On the number of unit solutions of cubic congruence modulo $ n
For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence...
Saved in:
| Published in | AIMS mathematics Vol. 6; no. 12; pp. 13515 - 13524 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2021784 |
Cover
| Abstract | For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence
<disp-formula> <tex-math id="FE1"> \begin{document}$ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $\end{document} </tex-math></disp-formula> |
|---|---|
| AbstractList | For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence $ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $ For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence <disp-formula> <tex-math id="FE1"> \begin{document}$ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $\end{document} </tex-math></disp-formula> |
| Author | Zhao, Junyong |
| Author_xml | – sequence: 1 givenname: Junyong surname: Zhao fullname: Zhao, Junyong |
| BookMark | eNp9kE1LAzEQhoNUsGpv_oAcPLp187Gb5CJI8aNQ6EXPYZLNtinbpGR3kf57u7aICHqaYXjfZ-C5RKMQg0PohuRTphi_30K3ntKcEiH5GRpTLlhWKilHP_YLNGnbTZ4fUpRTwcfoYRlwt3Y49FvjEo417oPvcBubvvMxtMPF9sZbbGNYpd4F6_A2Vn0T8S0O1-i8hqZ1k9O8Qu_PT2-z12yxfJnPHhcZcEK7jIJyVVFLAFYYSZyywkhTKiOsJS4HUSsCNgfuipLWBZSlI1ZWgnNVGyYVu0LzI7eKsNG75LeQ9jqC11-HmFYaUudt4zRIw_KKM2Ut46wixrBKlNQxSwR1ZXlgZUdWH3aw_4Cm-QaSXA8u9eBSn1we8vSYtym2bXK1tr6DwU6XwDd_le5-lf798QnHH4hw |
| CitedBy_id | crossref_primary_10_3934_math_20241053 |
| Cites_doi | 10.1007/978-1-4757-5579-4 10.1016/0022-314X(77)90010-5 10.1016/j.jnt.2017.10.017 10.1142/S1793042118501762 10.1016/j.jnt.2015.02.019 10.1515/forum-2020-0354 10.1007/978-1-4757-2103-4 10.1142/S1793042114500328 |
| ContentType | Journal Article |
| CorporateAuthor | School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, China Mathematical College, Sichuan University, Chengdu 610064, China |
| CorporateAuthor_xml | – name: School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, China – name: Mathematical College, Sichuan University, Chengdu 610064, China |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2021784 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 13524 |
| ExternalDocumentID | oai_doaj_org_article_a8b30d439cc343d1bb3d762e3c172e66 10.3934/math.2021784 10_3934_math_2021784 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a412t-2a9ed5f8aa35b81e9c7b8b69b7cc1e0a7f91ac0a4e562f5a66e1c8d7449fb3893 |
| IEDL.DBID | UNPAY |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:50 EDT 2025 Mon Sep 15 08:26:37 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 03:56:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-2a9ed5f8aa35b81e9c7b8b69b7cc1e0a7f91ac0a4e562f5a66e1c8d7449fb3893 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2021784 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a8b30d439cc343d1bb3d762e3c172e66 unpaywall_primary_10_3934_math_2021784 crossref_citationtrail_10_3934_math_2021784 crossref_primary_10_3934_math_2021784 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2021 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2021784-2 key-10.3934/math.2021784-3 key-10.3934/math.2021784-4 key-10.3934/math.2021784-5 key-10.3934/math.2021784-10 key-10.3934/math.2021784-1 key-10.3934/math.2021784-6 key-10.3934/math.2021784-7 key-10.3934/math.2021784-8 key-10.3934/math.2021784-9 |
| References_xml | – ident: key-10.3934/math.2021784-7 – ident: key-10.3934/math.2021784-1 doi: 10.1007/978-1-4757-5579-4 – ident: key-10.3934/math.2021784-3 doi: 10.1016/0022-314X(77)90010-5 – ident: key-10.3934/math.2021784-6 doi: 10.1016/j.jnt.2017.10.017 – ident: key-10.3934/math.2021784-8 doi: 10.1142/S1793042118501762 – ident: key-10.3934/math.2021784-10 doi: 10.1016/j.jnt.2015.02.019 – ident: key-10.3934/math.2021784-2 – ident: key-10.3934/math.2021784-4 doi: 10.1515/forum-2020-0354 – ident: key-10.3934/math.2021784-5 doi: 10.1007/978-1-4757-2103-4 – ident: key-10.3934/math.2021784-9 doi: 10.1142/S1793042114500328 |
| SSID | ssj0002124274 |
| Score | 2.1399293 |
| Snippet | For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 13515 |
| SubjectTerms | cubic congruence exponential sums unit solutions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yF92D-MT1RQ7qRcq2Tdok4EXFZRFWLy7sreQpQm2XdYv47520tawH9eKx6ZCUb5LMN2n4BqGzkCTKOAaZKgSngFKZBEK4OFAsDRkzzIX1gdvkIR1P6f0sma2U-vJ3whp54Aa4oeSKhAbCptaEEhMpRQwsYEs0hF6b1mLbIRcryZTfg2FDppBvNTfdiSB0CPzP_3sABs7ptxhUS_X30XpVzOXHu8zzlfgy2kKbLTHE180HbaM1W-yg_qRTVX3bRVePBYZH3FTxwKXDFSxI3M0e36Ir9aIxJLnPi_qKNH4tTZWXuNhD09Hd0-04aKsfBJJG8TKIpbAmcVxKgJNHVmimuEqFYlpHNpTMiUjqUFILFMYlMk1tpLlhlAqnPA3ZR72iLOwBwrEEIpHwWCohaEThdQpEBJgWdK8gnxugyy88Mt1Kg_sKFXkGKYJHL_PoZS16A3TeWc8bSYwf7G48tJ2NF7KuG8C9Weve7C_3DtBF55hfRzv8j9GO0IbvrjliOUa9JbjqBEjHUp3W8-sTjvDTQg priority: 102 providerName: Directory of Open Access Journals |
| Title | On the number of unit solutions of cubic congruence modulo $ n |
| URI | https://doi.org/10.3934/math.2021784 https://doaj.org/article/a8b30d439cc343d1bb3d762e3c172e66 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-V8jB4GGww0cEqP3R7QSlJ7PjjBQkmKoTUbg9U6p4i23HQtC5FrNG0_fWckzQqm_h4S5xLYt3Zud_Zl98BDEKamCwXGKmicwoY00mgVB4HRvBQiEzkYbXgNp7wyym7miWzDgxW_8Ks7d9TRdkJwja_ZYDAWbIN2OQJIu4ubE4nX8---bpxTNCAKynrnPb_bnngbSpS_m14VRa3-s9vPZ-veZLRDlys-lAnkPwYlksztH__oWd8rpO78LqBkuSstv0b6LjiLWyPWx7WX3tw-qUgeErquh9kkZMSpzBpx5tvsaX5bgmGxTd3VVI1-bnIyvmCDEixD9PRxfXny6CpmBBoFsXLINbKZUkutUYTyMgpK4w0XBlhbeRCLXIVaRtq5hD25Inm3EVWZoIxlRsPXd5Bt1gU7gBIrBF8JDLWRikWMbzMEbwgOsPHG4wBe3C80mxqGzpxX9VinmJY4bWSeq2kjVZ68LGVvq1pNB6RO_dGamU8-XXVgOpOm7mUamlomCGSspYymkXG0Ay_6Y5aRGOO8x58ak385Nvev1TwELb8Ub30cgTdJRrkA4KRpelXQXy_GZH3tunasQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9mHsYYMBovtAfii8oJQkdvzxMqmgVhNSuz1QqXuKbMdBiJJWkGja_vqdmzQqmzZ4S5xLYt3Zud_Zl98B9EOamCwXGKmicwoY00mgVB4HRvBQiEzk4XrBbTLl5zP2dZ7Md6C_-Rdma_-eKso-IWzzWwYInCV7Bl2eIOLuQHc2vRxe-bpxTNCAKynrnPYHt_zlbdak_HuwWxUrfXOtF4stTzI-gNGmD3UCyc9BVZqBvb1Hz_ivTr6A_QZKkmFt-5ew44pD2Ju0PKx_XsHZRUHwlNR1P8gyJxVOYdKON99iK_PDEgyLv_9eJ1WTX8usWixJnxSvYTYefftyHjQVEwLNorgMYq1cluRSazSBjJyywkjDlRHWRi7UIleRtqFmDmFPnmjOXWRlJhhTufHQ5Q10imXh3gKJNYKPRMbaKMUihpc5ghdEZ_h4gzFgDz5uNJvahk7cV7VYpBhWeK2kXitpo5UevG-lVzWNxiNyn72RWhlPfr1uQHWnzVxKtTQ0zBBJWUsZzSJjaIbfdEctojHHeQ8-tCZ-8m1H_yt4DM_9Ub30cgKdEg1yimCkNO-asXgHnEPZvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+number+of+unit+solutions+of+cubic+congruence+modulo+n&rft.jtitle=AIMS+mathematics&rft.au=Junyong+Zhao&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=12&rft.spage=13515&rft.epage=13524&rft_id=info:doi/10.3934%2Fmath.2021784&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a8b30d439cc343d1bb3d762e3c172e66 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |