On the number of unit solutions of cubic congruence modulo $ n

For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 12; pp. 13515 - 13524
Main Author Zhao, Junyong
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021784

Cover

Abstract For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence <disp-formula> <tex-math id="FE1"> \begin{document}$ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $\end{document} </tex-math></disp-formula>
AbstractList For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence $ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $
For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence <disp-formula> <tex-math id="FE1"> \begin{document}$ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $\end{document} </tex-math></disp-formula>
Author Zhao, Junyong
Author_xml – sequence: 1
  givenname: Junyong
  surname: Zhao
  fullname: Zhao, Junyong
BookMark eNp9kE1LAzEQhoNUsGpv_oAcPLp187Gb5CJI8aNQ6EXPYZLNtinbpGR3kf57u7aICHqaYXjfZ-C5RKMQg0PohuRTphi_30K3ntKcEiH5GRpTLlhWKilHP_YLNGnbTZ4fUpRTwcfoYRlwt3Y49FvjEo417oPvcBubvvMxtMPF9sZbbGNYpd4F6_A2Vn0T8S0O1-i8hqZ1k9O8Qu_PT2-z12yxfJnPHhcZcEK7jIJyVVFLAFYYSZyywkhTKiOsJS4HUSsCNgfuipLWBZSlI1ZWgnNVGyYVu0LzI7eKsNG75LeQ9jqC11-HmFYaUudt4zRIw_KKM2Ut46wixrBKlNQxSwR1ZXlgZUdWH3aw_4Cm-QaSXA8u9eBSn1we8vSYtym2bXK1tr6DwU6XwDd_le5-lf798QnHH4hw
CitedBy_id crossref_primary_10_3934_math_20241053
Cites_doi 10.1007/978-1-4757-5579-4
10.1016/0022-314X(77)90010-5
10.1016/j.jnt.2017.10.017
10.1142/S1793042118501762
10.1016/j.jnt.2015.02.019
10.1515/forum-2020-0354
10.1007/978-1-4757-2103-4
10.1142/S1793042114500328
ContentType Journal Article
CorporateAuthor School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, China
Mathematical College, Sichuan University, Chengdu 610064, China
CorporateAuthor_xml – name: School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, China
– name: Mathematical College, Sichuan University, Chengdu 610064, China
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2021784
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 13524
ExternalDocumentID oai_doaj_org_article_a8b30d439cc343d1bb3d762e3c172e66
10.3934/math.2021784
10_3934_math_2021784
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a412t-2a9ed5f8aa35b81e9c7b8b69b7cc1e0a7f91ac0a4e562f5a66e1c8d7449fb3893
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:50 EDT 2025
Mon Sep 15 08:26:37 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Tue Jul 01 03:56:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-2a9ed5f8aa35b81e9c7b8b69b7cc1e0a7f91ac0a4e562f5a66e1c8d7449fb3893
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2021784
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a8b30d439cc343d1bb3d762e3c172e66
unpaywall_primary_10_3934_math_2021784
crossref_citationtrail_10_3934_math_2021784
crossref_primary_10_3934_math_2021784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021784-2
key-10.3934/math.2021784-3
key-10.3934/math.2021784-4
key-10.3934/math.2021784-5
key-10.3934/math.2021784-10
key-10.3934/math.2021784-1
key-10.3934/math.2021784-6
key-10.3934/math.2021784-7
key-10.3934/math.2021784-8
key-10.3934/math.2021784-9
References_xml – ident: key-10.3934/math.2021784-7
– ident: key-10.3934/math.2021784-1
  doi: 10.1007/978-1-4757-5579-4
– ident: key-10.3934/math.2021784-3
  doi: 10.1016/0022-314X(77)90010-5
– ident: key-10.3934/math.2021784-6
  doi: 10.1016/j.jnt.2017.10.017
– ident: key-10.3934/math.2021784-8
  doi: 10.1142/S1793042118501762
– ident: key-10.3934/math.2021784-10
  doi: 10.1016/j.jnt.2015.02.019
– ident: key-10.3934/math.2021784-2
– ident: key-10.3934/math.2021784-4
  doi: 10.1515/forum-2020-0354
– ident: key-10.3934/math.2021784-5
  doi: 10.1007/978-1-4757-2103-4
– ident: key-10.3934/math.2021784-9
  doi: 10.1142/S1793042114500328
SSID ssj0002124274
Score 2.1399293
Snippet For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 13515
SubjectTerms cubic congruence
exponential sums
unit solutions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yF92D-MT1RQ7qRcq2Tdok4EXFZRFWLy7sreQpQm2XdYv47520tawH9eKx6ZCUb5LMN2n4BqGzkCTKOAaZKgSngFKZBEK4OFAsDRkzzIX1gdvkIR1P6f0sma2U-vJ3whp54Aa4oeSKhAbCptaEEhMpRQwsYEs0hF6b1mLbIRcryZTfg2FDppBvNTfdiSB0CPzP_3sABs7ptxhUS_X30XpVzOXHu8zzlfgy2kKbLTHE180HbaM1W-yg_qRTVX3bRVePBYZH3FTxwKXDFSxI3M0e36Ir9aIxJLnPi_qKNH4tTZWXuNhD09Hd0-04aKsfBJJG8TKIpbAmcVxKgJNHVmimuEqFYlpHNpTMiUjqUFILFMYlMk1tpLlhlAqnPA3ZR72iLOwBwrEEIpHwWCohaEThdQpEBJgWdK8gnxugyy88Mt1Kg_sKFXkGKYJHL_PoZS16A3TeWc8bSYwf7G48tJ2NF7KuG8C9Weve7C_3DtBF55hfRzv8j9GO0IbvrjliOUa9JbjqBEjHUp3W8-sTjvDTQg
  priority: 102
  providerName: Directory of Open Access Journals
Title On the number of unit solutions of cubic congruence modulo $ n
URI https://doi.org/10.3934/math.2021784
https://doaj.org/article/a8b30d439cc343d1bb3d762e3c172e66
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-V8jB4GGww0cEqP3R7QSlJ7PjjBQkmKoTUbg9U6p4i23HQtC5FrNG0_fWckzQqm_h4S5xLYt3Zud_Zl98BDEKamCwXGKmicwoY00mgVB4HRvBQiEzkYbXgNp7wyym7miWzDgxW_8Ks7d9TRdkJwja_ZYDAWbIN2OQJIu4ubE4nX8---bpxTNCAKynrnPb_bnngbSpS_m14VRa3-s9vPZ-veZLRDlys-lAnkPwYlksztH__oWd8rpO78LqBkuSstv0b6LjiLWyPWx7WX3tw-qUgeErquh9kkZMSpzBpx5tvsaX5bgmGxTd3VVI1-bnIyvmCDEixD9PRxfXny6CpmBBoFsXLINbKZUkutUYTyMgpK4w0XBlhbeRCLXIVaRtq5hD25Inm3EVWZoIxlRsPXd5Bt1gU7gBIrBF8JDLWRikWMbzMEbwgOsPHG4wBe3C80mxqGzpxX9VinmJY4bWSeq2kjVZ68LGVvq1pNB6RO_dGamU8-XXVgOpOm7mUamlomCGSspYymkXG0Ay_6Y5aRGOO8x58ak385Nvev1TwELb8Ub30cgTdJRrkA4KRpelXQXy_GZH3tunasQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9mHsYYMBovtAfii8oJQkdvzxMqmgVhNSuz1QqXuKbMdBiJJWkGja_vqdmzQqmzZ4S5xLYt3Zud_Zl98B9EOamCwXGKmicwoY00mgVB4HRvBQiEzk4XrBbTLl5zP2dZ7Md6C_-Rdma_-eKso-IWzzWwYInCV7Bl2eIOLuQHc2vRxe-bpxTNCAKynrnPYHt_zlbdak_HuwWxUrfXOtF4stTzI-gNGmD3UCyc9BVZqBvb1Hz_ivTr6A_QZKkmFt-5ew44pD2Ju0PKx_XsHZRUHwlNR1P8gyJxVOYdKON99iK_PDEgyLv_9eJ1WTX8usWixJnxSvYTYefftyHjQVEwLNorgMYq1cluRSazSBjJyywkjDlRHWRi7UIleRtqFmDmFPnmjOXWRlJhhTufHQ5Q10imXh3gKJNYKPRMbaKMUihpc5ghdEZ_h4gzFgDz5uNJvahk7cV7VYpBhWeK2kXitpo5UevG-lVzWNxiNyn72RWhlPfr1uQHWnzVxKtTQ0zBBJWUsZzSJjaIbfdEctojHHeQ8-tCZ-8m1H_yt4DM_9Ub30cgKdEg1yimCkNO-asXgHnEPZvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+number+of+unit+solutions+of+cubic+congruence+modulo+n&rft.jtitle=AIMS+mathematics&rft.au=Junyong+Zhao&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=12&rft.spage=13515&rft.epage=13524&rft_id=info:doi/10.3934%2Fmath.2021784&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a8b30d439cc343d1bb3d762e3c172e66
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon