M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains
This study investigates the nonlinear Hamiltonian amplitude equation by using two analytical techniques, namely; the extended sinh-Gordon equation expansion method, and the extended rational sine-cosine/sinh-cosh methods. Some important wave solutions are successfully constructed, such as dark, brig...
Saved in:
| Published in | AIMS mathematics Vol. 6; no. 9; pp. 9207 - 9221 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2021535 |
Cover
| Abstract | This study investigates the nonlinear Hamiltonian amplitude equation by using two analytical techniques, namely; the extended sinh-Gordon equation expansion method, and the extended rational sine-cosine/sinh-cosh methods. Some important wave solutions are successfully constructed, such as dark, bright, combined dark-bright, singular solitons, periodic and singular periodic wave solutions. The physical features of the acquired solutions are plotted to depict the clear dynamical behaviour of the reported results. All the acquired solutions have satisfied the original equation. |
|---|---|
| AbstractList | This study investigates the nonlinear Hamiltonian amplitude equation by using two analytical techniques, namely; the extended sinh-Gordon equation expansion method, and the extended rational sine-cosine/sinh-cosh methods. Some important wave solutions are successfully constructed, such as dark, bright, combined dark-bright, singular solitons, periodic and singular periodic wave solutions. The physical features of the acquired solutions are plotted to depict the clear dynamical behaviour of the reported results. All the acquired solutions have satisfied the original equation. |
| Author | Sulaiman, Tukur A. Mahmoud, K. H. Inc, Mustafa Abdel-Khalek, Sayed Yusuf, Abdullahi |
| Author_xml | – sequence: 1 givenname: Abdullahi surname: Yusuf fullname: Yusuf, Abdullahi – sequence: 2 givenname: Tukur A. surname: Sulaiman fullname: Sulaiman, Tukur A. – sequence: 3 givenname: Mustafa surname: Inc fullname: Inc, Mustafa – sequence: 4 givenname: Sayed surname: Abdel-Khalek fullname: Abdel-Khalek, Sayed – sequence: 5 givenname: K. H. surname: Mahmoud fullname: Mahmoud, K. H. |
| BookMark | eNp9kU1OHDEQha0IpBBgxwG8yDINtrvdP8sIJYAEYgNrq9ouzxh57IntAXGHHDqeGYSiSGFVpdJ7X9n1vpCDEAMScsbZeTu13cUKyvJcMMFlKz-RI9ENbdNP43jwV_-ZnOb8xFhViU4M3RH5fdfQryVtgoaChsZ1cRo8zdG7EgOFYGhZoktULyGBLphcrpJMS6RA6xO8CwiJ4q8NFFcdi_iMKbiw2PqoxlTABepCLjC7CnWYabR0Fc3G71a-wDPSkqoqn5BDCz7j6Vs9Jo8_fzxcXje391c3l99vG-i4KE0rRm6xR9sPaHAWYKUcuBFMzyM3s2Qjw94wY40eLVojJNS-H2UnYOTctsfkZs81EZ7UOrkVpFcVwandIKaFglR_6VHNIG1rJo0aWTfDBFOPetJsGmY54dBWVrNnbcIaXl_A-3cgZ2qbjNomo96SqXqx1-sUc05olXZld7rtDfz_TN_-MX244w_xnahE |
| CitedBy_id | crossref_primary_10_31801_cfsuasmas_1316623 crossref_primary_10_1016_j_asej_2024_102935 crossref_primary_10_1371_journal_pone_0276961 crossref_primary_10_1007_s11082_022_04344_w crossref_primary_10_1016_j_rinp_2023_106777 |
| Cites_doi | 10.1016/j.aml.2016.11.018 10.1007/BF00624671 10.1140/epjp/i2017-11655-9 10.1007/s12043-020-02070-0 10.1142/S0217979221500430 10.1017/CBO9780511623998 10.1364/OL.12.000355 10.1016/j.amc.2007.10.012 10.1088/1751-8113/44/30/305203 10.1016/j.ijleo.2018.02.043 10.1007/s11082-019-2116-1 10.1016/j.rinp.2021.103850 10.1103/PhysRevA.78.023821 10.1088/0253-6102/50/6/26 10.1016/j.rinp.2021.104228 10.1142/S0217979220501155 10.1103/PhysRevE.81.016605 10.1088/1402-4896/ab1791 10.1016/j.ijleo.2017.01.078 10.1007/s12043-012-0284-7 10.1098/rsta.1985.0043 10.3389/fphy.2020.00332 10.1016/j.rinp.2021.104177 10.1142/S0217984916503814 10.1142/S021988782050173X 10.1016/j.cnsns.2017.01.001 10.1119/1.17120 10.1016/j.amc.2006.11.143 10.1007/s11071-020-05561-2 10.1088/0951-7715/25/7/R73 10.1063/1.523737 10.1140/epjp/i2019-12545-x 10.1016/j.amc.2009.05.049 10.1016/j.aml.2016.11.012 10.1016/j.cnsns.2017.01.018 10.1088/0253-6102/50/5/06 10.1201/9781420035223 10.1016/B978-012410590-4/50012-7 10.3934/math.2020447 10.1143/JPSJ.61.1187 10.1007/s11071-018-4049-9 10.1103/PhysRevLett.27.1192 10.1016/j.aej.2014.06.005 10.1143/JPSJ.52.394 10.1016/j.spmi.2017.11.022 10.1016/B978-0-12-397023-7.00011-5 |
| ContentType | Journal Article |
| CorporateAuthor | Department of Computer Engineering, Biruni University, Istanbul, Turkey Department of Mathematics, College of Science, P.O. Box 11099, Taif University, Taif 21944, Saudi Arabia Department of Mathematics, Science Faculty, Firat University Elazig, Turkey Department of Physics, College of Khurma University College, Taif University, P.O. Box11099, Taif 21944, Saudi Arabia Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan Department of Mathematics, Federal University Dutse, Jigawa, Nigeria |
| CorporateAuthor_xml | – name: Department of Physics, College of Khurma University College, Taif University, P.O. Box11099, Taif 21944, Saudi Arabia – name: Department of Mathematics, Science Faculty, Firat University Elazig, Turkey – name: Department of Computer Engineering, Biruni University, Istanbul, Turkey – name: Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan – name: Department of Mathematics, College of Science, P.O. Box 11099, Taif University, Taif 21944, Saudi Arabia – name: Department of Mathematics, Federal University Dutse, Jigawa, Nigeria |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2021535 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 9221 |
| ExternalDocumentID | oai_doaj_org_article_ba5f3d9cece04ba9a96ec9c097b59e73 10.3934/math.2021535 10_3934_math_2021535 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a412t-3281fe6ef67edeb2af5571d20cb81db5080e6d0dfdc8fefd25adfd68542a811f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:53:42 EDT 2025 Mon Sep 15 08:12:47 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-3281fe6ef67edeb2af5571d20cb81db5080e6d0dfdc8fefd25adfd68542a811f3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2021535 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ba5f3d9cece04ba9a96ec9c097b59e73 unpaywall_primary_10_3934_math_2021535 crossref_citationtrail_10_3934_math_2021535 crossref_primary_10_3934_math_2021535 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2021 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2021535-16 key-10.3934/math.2021535-15 key-10.3934/math.2021535-14 key-10.3934/math.2021535-13 key-10.3934/math.2021535-12 key-10.3934/math.2021535-11 key-10.3934/math.2021535-10 key-10.3934/math.2021535-19 key-10.3934/math.2021535-18 key-10.3934/math.2021535-17 key-10.3934/math.2021535-7 key-10.3934/math.2021535-6 key-10.3934/math.2021535-51 key-10.3934/math.2021535-9 key-10.3934/math.2021535-50 key-10.3934/math.2021535-8 key-10.3934/math.2021535-3 key-10.3934/math.2021535-2 key-10.3934/math.2021535-5 key-10.3934/math.2021535-4 key-10.3934/math.2021535-49 key-10.3934/math.2021535-48 key-10.3934/math.2021535-1 key-10.3934/math.2021535-47 key-10.3934/math.2021535-46 key-10.3934/math.2021535-45 key-10.3934/math.2021535-44 key-10.3934/math.2021535-43 key-10.3934/math.2021535-42 key-10.3934/math.2021535-41 key-10.3934/math.2021535-40 key-10.3934/math.2021535-38 key-10.3934/math.2021535-37 key-10.3934/math.2021535-36 key-10.3934/math.2021535-35 key-10.3934/math.2021535-34 key-10.3934/math.2021535-33 key-10.3934/math.2021535-32 key-10.3934/math.2021535-31 key-10.3934/math.2021535-39 key-10.3934/math.2021535-30 key-10.3934/math.2021535-27 key-10.3934/math.2021535-26 key-10.3934/math.2021535-25 key-10.3934/math.2021535-24 key-10.3934/math.2021535-23 key-10.3934/math.2021535-22 key-10.3934/math.2021535-21 key-10.3934/math.2021535-20 key-10.3934/math.2021535-29 key-10.3934/math.2021535-28 |
| References_xml | – ident: key-10.3934/math.2021535-35 doi: 10.1016/j.aml.2016.11.018 – ident: key-10.3934/math.2021535-5 doi: 10.1007/BF00624671 – ident: key-10.3934/math.2021535-14 doi: 10.1140/epjp/i2017-11655-9 – ident: key-10.3934/math.2021535-11 doi: 10.1007/s12043-020-02070-0 – ident: key-10.3934/math.2021535-9 doi: 10.1142/S0217979221500430 – ident: key-10.3934/math.2021535-22 doi: 10.1017/CBO9780511623998 – ident: key-10.3934/math.2021535-3 doi: 10.1364/OL.12.000355 – ident: key-10.3934/math.2021535-18 doi: 10.1016/j.amc.2007.10.012 – ident: key-10.3934/math.2021535-17 doi: 10.1088/1751-8113/44/30/305203 – ident: key-10.3934/math.2021535-37 doi: 10.1016/j.ijleo.2018.02.043 – ident: key-10.3934/math.2021535-38 doi: 10.1007/s11082-019-2116-1 – ident: key-10.3934/math.2021535-8 doi: 10.1016/j.rinp.2021.103850 – ident: key-10.3934/math.2021535-30 doi: 10.1103/PhysRevA.78.023821 – ident: key-10.3934/math.2021535-42 doi: 10.1088/0253-6102/50/6/26 – ident: key-10.3934/math.2021535-40 doi: 10.1016/j.rinp.2021.104228 – ident: key-10.3934/math.2021535-10 doi: 10.1142/S0217979220501155 – ident: key-10.3934/math.2021535-31 doi: 10.1103/PhysRevE.81.016605 – ident: key-10.3934/math.2021535-29 doi: 10.1088/1402-4896/ab1791 – ident: key-10.3934/math.2021535-33 doi: 10.1016/j.ijleo.2017.01.078 – ident: key-10.3934/math.2021535-44 doi: 10.1007/s12043-012-0284-7 – ident: key-10.3934/math.2021535-49 – ident: key-10.3934/math.2021535-6 doi: 10.1098/rsta.1985.0043 – ident: key-10.3934/math.2021535-24 doi: 10.3389/fphy.2020.00332 – ident: key-10.3934/math.2021535-41 doi: 10.1016/j.rinp.2021.104177 – ident: key-10.3934/math.2021535-39 doi: 10.1142/S0217984916503814 – ident: key-10.3934/math.2021535-7 doi: 10.1142/S021988782050173X – ident: key-10.3934/math.2021535-28 doi: 10.1016/j.cnsns.2017.01.001 – ident: key-10.3934/math.2021535-21 doi: 10.1119/1.17120 – ident: key-10.3934/math.2021535-26 doi: 10.1016/j.amc.2006.11.143 – ident: key-10.3934/math.2021535-32 doi: 10.1007/s11071-020-05561-2 – ident: key-10.3934/math.2021535-4 doi: 10.1088/0951-7715/25/7/R73 – ident: key-10.3934/math.2021535-15 doi: 10.1063/1.523737 – ident: key-10.3934/math.2021535-48 doi: 10.1140/epjp/i2019-12545-x – ident: key-10.3934/math.2021535-13 doi: 10.1016/j.amc.2009.05.049 – ident: key-10.3934/math.2021535-27 doi: 10.1016/j.aml.2016.11.012 – ident: key-10.3934/math.2021535-34 doi: 10.1016/j.cnsns.2017.01.018 – ident: key-10.3934/math.2021535-47 doi: 10.1088/0253-6102/50/5/06 – ident: key-10.3934/math.2021535-51 doi: 10.1201/9781420035223 – ident: key-10.3934/math.2021535-1 – ident: key-10.3934/math.2021535-2 doi: 10.1016/B978-012410590-4/50012-7 – ident: key-10.3934/math.2021535-25 doi: 10.3934/math.2020447 – ident: key-10.3934/math.2021535-50 – ident: key-10.3934/math.2021535-46 doi: 10.1143/JPSJ.61.1187 – ident: key-10.3934/math.2021535-36 doi: 10.1007/s11082-019-2116-1 – ident: key-10.3934/math.2021535-19 – ident: key-10.3934/math.2021535-45 doi: 10.1007/s11071-018-4049-9 – ident: key-10.3934/math.2021535-23 doi: 10.1103/PhysRevLett.27.1192 – ident: key-10.3934/math.2021535-43 doi: 10.1016/j.aej.2014.06.005 – ident: key-10.3934/math.2021535-16 doi: 10.1143/JPSJ.52.394 – ident: key-10.3934/math.2021535-12 doi: 10.1016/j.spmi.2017.11.022 – ident: key-10.3934/math.2021535-20 doi: 10.1016/B978-0-12-397023-7.00011-5 |
| SSID | ssj0002124274 |
| Score | 2.1616602 |
| Snippet | This study investigates the nonlinear Hamiltonian amplitude equation by using two analytical techniques, namely; the extended sinh-Gordon equation expansion... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 9207 |
| SubjectTerms | extended rational sine-cosine/sinh-cosh extended sinh-gordon method hamiltonian amplitude equation m-truncated derivative optical solitons |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29ThwxELYimoQCkQTEhRBNkaRBK_bPXruEKAhFulRBolv5Z4yQjt3j7gjiDSioeMQ8CWN7c7kUgSbdajW7M_KMPN_Yo28Y-0glQ9VQXs6ktyKrOcdMW1FltTO-UlxJGW_wx9_FyWn97YyfrYz6Cj1hiR44LdyB0dxXTlm0mNdGK60EWmVz1RiusIk8n7lUK8VU2INpQ66p3kqd7pWq6gPCf-HugTJcnOz2JwdFqv519vK6m-rbGz2ZrOSX4022MQBDOEwGvWYvsHvD1sdLVtX5W3Y__nX3sJhdBx5XdNBP4zk0zEMLW9-B7hzEc3-wf7Mww6IHDV0ixdAzwKvE7w3ncdAuJa_wHdjUHQAXATHGnlmqoqH3cNm7MOSLVN7onwhxqsR8i50ef_3x5SQbpilkui7KRVaVsvAo0IsGHdXT2nPeFK7MrSHMagio5Shc7ryz0qN3Jdf0LCSvSy2LwlfbbI0sxR0G0nFUmoBWaQhu5UajNaGPQpgmJzhlRmz_9_q2dqAaD7ZNWio5gjfa4I128MaIfVpKTxPFxj_kjoKrljKBGDu-oHBph3BpnwuXEfu8dPST2t79D2277FX4XTqyec_WKERwj0DMwnyI8foIORT3Vw priority: 102 providerName: Directory of Open Access Journals |
| Title | M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains |
| URI | https://doi.org/10.3934/math.2021535 https://doaj.org/article/ba5f3d9cece04ba9a96ec9c097b59e73 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6KG-xFKo5LFxQShLHTnwsqFWFtBUHViqnyE-EWJKlm6WC39Af3bGTXbUgHjcrGscjj6P5xjP5BmBCIQMryS8nlTciKTh3iTKCJYXVnkkuqypm8Ken4mRWvDvjZ1swWf8Lcy1_zyQrXhNsCykDckyM34JtwQlxj2B7dvr-8GPoG1eULBH0xr6m_bcpN7xNJOXfgdurZqF-XKj5_JonOb4LR2sd-gKSLwerTh-Yn7_QM_5LyXuwO0BJPOxtfx-2XPMAdqYbHtblQ7icJjjpzleB-dVZbBfx5hqXoeitbVA1FmOmAM1N3mbsWlTY9DQa6hzdt54RHD_F1rzk7sI8NH09AX4OGDNW2VLcja3Hr60NbcFoyQv13WHsQ7F8BLPjow9vT5Kh_0KiiizvEpZXmXfCeVE6SxG48pyXmc1TownlaoJ2qRM2td6ayjtvc65oLCpe5KrKMs8ew4g0dU8AK8udVATNck0ALdXKGR0qL4QuUwJgegyv1naqzUBOHnSb1xSkhD2uwx7Xwx6P4cVGetGTcvxB7k0w-UYmUGnHB2S8evgyCS1wz6w0zri00EoqKZyRJpWl5tKVbAwvNwfmr6s9_V_BPbgTRv1FzjMY0TFwzwnadHo_XgnsD-f7Cjm_-y8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6KG-x5SEfFi7IJYljJz6WqlWFtBUHViqnyI8xqliSpZulgt_Aj2acZFdtEY-bFY3jkcfRfOOZfAMwoZBBFOSXeRmc4rmUyI1TgufeBqGlLssugz89VSez_N2ZPNuCyfpfmCv5e6FF_oZgW0wZkGMS8hZsK0mIewTbs9P3Bx9j37i8EFzRG_ua9t-mXPM2HSn_Dtxe1Qvz_dLM51c8yfFdOFrr0BeQfN5ftXbf_bhBz_gvJe_B7gAl2UFv-_uwhfUD2JlueFiXD-HnlLNJe7GKzK_oWbPobq7ZMha9NTUztWddpoC567zNrG2YYXVPo2EuGH7tGcHZp641L7m7OI-5vp6AnUeM2VXZUtzNmsC-ND62BaMlL803ZF0fiuUjmB0ffTg84UP_BW7yNGu5yMo0oMKgCvQUgZsgZZH6LHGWUK4laJeg8okP3pUBg8-kobEqZZ6ZMk2DeAwj0hSfACu9RG0ImmWWAFpiDTobKy-ULRICYHYMr9d2qtxATh51m1cUpMQ9ruIeV8Mej-HlRnrRk3L8Qe5tNPlGJlJpdw_IeNXwZRJakEF47dBhklujjVbotEt0YaXGQozh1ebA_HW1vf8VfAp34qi_yHkGIzoG-JygTWtfDCf7F1wW-jo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-+%24truncated+optical+soliton+and+their+characteristics+to+a+nonlinear+equation+governing+the+certain+instabilities+of+modulated+wave+trains&rft.jtitle=AIMS+mathematics&rft.au=Yusuf%2C+Abdullahi&rft.au=Sulaiman%2C+Tukur+A.&rft.au=Inc%2C+Mustafa&rft.au=Abdel-Khalek%2C+Sayed&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=9&rft.spage=9207&rft.epage=9221&rft_id=info:doi/10.3934%2Fmath.2021535&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021535 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |