $. In this paper, we discuss the smoothness of the FIF $ f $. We prove, in particular, that $ f $ is $ \theta $-hölder function whenever $ \psi_n $ are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case.
AbstractList Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. Then, we may define the generalized affine FIF $ f $ interpolating a given data set $ \big\{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \big\} $, where $ I = [x_0, x_N] $. In this paper, we discuss the smoothness of the FIF $ f $. We prove, in particular, that $ f $ is $ \theta $-hölder function whenever $ \psi_n $ are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case.
Author Attia, Najmeddine
Moulahi, Taoufik
Amami, Rim
Saidi, Neji
Author_xml – sequence: 1
  givenname: Najmeddine
  surname: Attia
  fullname: Attia, Najmeddine
  organization: Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
– sequence: 2
  givenname: Taoufik
  surname: Moulahi
  fullname: Moulahi, Taoufik
  organization: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Box 173 Al-Kharj 11942, Saudi Arabia
– sequence: 3
  givenname: Rim
  surname: Amami
  fullname: Amami, Rim
  organization: Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
– sequence: 4
  givenname: Neji
  surname: Saidi
  fullname: Saidi, Neji
  organization: Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
BookMark eNp9kFtLAzEQhYNUsNa--QP2B7g1t-5mn0SKl0LRF30Os7nYlHSzZFNL_73bCyKCPs1hOOfM8F2iQRMag9A1wRNWMX67hrScUEw5oeUZGlJesryohBj80Bdo3HUrjDEllNOSD9HdS0gmC01mI6gEPnNNMrENHpLbbzeNOoitS8vsE6KD2pushQhr0xu7K3RuwXdmfJoj9P748DZ7zhevT_PZ_SKH_p-UKw0MqOCimGJNVQ1AKisELyoLpCCaVqqylE2xKjTmhBhBgJRmKkpKWG0sG6H5sVcHWMk2ujXEnQzg5GER4oeEmJzyRnKriDK8wqQQ3ChcC82MxhYMNUzXtO_Kj12bpoXdFrz_LiRY7mHKPUx5gtn76dGvYui6aKxULh34pAjO_xW6-RX698YXnruJzg
CitedBy_id crossref_primary_10_3934_math_2024143
crossref_primary_10_3934_math_2024817
Cites_doi 10.1016/j.jat.2013.07.008
10.1007/s10998-020-00351-0
10.1007/BF01893434
10.3390/fractalfract6100602
10.1137/040611070
10.1007/s00222-021-01060-2
10.1007/BF02662880
10.1142/S0218348X17500633
10.1007/s10440-018-0182-1
10.1109/78.143444
10.1007/s11228-014-0291-6
10.1090/S0002-9947-1993-1076614-6
10.3934/era.2023238
10.4171/JFG/136
10.3390/axioms9040119
10.1017/S0004972712000500
10.1155/2010/584215
10.1016/j.chaos.2019.01.010
10.1016/j.na.2007.04.017
10.3934/era.2023347
10.1016/j.na.2008.01.013
10.1007/BFb0089156
10.1007/s13226-020-0412-x
10.1512/iumj.1981.30.30055
10.4171/ZAA/1248
10.1016/j.chaos.2017.07.002
10.1016/j.aml.2007.03.026
10.1155/JIA/2006/78734
10.4064/ba52-1-1
10.7153/mia-2021-24-18
10.1016/B978-0-08-092458-8.50003-4
10.4153/CMB-1973-036-0
10.1016/j.jmaa.2014.05.019
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2024127
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 2601
ExternalDocumentID oai_doaj_org_article_4fc1ce4901684ec0b8d3ed0fae2e3db2
10.3934/math.2024127
10_3934_math_2024127
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a412t-cda3a2848650d2cbaa19f88469fa161d29c9f2350c6d0411e81a17e587213bef3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:22 EDT 2025
Mon Sep 15 10:14:02 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Tue Jul 01 03:57:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-cda3a2848650d2cbaa19f88469fa161d29c9f2350c6d0411e81a17e587213bef3
OpenAccessLink https://doaj.org/article/4fc1ce4901684ec0b8d3ed0fae2e3db2
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_4fc1ce4901684ec0b8d3ed0fae2e3db2
unpaywall_primary_10_3934_math_2024127
crossref_citationtrail_10_3934_math_2024127
crossref_primary_10_3934_math_2024127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024127-9
key-10.3934/math.2024127-8
key-10.3934/math.2024127-7
key-10.3934/math.2024127-6
key-10.3934/math.2024127-25
key-10.3934/math.2024127-24
key-10.3934/math.2024127-27
key-10.3934/math.2024127-26
key-10.3934/math.2024127-29
key-10.3934/math.2024127-28
key-10.3934/math.2024127-40
key-10.3934/math.2024127-21
key-10.3934/math.2024127-20
key-10.3934/math.2024127-23
key-10.3934/math.2024127-22
key-10.3934/math.2024127-14
key-10.3934/math.2024127-36
key-10.3934/math.2024127-13
key-10.3934/math.2024127-35
key-10.3934/math.2024127-16
key-10.3934/math.2024127-38
key-10.3934/math.2024127-15
key-10.3934/math.2024127-37
key-10.3934/math.2024127-18
key-10.3934/math.2024127-17
key-10.3934/math.2024127-39
key-10.3934/math.2024127-19
key-10.3934/math.2024127-1
key-10.3934/math.2024127-30
key-10.3934/math.2024127-5
key-10.3934/math.2024127-10
key-10.3934/math.2024127-32
key-10.3934/math.2024127-4
key-10.3934/math.2024127-31
key-10.3934/math.2024127-3
key-10.3934/math.2024127-12
key-10.3934/math.2024127-34
key-10.3934/math.2024127-2
key-10.3934/math.2024127-11
key-10.3934/math.2024127-33
References_xml – ident: key-10.3934/math.2024127-26
– ident: key-10.3934/math.2024127-30
  doi: 10.1016/j.jat.2013.07.008
– ident: key-10.3934/math.2024127-24
  doi: 10.1007/s10998-020-00351-0
– ident: key-10.3934/math.2024127-1
  doi: 10.1007/BF01893434
– ident: key-10.3934/math.2024127-20
  doi: 10.3390/fractalfract6100602
– ident: key-10.3934/math.2024127-8
  doi: 10.1137/040611070
– ident: key-10.3934/math.2024127-35
  doi: 10.1007/s00222-021-01060-2
– ident: key-10.3934/math.2024127-28
  doi: 10.1007/BF02662880
– ident: key-10.3934/math.2024127-39
– ident: key-10.3934/math.2024127-40
– ident: key-10.3934/math.2024127-10
  doi: 10.1142/S0218348X17500633
– ident: key-10.3934/math.2024127-11
  doi: 10.1007/s10440-018-0182-1
– ident: key-10.3934/math.2024127-32
  doi: 10.1109/78.143444
– ident: key-10.3934/math.2024127-5
  doi: 10.1007/s11228-014-0291-6
– ident: key-10.3934/math.2024127-36
  doi: 10.1090/S0002-9947-1993-1076614-6
– ident: key-10.3934/math.2024127-23
  doi: 10.3934/era.2023238
– ident: key-10.3934/math.2024127-37
  doi: 10.4171/JFG/136
– ident: key-10.3934/math.2024127-33
  doi: 10.3390/axioms9040119
– ident: key-10.3934/math.2024127-18
  doi: 10.1017/S0004972712000500
– ident: key-10.3934/math.2024127-16
  doi: 10.1155/2010/584215
– ident: key-10.3934/math.2024127-21
  doi: 10.1016/j.chaos.2019.01.010
– ident: key-10.3934/math.2024127-27
  doi: 10.1016/j.na.2007.04.017
– ident: key-10.3934/math.2024127-22
  doi: 10.3934/era.2023347
– ident: key-10.3934/math.2024127-6
  doi: 10.1016/j.na.2008.01.013
– ident: key-10.3934/math.2024127-19
  doi: 10.1007/BFb0089156
– ident: key-10.3934/math.2024127-9
  doi: 10.1007/s13226-020-0412-x
– ident: key-10.3934/math.2024127-13
  doi: 10.1512/iumj.1981.30.30055
– ident: key-10.3934/math.2024127-31
– ident: key-10.3934/math.2024127-3
– ident: key-10.3934/math.2024127-38
  doi: 10.4171/ZAA/1248
– ident: key-10.3934/math.2024127-29
  doi: 10.1016/j.chaos.2017.07.002
– ident: key-10.3934/math.2024127-34
  doi: 10.1016/j.aml.2007.03.026
– ident: key-10.3934/math.2024127-15
– ident: key-10.3934/math.2024127-7
  doi: 10.1155/JIA/2006/78734
– ident: key-10.3934/math.2024127-14
  doi: 10.4064/ba52-1-1
– ident: key-10.3934/math.2024127-17
– ident: key-10.3934/math.2024127-25
  doi: 10.7153/mia-2021-24-18
– ident: key-10.3934/math.2024127-4
  doi: 10.1016/B978-0-08-092458-8.50003-4
– ident: key-10.3934/math.2024127-2
  doi: 10.4153/CMB-1973-036-0
– ident: key-10.3934/math.2024127-12
  doi: 10.1016/j.jmaa.2014.05.019
SSID ssj0002124274
Score 2.2592897
Snippet Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 2584
SubjectTerms generalized affine fractal interpolation function
hölder and lipschitz functions
iterated function system
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60PagH32J9kYN6kdQku0l2T1KlUgSLBwt6CvsEsaZiU0V_vbNNWnzg47aE2ewykzDf7sx8A7CvUkYkF8ZnVnGfpoT4MtDUN6kKXRwq0tYVCl92k06PXtzENzOwP6mF-RC_J5zQY4RtLmSAfiZKZ6GexIi4a1Dvda9at65vHL7dTzhjZU77tymfvM2YlH8B5kb5o3h9Ef3-B09yvgTtyR7KBJL75qiQTfX2hZ7xr00uw2IFJb1WafsVmDH5KixcTnlYh2tw0h0UxhvknnXFUCh8V7bVKhPgPOfUxgN3G-s947HZFVJ5jg78waXJDNehd96-Puv4VcsEX-Diha-0IAI9DkPgpSMlhQi5ZYgxuBWI7XTEFbcRiQOV6ICGoWGhCFMTMzwIEmks2YBaPsjNJngp1yThMlCBTqlmVAbM6pjJFCciKkwacDRRbaYqPnHX1qKf4bnCqSVzaskqtTTgYCr9WPJo_CB36qw0lXHs1-MHqO-s-pkyalWoDEUokzBqVCCZJkYHVpjIEC2jBhxObfzralv_FdyGeTcq7152oFY8jcwuopFC7lUf4zsTaNyj
  priority: 102
  providerName: Unpaywall
Title Note on fractal interpolation function with variable parameters
URI https://doi.org/10.3934/math.2024127
https://doaj.org/article/4fc1ce4901684ec0b8d3ed0fae2e3db2
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Mathematics Source
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: AMVHM
  dateStart: 20220701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHrQH8Yn1RQ7qRUI32U2ye5IqliK0eLBST2GfINS02Fbx3zuTxNKLevGWhEl2mQk73-zOfEPIuckE01K5UHgjQ54xFmpqeegyE-E5VGw9Fgr3B2lvyO9HyWil1RfmhFX0wJXi2tybyDgObisV3BmqhWXOUq9c7JjV5epLhVwJpnANhgWZQ7xVZbozyXgb8B-ePYDDwgYyKz6opOpvko1FMVWfH2o8XvEv3W2yVQPDoFNNaIesuWKXNPtLVtXZHrkeTOYumBSBx9ImEH6pmmRV6WwBuqjyAvdWg3cIgrEsKkBy71dMepntk2H37vG2F9YNEEIF05yHxiqmwH8IgFE2NlqpSHoBiEF6BUjNxtJIH7OEmtRSHkVORCrKXCIgrGPaeXZAGsWkcIckyKRlqdTUUJtxK7imwttE6AxeBIyXtsjVt0pyU7ODY5OKcQ5RAiowRwXmtQJb5GIpPa1YMX6Qu0HtLmWQy7p8ABbOawvnf1m4RS6Xtvl1tKP_GO2YbOLnql2WE9KYvy3cKeCOuT4j653-U69_Vv5qcDccPHSevwDdn9tL
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60PagH32J9kYN6kdQku0l2T1KlUgSLBwt6CvsEsaZiU0V_vbNNWnzg47aE2ewykzDf7sx8A7CvUkYkF8ZnVnGfpoT4MtDUN6kKXRwq0tYVCl92k06PXtzENzOwP6mF-RC_J5zQY4RtLmSAfiZKZ6GexIi4a1Dvda9at65vHL7dTzhjZU77tymfvM2YlH8B5kb5o3h9Ef3-B09yvgTtyR7KBJL75qiQTfX2hZ7xr00uw2IFJb1WafsVmDH5KixcTnlYh2tw0h0UxhvknnXFUCh8V7bVKhPgPOfUxgN3G-s947HZFVJ5jg78waXJDNehd96-Puv4VcsEX-Diha-0IAI9DkPgpSMlhQi5ZYgxuBWI7XTEFbcRiQOV6ICGoWGhCFMTMzwIEmks2YBaPsjNJngp1yThMlCBTqlmVAbM6pjJFCciKkwacDRRbaYqPnHX1qKf4bnCqSVzaskqtTTgYCr9WPJo_CB36qw0lXHs1-MHqO-s-pkyalWoDEUokzBqVCCZJkYHVpjIEC2jBhxObfzralv_FdyGeTcq7152oFY8jcwuopFC7lUf4zsTaNyj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Note+on+fractal+interpolation+function+with+variable+parameters&rft.jtitle=AIMS+mathematics&rft.au=Najmeddine+Attia&rft.au=Taoufik+Moulahi&rft.au=Rim+Amami&rft.au=Neji+Saidi&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=2&rft.spage=2584&rft.epage=2601&rft_id=info:doi/10.3934%2Fmath.2024127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4fc1ce4901684ec0b8d3ed0fae2e3db2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon