Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity
A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explore...
Saved in:
| Published in | AIMS mathematics Vol. 9; no. 8; pp. 20221 - 20244 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2024985 |
Cover
| Abstract | A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on a generalized rational type complex polynomial of the form $ S_{c}(z) = a z^{n}+\frac{b}{z^{m}}+c $, where $ a, b, c \in \mathbb{C} $ with $ |a| > 1 $ and $ n, m \in \mathbb{N} $ with $ n > 1 $. By applying viscosity approximation-type iteration processes extended with $ s $-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the change in the structure of the generated sets with respect to the variations in parameters. |
|---|---|
| AbstractList | A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on a generalized rational type complex polynomial of the form $ S_{c}(z) = a z^{n}+\frac{b}{z^{m}}+c $, where $ a, b, c \in \mathbb{C} $ with $ |a| > 1 $ and $ n, m \in \mathbb{N} $ with $ n > 1 $. By applying viscosity approximation-type iteration processes extended with $ s $-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the change in the structure of the generated sets with respect to the variations in parameters. |
| Author | Muthunagai, Krishnan Murali, Arunachalam |
| Author_xml | – sequence: 1 givenname: Arunachalam surname: Murali fullname: Murali, Arunachalam – sequence: 2 givenname: Krishnan surname: Muthunagai fullname: Muthunagai, Krishnan |
| BookMark | eNp9kc1O3DAUha2KSqVTdjyAFywb6r8kzrJCLaUCsYG1deNczxhl4sgxwwyv0xetSVBVIbUbX-vqnO9YPh_J0RAGJOSUs3PZSPVlC2lzLphQjS7fkWOhallUjdZHf90_kJNpemCMCS6UqNUx-XWJA0ZIPgw0OPrzsfdAYejoTT6wb2NI1EWwCfqJuhAp0PXs6P0zdnRxQk_TYUS6hXH0w5ruMmPnJxsmnw40L2PY--0SMgt9mjN32YJpEzqK-4Q5r6NPPm3oGZ3oWWHDsMN9Jnwi712Ox5PXuSL337_dXfworm8vry6-XheguEiFajrFUNSN1FJasJ2stNS2AidbXlllVVvWHTpXAm8570pWt7pBjiW01pa1XJGrhdsFeDBjzE-OBxPAm3kR4tpATN72aCx3ttYCtWaV4kwBgtOubSXaxjZ5rkixsB6HEQ5P0Pd_gJyZl8LMS2HmtbCsF4vexjBNEZ2xPs0_liL4_l-mz29M_834DT3jr-U |
| CitedBy_id | crossref_primary_10_1016_j_rico_2025_100516 crossref_primary_10_1371_journal_pone_0315271 crossref_primary_10_1016_j_chaos_2024_115516 crossref_primary_10_3934_math_2025071 |
| Cites_doi | 10.1090/S0002-9904-1967-11864-0 10.1016/j.matcom.2023.12.040 10.3390/fractalfract6070379 10.1016/S0097-8493(99)00142-9 10.3390/sym12010086 10.1007/s11785-022-01312-w 10.1201/9780429503481 10.1007/s11075-023-01644-4 10.1090/S0002-9939-1953-0054846-3 10.1007/b97624 10.1016/j.camwa.2009.09.003 10.1109/ACCESS.2020.3018090 10.3390/sym11050655 10.1016/j.matcom.2023.02.012 10.3390/sym15020478 10.1016/j.chaos.2022.112540 10.3390/fractalfract6020089 10.3390/fractalfract6070397 10.3390/fractalfract5030073 10.1006/jmaa.1999.6615 10.1016/j.matcom.2022.01.003 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2024985 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 20244 |
| ExternalDocumentID | oai_doaj_org_article_c1fc782e88064104aeaf8fbb3ec9c9bb 10.3934/math.2024985 10_3934_math_2024985 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a412t-49d40e2793833cacd36838c6af3b16c4c4b57deff5a1b11d507b89e1e5abcc573 |
| IEDL.DBID | UNPAY |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:24 EDT 2025 Mon Sep 15 08:24:56 EDT 2025 Tue Jul 01 03:57:15 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-49d40e2793833cacd36838c6af3b16c4c4b57deff5a1b11d507b89e1e5abcc573 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2024985 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c1fc782e88064104aeaf8fbb3ec9c9bb unpaywall_primary_10_3934_math_2024985 crossref_citationtrail_10_3934_math_2024985 crossref_primary_10_3934_math_2024985 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2024985-4 key-10.3934/math.2024985-5 key-10.3934/math.2024985-2 key-10.3934/math.2024985-3 key-10.3934/math.2024985-1 key-10.3934/math.2024985-23 key-10.3934/math.2024985-22 key-10.3934/math.2024985-21 key-10.3934/math.2024985-20 key-10.3934/math.2024985-26 key-10.3934/math.2024985-25 key-10.3934/math.2024985-24 key-10.3934/math.2024985-8 key-10.3934/math.2024985-12 key-10.3934/math.2024985-9 key-10.3934/math.2024985-11 key-10.3934/math.2024985-6 key-10.3934/math.2024985-10 key-10.3934/math.2024985-7 key-10.3934/math.2024985-16 key-10.3934/math.2024985-15 key-10.3934/math.2024985-14 key-10.3934/math.2024985-13 key-10.3934/math.2024985-19 key-10.3934/math.2024985-18 key-10.3934/math.2024985-17 |
| References_xml | – ident: key-10.3934/math.2024985-7 doi: 10.1090/S0002-9904-1967-11864-0 – ident: key-10.3934/math.2024985-16 doi: 10.1016/j.matcom.2023.12.040 – ident: key-10.3934/math.2024985-23 – ident: key-10.3934/math.2024985-2 doi: 10.3390/fractalfract6070379 – ident: key-10.3934/math.2024985-9 doi: 10.1016/S0097-8493(99)00142-9 – ident: key-10.3934/math.2024985-4 – ident: key-10.3934/math.2024985-10 doi: 10.3390/sym12010086 – ident: key-10.3934/math.2024985-14 doi: 10.1007/s11785-022-01312-w – ident: key-10.3934/math.2024985-20 – ident: key-10.3934/math.2024985-25 doi: 10.1201/9780429503481 – ident: key-10.3934/math.2024985-22 doi: 10.1007/s11075-023-01644-4 – ident: key-10.3934/math.2024985-6 doi: 10.1090/S0002-9939-1953-0054846-3 – ident: key-10.3934/math.2024985-26 doi: 10.1007/b97624 – ident: key-10.3934/math.2024985-24 doi: 10.1016/j.camwa.2009.09.003 – ident: key-10.3934/math.2024985-13 doi: 10.1109/ACCESS.2020.3018090 – ident: key-10.3934/math.2024985-21 doi: 10.3390/sym11050655 – ident: key-10.3934/math.2024985-17 doi: 10.1016/j.matcom.2023.02.012 – ident: key-10.3934/math.2024985-15 doi: 10.3390/sym15020478 – ident: key-10.3934/math.2024985-3 – ident: key-10.3934/math.2024985-19 doi: 10.1016/j.chaos.2022.112540 – ident: key-10.3934/math.2024985-5 – ident: key-10.3934/math.2024985-1 doi: 10.3390/fractalfract6020089 – ident: key-10.3934/math.2024985-12 doi: 10.3390/fractalfract6070397 – ident: key-10.3934/math.2024985-11 doi: 10.3390/fractalfract5030073 – ident: key-10.3934/math.2024985-8 doi: 10.1006/jmaa.1999.6615 – ident: key-10.3934/math.2024985-18 doi: 10.1016/j.matcom.2022.01.003 |
| SSID | ssj0002124274 |
| Score | 2.3097959 |
| Snippet | A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 20221 |
| SubjectTerms | escape criterion julia set mandelbrot set viscosity approximation type iterative technique |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-NADB4hLgsHtMtDlGVXPgAXFNHpTJLJcXe1CCGVE0jcIs8LVSopastr_8z-VexMqHoBLlxyiJyZaOzMfHbsz0IcGJljUBqzOCh9ppEuJgaTlbYfpC1N8J6Lk4cXxdmVPr_Or5dafXFOWKIHTgt34mR0dIoFsrNCk--AAaOJ1qrgKldZy7tv31RLzhTvwbQha_K3Uqa7qpQ-IfzH_x7I2-C2yUtnUEvVvy6-3Dd3-PyI4_HS-XL6VWx0wBB-pRf6JlZCsynWhwtW1dmW-J84onkpYRKBS5sRsPEw5Ejw2E4nc4hc9UQmBQRGAeEmsUqP_gUP0y7uBxx2hVtkZoYbeKAxHkYzx8lbz9BSjD-NUj1jEky8y7QpQuo2Da9xc-AYLsyyNnH9iZ7eFlenfy__nGVdg4UMtRzMM1153Q8D-kSNUg6dV4VRxhUYlZWF007bvPQhxhylldITdrSmCjLkaJ3LS7UjVptJE3YFBBJFT1iSAJh2VpnSeYJWDCgKG6XsiePXJa9dxz7OTTDGNXkhrKCaFVR3CuqJw4X0XWLdeEPuN2tvIcNc2e0NsqC6s6D6IwvqiaOF7t-dbe8zZvsu1ni4FMXZF6vz6X34Qbhmbn-2JvwCrK7-Fw priority: 102 providerName: Directory of Open Access Journals |
| Title | Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity |
| URI | https://doi.org/10.3934/math.2024985 https://doaj.org/article/c1fc782e88064104aeaf8fbb3ec9c9bb |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: AMVHM dateStart: 20220701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V5AA9lLdIgWgOgQty6WbX9voYUKsIyRUHgsrJ2mcVNSRV4pS2f4c_yqzXiQqIx8WyrPF6NTu7_nZ25huAgWSpclyoxA9zmwhFF-mdTHJ96JjOpbM2JCeXJ9l4Ij6cpqc7MNjkwtw6v-cFF28JtoUjA9okyPQOdLOUEHcHupOTj6MvoW6cyHmSFVLGmPbfXvnpb9OQ8u_C3fX8Ql1_U7PZrT_J8X042vQhBpCcH6xrfWBufqFn_FcnH8BeCyVxFMf-Iey4-SPYLbc8rKvH8D2ySgfl48JjSIZWqOYWy-A7nunlokYf8qTICJHgKyo8izzU0xtncdl6CjE4avGrClwOZ3hJbVxOVyaEe11jQ0p-NY0ZkFEwMjXTMoqxPjVuPO0YvL44wBUOkibc_YpaeAKT46NP78dJW5YhUYIN60QUVhy6IU1syblRxvJMcmky5blmmRFG6DS3zvtUMc2YJcSpZeGYS5U2Js35U-jMF3P3DNCRqLKEQAm2CaO5zI0lQBZgSKY9Yz14sxm-yrSc5aF0xqyivUtQfRVUX7Wq78GrrfRF5Or4g9y7YAlbmcCw3TygMa3aCVsZ5g2hJ0frWyZoz6qc8tJrzZ0pTKF1D15v7eivX9v_X8HncC_cRf_OC-jUy7V7SYin1n3ojsrP47LfeAz6rfn_AHpKBe0 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98EaEl-YQuCCXbnZtr48FtaqQUnEgUjlZ-6yiBqdKnNL27_BHmck6UQHxuFiWNV6vZmfX387OfAMw0CI3QSqTxWHpM2XoomPQWWn3grClDt5zcvLouDgaq48n-ckWDNa5MDfO72Ul1TuCbXxkQJsEnd-C7SInxN2D7fHxp_0vXDdOlTIrKq1TTPtvr_z0t1mR8u_A7WVzbq6-men0xp_k8B4crPuQAkjOdpet3XXXv9Az_quT9-FuByVxP439A9gKzUPYGW14WBeP4HtilWbl4ywiJ0MbNI3HEfuOp3Y-azFynhQZIRJ8RYOniYd6ch08zjtPIbKjFr8a5nI4xQtq42KycBzudYUrUvLLScqATIKJqZmWUUz1qXHtaUf2-uIAFzjIVuHul9TCYxgfHnz-cJR1ZRkyo8SwzVTl1V4Y0sTWUjrjvCy01K4wUVpROOWUzUsfYsyNsEJ4QpxWV0GE3Fjn8lI-gV4za8JTwECixhMCJdimnJW6dJ4AGcOQwkYh-vB2PXy16zjLuXTGtKa9C6u-ZtXXner78HojfZ64Ov4g954tYSPDDNurBzSmdTdhayeiI_QUaH0rFO1ZTTBRR2tlcJWrrO3Dm40d_fVrz_5X8Dnc4bvk33kBvXa-DC8J8bT2VWfwPwA84QNc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Julia+and+Mandelbrot+fractals+for+a+generalized+rational+type+mapping+via+viscosity+approximation+type+iterative+method+extended+with+%24+s+%24-convexity&rft.jtitle=AIMS+mathematics&rft.au=Murali%2C+Arunachalam&rft.au=Muthunagai%2C+Krishnan&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=8&rft.spage=20221&rft.epage=20244&rft_id=info:doi/10.3934%2Fmath.2024985&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024985 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |