Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity

A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explore...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 8; pp. 20221 - 20244
Main Authors Murali, Arunachalam, Muthunagai, Krishnan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2024985

Cover

Abstract A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on a generalized rational type complex polynomial of the form $ S_{c}(z) = a z^{n}+\frac{b}{z^{m}}+c $, where $ a, b, c \in \mathbb{C} $ with $ |a| > 1 $ and $ n, m \in \mathbb{N} $ with $ n > 1 $. By applying viscosity approximation-type iteration processes extended with $ s $-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the change in the structure of the generated sets with respect to the variations in parameters.
AbstractList A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on a generalized rational type complex polynomial of the form $ S_{c}(z) = a z^{n}+\frac{b}{z^{m}}+c $, where $ a, b, c \in \mathbb{C} $ with $ |a| > 1 $ and $ n, m \in \mathbb{N} $ with $ n > 1 $. By applying viscosity approximation-type iteration processes extended with $ s $-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the change in the structure of the generated sets with respect to the variations in parameters.
Author Muthunagai, Krishnan
Murali, Arunachalam
Author_xml – sequence: 1
  givenname: Arunachalam
  surname: Murali
  fullname: Murali, Arunachalam
– sequence: 2
  givenname: Krishnan
  surname: Muthunagai
  fullname: Muthunagai, Krishnan
BookMark eNp9kc1O3DAUha2KSqVTdjyAFywb6r8kzrJCLaUCsYG1deNczxhl4sgxwwyv0xetSVBVIbUbX-vqnO9YPh_J0RAGJOSUs3PZSPVlC2lzLphQjS7fkWOhallUjdZHf90_kJNpemCMCS6UqNUx-XWJA0ZIPgw0OPrzsfdAYejoTT6wb2NI1EWwCfqJuhAp0PXs6P0zdnRxQk_TYUS6hXH0w5ruMmPnJxsmnw40L2PY--0SMgt9mjN32YJpEzqK-4Q5r6NPPm3oGZ3oWWHDsMN9Jnwi712Ox5PXuSL337_dXfworm8vry6-XheguEiFajrFUNSN1FJasJ2stNS2AidbXlllVVvWHTpXAm8570pWt7pBjiW01pa1XJGrhdsFeDBjzE-OBxPAm3kR4tpATN72aCx3ttYCtWaV4kwBgtOubSXaxjZ5rkixsB6HEQ5P0Pd_gJyZl8LMS2HmtbCsF4vexjBNEZ2xPs0_liL4_l-mz29M_834DT3jr-U
CitedBy_id crossref_primary_10_1016_j_rico_2025_100516
crossref_primary_10_1371_journal_pone_0315271
crossref_primary_10_1016_j_chaos_2024_115516
crossref_primary_10_3934_math_2025071
Cites_doi 10.1090/S0002-9904-1967-11864-0
10.1016/j.matcom.2023.12.040
10.3390/fractalfract6070379
10.1016/S0097-8493(99)00142-9
10.3390/sym12010086
10.1007/s11785-022-01312-w
10.1201/9780429503481
10.1007/s11075-023-01644-4
10.1090/S0002-9939-1953-0054846-3
10.1007/b97624
10.1016/j.camwa.2009.09.003
10.1109/ACCESS.2020.3018090
10.3390/sym11050655
10.1016/j.matcom.2023.02.012
10.3390/sym15020478
10.1016/j.chaos.2022.112540
10.3390/fractalfract6020089
10.3390/fractalfract6070397
10.3390/fractalfract5030073
10.1006/jmaa.1999.6615
10.1016/j.matcom.2022.01.003
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2024985
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 20244
ExternalDocumentID oai_doaj_org_article_c1fc782e88064104aeaf8fbb3ec9c9bb
10.3934/math.2024985
10_3934_math_2024985
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a412t-49d40e2793833cacd36838c6af3b16c4c4b57deff5a1b11d507b89e1e5abcc573
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:24 EDT 2025
Mon Sep 15 08:24:56 EDT 2025
Tue Jul 01 03:57:15 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-49d40e2793833cacd36838c6af3b16c4c4b57deff5a1b11d507b89e1e5abcc573
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2024985
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_c1fc782e88064104aeaf8fbb3ec9c9bb
unpaywall_primary_10_3934_math_2024985
crossref_citationtrail_10_3934_math_2024985
crossref_primary_10_3934_math_2024985
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024985-4
key-10.3934/math.2024985-5
key-10.3934/math.2024985-2
key-10.3934/math.2024985-3
key-10.3934/math.2024985-1
key-10.3934/math.2024985-23
key-10.3934/math.2024985-22
key-10.3934/math.2024985-21
key-10.3934/math.2024985-20
key-10.3934/math.2024985-26
key-10.3934/math.2024985-25
key-10.3934/math.2024985-24
key-10.3934/math.2024985-8
key-10.3934/math.2024985-12
key-10.3934/math.2024985-9
key-10.3934/math.2024985-11
key-10.3934/math.2024985-6
key-10.3934/math.2024985-10
key-10.3934/math.2024985-7
key-10.3934/math.2024985-16
key-10.3934/math.2024985-15
key-10.3934/math.2024985-14
key-10.3934/math.2024985-13
key-10.3934/math.2024985-19
key-10.3934/math.2024985-18
key-10.3934/math.2024985-17
References_xml – ident: key-10.3934/math.2024985-7
  doi: 10.1090/S0002-9904-1967-11864-0
– ident: key-10.3934/math.2024985-16
  doi: 10.1016/j.matcom.2023.12.040
– ident: key-10.3934/math.2024985-23
– ident: key-10.3934/math.2024985-2
  doi: 10.3390/fractalfract6070379
– ident: key-10.3934/math.2024985-9
  doi: 10.1016/S0097-8493(99)00142-9
– ident: key-10.3934/math.2024985-4
– ident: key-10.3934/math.2024985-10
  doi: 10.3390/sym12010086
– ident: key-10.3934/math.2024985-14
  doi: 10.1007/s11785-022-01312-w
– ident: key-10.3934/math.2024985-20
– ident: key-10.3934/math.2024985-25
  doi: 10.1201/9780429503481
– ident: key-10.3934/math.2024985-22
  doi: 10.1007/s11075-023-01644-4
– ident: key-10.3934/math.2024985-6
  doi: 10.1090/S0002-9939-1953-0054846-3
– ident: key-10.3934/math.2024985-26
  doi: 10.1007/b97624
– ident: key-10.3934/math.2024985-24
  doi: 10.1016/j.camwa.2009.09.003
– ident: key-10.3934/math.2024985-13
  doi: 10.1109/ACCESS.2020.3018090
– ident: key-10.3934/math.2024985-21
  doi: 10.3390/sym11050655
– ident: key-10.3934/math.2024985-17
  doi: 10.1016/j.matcom.2023.02.012
– ident: key-10.3934/math.2024985-15
  doi: 10.3390/sym15020478
– ident: key-10.3934/math.2024985-3
– ident: key-10.3934/math.2024985-19
  doi: 10.1016/j.chaos.2022.112540
– ident: key-10.3934/math.2024985-5
– ident: key-10.3934/math.2024985-1
  doi: 10.3390/fractalfract6020089
– ident: key-10.3934/math.2024985-12
  doi: 10.3390/fractalfract6070397
– ident: key-10.3934/math.2024985-11
  doi: 10.3390/fractalfract5030073
– ident: key-10.3934/math.2024985-8
  doi: 10.1006/jmaa.1999.6615
– ident: key-10.3934/math.2024985-18
  doi: 10.1016/j.matcom.2022.01.003
SSID ssj0002124274
Score 2.3097959
Snippet A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 20221
SubjectTerms escape criterion
julia set
mandelbrot set
viscosity approximation type iterative technique
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-NADB4hLgsHtMtDlGVXPgAXFNHpTJLJcXe1CCGVE0jcIs8LVSopastr_8z-VexMqHoBLlxyiJyZaOzMfHbsz0IcGJljUBqzOCh9ppEuJgaTlbYfpC1N8J6Lk4cXxdmVPr_Or5dafXFOWKIHTgt34mR0dIoFsrNCk--AAaOJ1qrgKldZy7tv31RLzhTvwbQha_K3Uqa7qpQ-IfzH_x7I2-C2yUtnUEvVvy6-3Dd3-PyI4_HS-XL6VWx0wBB-pRf6JlZCsynWhwtW1dmW-J84onkpYRKBS5sRsPEw5Ejw2E4nc4hc9UQmBQRGAeEmsUqP_gUP0y7uBxx2hVtkZoYbeKAxHkYzx8lbz9BSjD-NUj1jEky8y7QpQuo2Da9xc-AYLsyyNnH9iZ7eFlenfy__nGVdg4UMtRzMM1153Q8D-kSNUg6dV4VRxhUYlZWF007bvPQhxhylldITdrSmCjLkaJ3LS7UjVptJE3YFBBJFT1iSAJh2VpnSeYJWDCgKG6XsiePXJa9dxz7OTTDGNXkhrKCaFVR3CuqJw4X0XWLdeEPuN2tvIcNc2e0NsqC6s6D6IwvqiaOF7t-dbe8zZvsu1ni4FMXZF6vz6X34Qbhmbn-2JvwCrK7-Fw
  priority: 102
  providerName: Directory of Open Access Journals
Title Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity
URI https://doi.org/10.3934/math.2024985
https://doaj.org/article/c1fc782e88064104aeaf8fbb3ec9c9bb
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: AMVHM
  dateStart: 20220701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V5AA9lLdIgWgOgQty6WbX9voYUKsIyRUHgsrJ2mcVNSRV4pS2f4c_yqzXiQqIx8WyrPF6NTu7_nZ25huAgWSpclyoxA9zmwhFF-mdTHJ96JjOpbM2JCeXJ9l4Ij6cpqc7MNjkwtw6v-cFF28JtoUjA9okyPQOdLOUEHcHupOTj6MvoW6cyHmSFVLGmPbfXvnpb9OQ8u_C3fX8Ql1_U7PZrT_J8X042vQhBpCcH6xrfWBufqFn_FcnH8BeCyVxFMf-Iey4-SPYLbc8rKvH8D2ySgfl48JjSIZWqOYWy-A7nunlokYf8qTICJHgKyo8izzU0xtncdl6CjE4avGrClwOZ3hJbVxOVyaEe11jQ0p-NY0ZkFEwMjXTMoqxPjVuPO0YvL44wBUOkibc_YpaeAKT46NP78dJW5YhUYIN60QUVhy6IU1syblRxvJMcmky5blmmRFG6DS3zvtUMc2YJcSpZeGYS5U2Js35U-jMF3P3DNCRqLKEQAm2CaO5zI0lQBZgSKY9Yz14sxm-yrSc5aF0xqyivUtQfRVUX7Wq78GrrfRF5Or4g9y7YAlbmcCw3TygMa3aCVsZ5g2hJ0frWyZoz6qc8tJrzZ0pTKF1D15v7eivX9v_X8HncC_cRf_OC-jUy7V7SYin1n3ojsrP47LfeAz6rfn_AHpKBe0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98EaEl-YQuCCXbnZtr48FtaqQUnEgUjlZ-6yiBqdKnNL27_BHmck6UQHxuFiWNV6vZmfX387OfAMw0CI3QSqTxWHpM2XoomPQWWn3grClDt5zcvLouDgaq48n-ckWDNa5MDfO72Ul1TuCbXxkQJsEnd-C7SInxN2D7fHxp_0vXDdOlTIrKq1TTPtvr_z0t1mR8u_A7WVzbq6-men0xp_k8B4crPuQAkjOdpet3XXXv9Az_quT9-FuByVxP439A9gKzUPYGW14WBeP4HtilWbl4ywiJ0MbNI3HEfuOp3Y-azFynhQZIRJ8RYOniYd6ch08zjtPIbKjFr8a5nI4xQtq42KycBzudYUrUvLLScqATIKJqZmWUUz1qXHtaUf2-uIAFzjIVuHul9TCYxgfHnz-cJR1ZRkyo8SwzVTl1V4Y0sTWUjrjvCy01K4wUVpROOWUzUsfYsyNsEJ4QpxWV0GE3Fjn8lI-gV4za8JTwECixhMCJdimnJW6dJ4AGcOQwkYh-vB2PXy16zjLuXTGtKa9C6u-ZtXXner78HojfZ64Ov4g954tYSPDDNurBzSmdTdhayeiI_QUaH0rFO1ZTTBRR2tlcJWrrO3Dm40d_fVrz_5X8Dnc4bvk33kBvXa-DC8J8bT2VWfwPwA84QNc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Julia+and+Mandelbrot+fractals+for+a+generalized+rational+type+mapping+via+viscosity+approximation+type+iterative+method+extended+with+%24+s+%24-convexity&rft.jtitle=AIMS+mathematics&rft.au=Murali%2C+Arunachalam&rft.au=Muthunagai%2C+Krishnan&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=8&rft.spage=20221&rft.epage=20244&rft_id=info:doi/10.3934%2Fmath.2024985&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon